Platinum Group Metal Or Silicide Thereof Patents (Class 257/769)
  • Patent number: 11877390
    Abstract: Methods of fabricating tamper-respondent sensors with random three-dimensional security patterns are provided. The methods include establishing a security circuit pattern for a security circuit of a tamper-respondent sensor to enclose, at least in part, one or more components of a circuit board within a secure volume. The establishing includes determining in three-dimensions boundaries for the security circuit of the tamper-respondent sensor. The boundaries define a sensor volume which the security circuit is to fill in three dimensions. The establishing also includes generating at least one trace configuration for the security circuit pattern. The at least one trace configuration defines a random, three-dimensional security pattern to fill the sensor volume, and the at least one trace configuration establishes, at least in part, the security circuit pattern. The process further includes fabricating the tamper-respondent sensor based on the established security circuit pattern.
    Type: Grant
    Filed: August 30, 2021
    Date of Patent: January 16, 2024
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: John S. Werner, Jason T. Wertz, John Torok, Noah Singer, Arkadiy O. Tsfasman, Budy Notohardjono
  • Patent number: 11875925
    Abstract: An electrical component comprises a main body and at least one external electrode that is fastened by a connecting material to the main body. The main body and the external electrode have different coefficients of thermal expansion that determine a critical temperature which, when exceeded, results in a connection between the main body and the external electrode experiencing mechanical stresses that lead to damage to the component. The connecting material has a melting point which is lower than a critical temperature.
    Type: Grant
    Filed: February 25, 2020
    Date of Patent: January 16, 2024
    Assignee: TDK Electronics AG
    Inventors: Alfred Hofrichter, Franz Rinner
  • Patent number: 11749455
    Abstract: A method of fabricating a laminated magnetic core including: fabricating a magnetic-core mold on a surface, the magnetic-core mold including a first wall portion having a first sidewall, a second wall portion having a second sidewall, the second sidewall located opposite the first sidewall, the first and second sidewalls and a portion of the surface defining a mold cavity having a bottom width that is greater than a top width; depositing a seed material on the mold top surface and on a portion of the surface so as to form a conductive layer, wherein the seed material is directed toward the mold top surface and the portion of the surface of the substrate at an angle of incidence that substantially prevents deposition of the seed material on the first and second sidewalls; forming a magnetic layer on the conductive layer; and forming an insulating-sealing layer on the magnetic layer.
    Type: Grant
    Filed: January 10, 2022
    Date of Patent: September 5, 2023
    Assignee: BH Electronics, Inc.
    Inventors: Ryan K. Cobian, Richard H. Jackson, Scott B. Conklin
  • Patent number: 11688684
    Abstract: A semiconductor structure and a method of fabricating the same is disclosed. The semiconductor device includes a conductive structure that comprises: an upper conductive line arranged above and in electrical connection with a circuit component in a lower device layer through a via plug, wherein the upper conductive line extends laterally over the via plug; an interposing layer having a substantially uniform thickness arranged between the via plug and the upper conductive line, and extending laterally beyond a planar projection of the via plug, wherein the upper conductive line is in electrical connection with the via plug through the interposing layer; and an overlayer is disposed over the upper conductive line.
    Type: Grant
    Filed: January 14, 2022
    Date of Patent: June 27, 2023
    Assignee: XIA TAI XIN SEMICONDUCTOR (QING DAO) LTD.
    Inventors: Hyunyoung Kim, Dowon Kwak, Kang-Won Seo
  • Patent number: 11616136
    Abstract: A power amplifier comprising a GaN-based high electron mobility transistor (HEMT) device, wherein a power added efficiency (PAE) of the power amplifier is greater than 32% at P1DB during operation of the power amplifier between 26.5 GHz and 30.5 GHz.
    Type: Grant
    Filed: February 19, 2021
    Date of Patent: March 28, 2023
    Assignee: Wolfspeed, Inc.
    Inventors: Kyle Bothe, Evan Jones, Dan Namishia, Chris Hardiman, Fabian Radulescu, Terry Alcorn, Scott Sheppard, Bruce Schmukler
  • Patent number: 11600755
    Abstract: Disclosed is a semiconductor light emitting device comprising: a substrate; a first semiconductor layer, which is provided on the substrate and has a first conductivity; an active layer, which is provided on the first semiconductor layer and generates ultraviolet light by electron-hole recombination; a second semiconductor layer, which is provided on the active layer and has a second conductivity different from the first conductivity; a first electrode electrically connected to the first semiconductor layer; a second electrode electrically connected to the second semiconductor layer; a second region that includes a plurality of protruded parts of the active layer and the second semiconductor layer protruded from the first semiconductor layer as seen in cross-sectional view and recesses between the protruded parts; and a first region surrounding the second region.
    Type: Grant
    Filed: April 23, 2019
    Date of Patent: March 7, 2023
    Assignee: SEMICON LIGHT CO., LTD.
    Inventors: Soo Kun Jeon, Young Un Gil
  • Patent number: 11460353
    Abstract: Provided are: a temperature sensor capable of ensuring reliability and improving thermal responsiveness; and a device equipped with such a temperature sensor. The present invention is provided with: a surface-mounted heat sensitive element (10) having at least a pair of electrode parts (12a), (12b); lead parts (22a), (22b) that are electrically connected to the pair of electrode parts (12a), (12b) by welding; a holder (21) that holds and fixes the lead parts (22a), (22b); and an insulation coating part (23) that insulates at least a portion of the lead parts (22a), (22b) and the heat sensitive element (10). The lead parts (22a), (22b) are tabular metal plates and are formed of a metallic material having a melting point of not more than 1300° C.
    Type: Grant
    Filed: April 18, 2018
    Date of Patent: October 4, 2022
    Assignee: SEMITEC Corporation
    Inventor: Takaaki Hirabayashi
  • Patent number: 11251076
    Abstract: Conformal hermetic dielectric films suitable as dielectric diffusion barriers over 3D topography. In embodiments, the dielectric diffusion barrier includes a dielectric layer, such as a metal oxide, which can be deposited by atomic layer deposition (ALD) techniques with a conformality and density greater than can be achieved in a conventional silicon dioxide-based film deposited by a PECVD process for a thinner contiguous hermetic diffusion barrier. In further embodiments, the diffusion barrier is a multi-layered film including a high-k dielectric layer and a low-k or intermediate-k dielectric layer (e.g., a bi-layer) to reduce the dielectric constant of the diffusion barrier. In other embodiments a silicate of a high-k dielectric layer (e.g., a metal silicate) is formed to lower the k-value of the diffusion barrier by adjusting the silicon content of the silicate while maintaining high film conformality and density.
    Type: Grant
    Filed: July 27, 2020
    Date of Patent: February 15, 2022
    Assignee: Intel Corporation
    Inventors: Sean King, Hui Jae Yoo, Sreenivas Kosaraju, Timothy Glassman
  • Patent number: 11183457
    Abstract: There is provided a semiconductor device including an insulating substrate provided with a circuit surface, and an external terminal bonded to the circuit surface. The circuit surface has an upper surface that is in contact with and bonded to a part of a lower surface of the external terminal. In at least a part of a portion where the upper surface of the circuit surface and the lower surface of the external terminal are in contact with each other, a melted portion of the circuit surface and the external terminal is formed. A gap between the upper surface of the circuit surface and the lower surface of the external terminal has a size of 20 ?m or less. The circuit surface and the external terminal are each made of copper or copper alloy.
    Type: Grant
    Filed: June 17, 2019
    Date of Patent: November 23, 2021
    Assignee: Mitsubishi Electric Corporation
    Inventors: Yasunari Hino, Yo Tanaka, Masao Kikuchi
  • Patent number: 10665683
    Abstract: There is provided a new technology for anodic oxidation etching performed to GaN material having arithmetic mean line roughness Ra of 15 nm or less at a measurement length of 100 ?m on a bottom surface of a recess when anodic oxidation etching is performed at an etching voltage of 1 V while irradiating the GaN material with UV light to form the recess of 2 ?m in depth.
    Type: Grant
    Filed: February 25, 2019
    Date of Patent: May 26, 2020
    Assignees: SCIOCS COMPANY LIMITED, SUMITOMO CHEMICAL COMPANY, LIMITED
    Inventor: Fumimasa Horikiri
  • Patent number: 10209289
    Abstract: The service life of electrical equipment is predicted using a thermal history sensor mounted in the electrical equipment. At least one thermal history sensor is mounted inside or on an outer wall surface of electrical equipment. The thermal history sensor includes dissimilar metal joints, and the resistance values of the dissimilar metal joints change in response to the amount of intermetallic compound growing in the dissimilar metal joints due to the temperature inside the electrical equipment or of the outer wall thereof during operation. A determining mechanism periodically or irregularly monitors and stores in memory the resistance values of the dissimilar metal joints from the thermal history sensor, and uses the stored history of resistance values to predict the service life of the electrical equipment.
    Type: Grant
    Filed: December 11, 2017
    Date of Patent: February 19, 2019
    Assignee: International Business Machines Corporation
    Inventors: Satsuo Kiyono, Eiji Ohno, Masahiro Uemura
  • Patent number: 10168377
    Abstract: The service life of electrical equipment is predicted using a thermal history sensor mounted in the electrical equipment. At least one thermal history sensor is mounted inside or on an outer wall surface of electrical equipment. The thermal history sensor includes dissimilar metal joints, and the resistance values of the dissimilar metal joints change in response to the amount of intermetallic compound growing in the dissimilar metal joints due to the temperature inside the electrical equipment or of the outer wall thereof during operation. A determining mechanism periodically or irregularly monitors and stores in memory the resistance values of the dissimilar metal joints from the thermal history sensor, and uses the stored history of resistance values to predict the service life of the electrical equipment.
    Type: Grant
    Filed: December 11, 2017
    Date of Patent: January 1, 2019
    Assignee: International Business Machines Corporation
    Inventors: Satsuo Kiyono, Eiji Ohno, Masahiro Uemura
  • Patent number: 9431293
    Abstract: A method of forming a wiring structure for an integrated circuit device includes forming a first metal line within an interlevel dielectric (ILD) layer, and forming a second metal line in the ILD layer adjacent the first metal line; masking selected regions of the first and second metal lines; selectively plating metal cap regions over exposed regions of the first and second metal lines at periodic intervals such that a spacing between adjacent metal cap regions of an individual metal line corresponds to a critical length, L, at which a back stress gradient balances an electromigration force in the individual metal line, so as to suppress mass transport of electrons; and wherein the metal cap regions of the first metal line are formed at staggered locations with respect to the metal cap regions of the second metal line, along a common longitudinal axis.
    Type: Grant
    Filed: May 26, 2015
    Date of Patent: August 30, 2016
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Ronald G. Filippi, Erdem Kaltalioglu, Ping-Chuan Wang, Lijuan Zhang
  • Patent number: 9305865
    Abstract: Methods of manufacturing semiconductor devices and semiconductor devices with through-substrate vias (TSVs). One embodiment of a method of manufacturing a semiconductor device includes forming an opening through a dielectric structure and at least a portion of a semiconductor substrate, and forming a dielectric liner material having a first portion lining the opening and a second portion on an outer surface of the dielectric structure laterally outside of the opening. The method further includes removing the conductive material such that the second portion of the dielectric liner material is exposed, and forming a damascene conductive line in the second portion of the dielectric liner material that is electrically coupled to the TSV.
    Type: Grant
    Filed: October 31, 2013
    Date of Patent: April 5, 2016
    Assignee: Micron Technology, Inc.
    Inventors: Anurag Jindal, Jian He, Lalapet Rangan Vasudevan, Kyle K. Kirby, Hongqi Li
  • Patent number: 9099296
    Abstract: A microelectronic assembly is provided in which first and second electrically conductive pads exposed at front surfaces of first and second microelectronic elements, respectively, are juxtaposed, each of the microelectronic elements embodying active semiconductor devices. An electrically conductive element may extend within a first opening extending from a rear surface of the first microelectronic element towards the front surface thereof, within a second opening extending from the first opening towards the front surface of the first microelectronic element, and within a third opening extending through at least one of the first and second pads to contact the first and second pads. Interior surfaces of the first and second openings may extend in first and second directions relative to the front surface of the first microelectronic element, respectively, to define a substantial angle.
    Type: Grant
    Filed: October 23, 2013
    Date of Patent: August 4, 2015
    Assignee: Tessera, Inc.
    Inventors: Vage Oganesian, Belgacem Haba, Ilyas Mohammed, Craig Mitchell, Piyush Savalia
  • Patent number: 9076786
    Abstract: A wiring substrate includes a semiconductor substrate, an insulator and a plurality of columnar conductors. The insulator is made of an insulating material filled in a groove or hole provided in the semiconductor substrate. The plurality of columnar conductors are filled in grooves or holes provided in the insulator. The grooves or holes are arranged at a narrow pitch in a plane of the insulator. The insulating material has a Si—O bond obtained by reacting Si particles with an organic Si compound.
    Type: Grant
    Filed: July 30, 2014
    Date of Patent: July 7, 2015
    Assignee: NAPRA CO., LTD.
    Inventors: Shigenobu Sekine, Hiroaki Ikeda, Yurina Sekine
  • Publication number: 20150115393
    Abstract: Systems, apparatuses, and methods related to the design, fabrication, and manufacture of gallium arsenide (GaAs) integrated circuits are disclosed. Copper can be used as the contact material for a GaAs integrated circuit. Metallization of the wafer and through-wafer vias can be achieved through copper plating processes disclosed herein. To avoid warpage, the tensile stress of a conductive layer deposited onto a GaAs substrate can be offset by depositing a compensating layer having negative stress over the GaAs substrate. GaAs integrated circuits can be singulated, packaged, and incorporated into various electronic devices.
    Type: Application
    Filed: October 31, 2014
    Publication date: April 30, 2015
    Inventor: Hong Shen
  • Patent number: 9013002
    Abstract: An iridium interfacial stack (“IrIS”) and a method for producing the same are provided. The IrIS may include ordered layers of TaSi2, platinum, iridium, and platinum, and may be placed on top of a titanium layer and a silicon carbide layer. The IrIS may prevent, reduce, or mitigate against diffusion of elements such as oxygen, platinum, and gold through at least some of its layers.
    Type: Grant
    Filed: June 27, 2012
    Date of Patent: April 21, 2015
    Assignee: The United States of America as Represented by the Administrator of National Aeronautics and Space Administration
    Inventor: David James Spry
  • Patent number: 8981565
    Abstract: In one aspect, a method of fabricating a metal silicide includes the following steps. A semiconductor material selected from the group consisting of silicon and silicon germanium is provided. A metal(s) is deposited on the semiconductor material. A first anneal is performed at a temperature and for a duration sufficient to react the metal(s) with the semiconductor material to form an amorphous layer including an alloy formed from the metal(s) and the semiconductor material, wherein the temperature at which the first anneal is performed is below a temperature at which a crystalline phase of the alloy is formed. An etch is used to selectively remove unreacted portions of the metal(s). A second anneal is performed at a temperature and for a duration sufficient to crystallize the alloy thus forming the metal silicide. A device contact and a method of fabricating a FET device are also provided.
    Type: Grant
    Filed: March 23, 2012
    Date of Patent: March 17, 2015
    Assignee: International Business Machines Corporation
    Inventors: Christian Lavoie, Dong-Ick Lee, Ahmet Serkan Ozcan, Zhen Zhang
  • Patent number: 8946911
    Abstract: There is provided an electrode pad including: a connection terminal part; a first plating layer including palladium phosphorus (Pd—P) formed on the connection terminal part; and a second plating layer including palladium (Pd) formed on the first plating layer.
    Type: Grant
    Filed: December 6, 2012
    Date of Patent: February 3, 2015
    Assignee: Samsung Electro-Machanics Co., Ltd.
    Inventors: Jung Youn Pang, Shimoji Teruaki, Eun Heay Lee, Seong Min Cho, Chi Seong Kim
  • Publication number: 20150028484
    Abstract: A method and structure for preventing integrated circuit failure due to electromigration and time dependent dielectric breakdown is disclosed. A randomly patterned metal cap layer is selectively formed on the metal interconnect lines (typically copper (Cu)) with an interspace distance between metal cap segments that is less than the critical length (for short-length effects). Since the diffusivity is lower for the Cu/metal cap interface than for the Cu/dielectric cap interface, the region with a metal cap serves as a diffusion barrier.
    Type: Application
    Filed: August 21, 2014
    Publication date: January 29, 2015
    Inventors: Ronald G. Filippi, Erdem Kaltalioglu, Wai-Kin Li, Ping-Chuan Wang, Lijuan Zhang
  • Patent number: 8941123
    Abstract: A structure and method of producing a semiconductor structure including a semi-insulating semiconductor layer, a plurality of isolated devices formed over the semi-insulating semiconductor layer, and a metal-semiconductor alloy region formed in the semi-insulating semiconductor layer, where the metal-semiconductor alloy region electrically connects two or more of the isolated devices.
    Type: Grant
    Filed: May 30, 2013
    Date of Patent: January 27, 2015
    Assignee: International Business Machines Corporation
    Inventors: Guy Cohen, Cyril Cabral, Jr., Anirban Basu, Jr.
  • Patent number: 8941240
    Abstract: A contact rhodium structure is fabricated by a process that comprises obtaining a substrate having a dielectric layer thereon, wherein the dielectric layer has cavities therein into which the contact rhodium is to be deposited; depositing a seed layer in the cavities and on the dielectric layer; and depositing the rhodium by electroplating from a bath comprising a rhodium salt; an acid and a stress reducer; and then optionally annealing the structure.
    Type: Grant
    Filed: August 1, 2012
    Date of Patent: January 27, 2015
    Assignee: International Business Machines Corporation
    Inventors: Hariklia Deligianni, Xiaoyan Shao
  • Patent number: 8937009
    Abstract: Disclosed are a method for metallization during semiconductor wafer processing and the resulting structures. In this method, a passivation layer is patterned with first openings aligned above and extending vertically to metal structures below. A mask layer is formed and patterned with second openings aligned above the first openings, thereby forming two-tier openings extending vertically through the mask layer and passivation layer to the metal structures below. An electrodeposition process forms, in the two-tier openings, both under-bump pad(s) and additional metal feature(s), which are different from the under-bump pad(s) (e.g., a wirebond pad; a final vertical section of a crackstop structure; and/or a probe pad). Each under-bump pad and additional metal feature initially comprises copper with metal cap layers thereon.
    Type: Grant
    Filed: April 25, 2013
    Date of Patent: January 20, 2015
    Assignee: International Business Machines Corporation
    Inventors: Timothy H. Daubenspeck, Jeffrey P. Gambino, Karen P. McLaughlin, Ekta Misra, Christopher D. Muzzy, Eric D. Perfecto, Wolfgang Sauter
  • Publication number: 20150001727
    Abstract: The disclosure provides an embedded package structure comprising a metal substrate, a chip module, an insulation material layer, and at least one patterned metal layer. The metal substrate has a first surface and a second surface. The chip module is disposed on the first surface of the metal substrate, and comprises at least two stacked chips being electrically connected to each. The insulation material layer covers the first surface of the metal substrate and the stacked chips and has an electrical interconnection formed therein. The patterned metal layer is positioned on the insulation material layer, and is electrically connected the chip module through the electrical interconnection. The method for manufacturing the embedded package structure also provides.
    Type: Application
    Filed: June 28, 2013
    Publication date: January 1, 2015
    Inventors: Chia-Yen LEE, Hsin-Chang TSAI, Peng-Hsin LEE
  • Publication number: 20140374912
    Abstract: Standard solder-based interconnect structures are utilized as mechanical fasteners to attach an IC die in a “flip-chip” orientation to a support structure (e.g., a package base substrate or printed circuit board). Electrical connections between the support structure and the IC die are achieved by curved micro-springs that are disposed in peripheral regions of the IC die and extend through a gap region separating the upper structure surface and the processed surface of the IC die. The micro-springs are fixedly attached to one of the support structure and the IC die, and have a free (tip) end that contacts an associated contact pad disposed on the other structure/IC die. Conventional solder-based connection structures (e.g., solder-bumps/balls) are disposed on “dummy” (non-functional) pads disposed in a central region of the IC die. After placing the IC die on the support structure, a standard solder reflow process is performed to complete the mechanical connection.
    Type: Application
    Filed: June 24, 2013
    Publication date: December 25, 2014
    Inventor: John C. Knights
  • Patent number: 8884343
    Abstract: A system in package and a method for manufacturing the same is provided. The system in package comprises a laminate body having a substrate arranged inside a laminate body. A semiconductor die is embedded in the laminate body and the semiconductor is bonded to contact pads of the substrate by help of a sintered bonding layer, which is made from a sinter paste. Lamination of the substrate and further layers providing the laminate body and sintering of the sinter paste may be performed in a single and common curing step.
    Type: Grant
    Filed: February 19, 2013
    Date of Patent: November 11, 2014
    Assignee: Texas Instruments Incorporated
    Inventors: Bernhard Lange, Juergen Neuhaeusler
  • Patent number: 8847367
    Abstract: Provided are a hole-injecting material for an organic electroluminescent device (organic EL device) exhibiting high luminous efficiency at a low voltage and having greatly improved driving stability, and an organic EL device using the material. The hole-injecting material for an organic EL device is selected from benzenehexacarboxylic acid anhydrides, benzenehexacarboxylic acid imides, or N-substituted benzenehexacarboxylic acid imides. Further, the organic EL device has at least one light-emitting layer and at least one hole-injecting layer between an anode and a cathode arranged opposite to each other, and includes the above-mentioned hole-injecting material for an organic EL device in the hole-injecting layer. The organic EL device may contain a hole-transporting material having an ionization potential (IP) of 6.0 eV or less in the hole-injecting layer or a layer adjacent to the hole-injecting layer.
    Type: Grant
    Filed: February 27, 2009
    Date of Patent: September 30, 2014
    Assignee: Nippon Steel & Sumikin Chemical Co., Ltd.
    Inventors: Takayuki Fukumatsu, Ikumi Ichihashi, Hiroshi Miyazaki, Atsushi Oda
  • Publication number: 20140264885
    Abstract: A plurality of macro and micro alignment marks may be formed on a wafer. The macro alignment marks may be formed in pairs at opposite edges of the wafer. The micro alignment marks may be formed to align to streets on the wafer along a first and second direction. A molding compound may be formed on the wafer. The macro alignment marks may be exposed from the molding compound. A pair of the micro alignment marks may be exposed from the molding compound at opposite ends of the streets along the first and the second direction. The wafer may be aligned to a dicing tool using pairs of the macro alignment marks. The dicing tool may be aligned to the streets using pairs of the micro alignment marks. The wafer may be diced using successive pairs of micro alignment marks along the first and second direction.
    Type: Application
    Filed: April 23, 2013
    Publication date: September 18, 2014
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yu-Peng Tsai, Wen-Hsiung Lu, Cheng-Ting Chen, Hsien-Wei Chen, Ming-Da Cheng, Chung-Shi Liu
  • Patent number: 8823176
    Abstract: An interconnect structure including a noble metal-containing cap that is present at least on some portion of an upper surface of at least one conductive material that is embedded within an interconnect dielectric material is provided. In one embodiment, the noble metal-containing cap is discontinuous, e.g., exists as nuclei or islands on the surface of the at least one conductive material. In another embodiment, the noble metal-containing cap has a non-uniform thickness across the surface of the at least one conductive material.
    Type: Grant
    Filed: October 8, 2008
    Date of Patent: September 2, 2014
    Assignee: International Business Machines Corporation
    Inventors: Chih-Chao Yang, Lynne M. Gignac, Chao-Kun Hu, Surbhi Mittal
  • Patent number: 8823136
    Abstract: A set of metal line structures including a signal transmission metal line and a capacitively-grounded inductively-signal-coupled metal line is embedded in a dielectric material layer. A capacitor is serially connected between the capacitively-grounded inductively-signal-coupled metal line and a local electrical ground, which may be on the input side or on the output side. The set of metal line structures and the capacitor collective provide a frequency dependent inductor. The Q factor of the frequency dependent inductor has multiple peaks that enable the operation of the frequency dependent inductor at multiple frequencies. Multiple capacitively-grounded inductively-signal-coupled metal lines may be provided in the frequency-dependent inductor, each of which is connected to the local electrical ground through a capacitor. By selecting different capacitance values for the capacitors, multiple values of the Q-factor may be obtained in the frequency dependent inductor at different signal frequencies.
    Type: Grant
    Filed: February 20, 2013
    Date of Patent: September 2, 2014
    Assignee: International Business Machines Corporation
    Inventors: Hanyi Ding, Wayne H. Woods
  • Patent number: 8796852
    Abstract: A 3D integrated circuit structure comprises a first chip, wherein the first chip comprises: a substrate; a semiconductor device formed on the substrate and a dielectric layer formed on both the substrate and the semiconductor device; a conductive material layer formed within a through hole penetrating through both the substrate and the dielectric layer; a stress releasing layer surrounding the through hole; and a first interconnecting structure connecting the conductive material layer with the semiconductor device. By forming a stress releasing layer to partially release the stress caused by the conductive material in the via, the stress caused by mismatch of CTE between the conductive material and the semiconductor (for example, silicon) surrounding it can be reduced, thereby enhancing the performance of the semiconductor device and the corresponding 3D integrated circuit consisting of the semiconductor devices.
    Type: Grant
    Filed: February 22, 2011
    Date of Patent: August 5, 2014
    Assignee: Institute of Microelectronics, Chinese Academy of Sciences
    Inventor: Huilong Zhu
  • Publication number: 20140210058
    Abstract: A semiconductor device and a method of fabricating the same. The semiconductor device includes a semiconductor substrate having a P-type region, on at least one main surface of which integrated circuits are formed; one or more via electrodes inserted into the P-type region of the semiconductor substrate; a dielectric layer formed between the semiconductor substrate and the via electrodes; an N-type region, which is formed in the semiconductor substrate to contact a portion of the dielectric layer and to expose other portion of the dielectric layer; and a power circuit, which is electrically connected to the N-type region and apply a bias voltage or a ground voltage thereto, such that electric signals flowing in the via electrodes form an inversion layer on a surface of the semiconductor substrate facing the exposed portion of the dielectric layer.
    Type: Application
    Filed: January 28, 2014
    Publication date: July 31, 2014
    Applicants: SEOUL NATIONAL UNIVERSITY R&DB FOUNDATION, SK hynix Inc.
    Inventors: Jong Ho LEE, Kyung Do KIM
  • Patent number: 8785320
    Abstract: A high aspect ratio metallization structure is provided in which a noble metal-containing material is present at least within a lower portion of a contact opening located in a dielectric material and is in direct contact with a metal semiconductor alloy located on an upper surface of a material stack of at least one semiconductor device. In one embodiment, the noble metal-containing material is plug located within the lower region of the contact opening and an upper region of the contact opening includes a conductive metal-containing material. The conductive metal-containing material is separated from plug of noble metal-containing material by a bottom walled portion of a U-shaped diffusion barrier. In another embodiment, the noble metal-containing material is present throughout the entire contact opening.
    Type: Grant
    Filed: May 24, 2013
    Date of Patent: July 22, 2014
    Assignee: International Business Machines Corporation
    Inventors: Chih-Chao Yang, Fenton R. McFeely
  • Publication number: 20140183727
    Abstract: A wire bonded structure for a semiconductor device is disclosed. The wire bonded structure comprises a bonding pad; and a continuous length of wire mutually diffused with the bonding pad, the wire electrically coupling the bonding pad with a first electrical contact and a second electrical contact different from the first electrical contact.
    Type: Application
    Filed: May 18, 2011
    Publication date: July 3, 2014
    Applicants: SANDISK INFORMATION TECHNOLOGY (SHANGHAI) CO., LTD., SANDISK SEMICONDUCTOR (SHANGHAI) CO., LTD.
    Inventors: Zhong Lu, Fen Yu, Chin Tien Chiu, Cheeman Yu, Fuqiang Xiao
  • Publication number: 20140177149
    Abstract: Embodiments of the present disclosure are directed to techniques and configurations for an integrated circuit (IC) package having an underfill layer with filler particles arranged in a generally random distribution pattern. In some embodiments, a generally random distribution pattern of filler particles may be obtained by reducing an electrostatic charge on one or more components of the IC package assembly, by applying a surface treatment to filler to reduce filler electrical charge, by applying an electric force against the filler particles of the underfill material in a direction opposite to a direction of gravitational force, by using an underfill material with a relatively low maximum filler particle size, and/or by snap curing the underfill layer at a relatively low temperature. Other embodiments may be described and/or claimed.
    Type: Application
    Filed: December 20, 2012
    Publication date: June 26, 2014
    Inventors: Suriyakala Ramalingam, Manish Dubey, Hsin-Yu Li, Michelle S. Phen, Hitesh Arora, Nisha Ananthakrishnan, Yiqun Bai, Yonghao Xiu, Rajendra C. Dias
  • Patent number: 8759977
    Abstract: An integrated circuit structure includes a plurality of insulator layers (connected to each other) that form a laminated structure. Further included are via openings within each of the insulator layers, and conductive via material within the via openings. The conductive via material within corresponding via openings of adjacent insulator layers are electrically connected to form continuous electrical via paths through the insulator layers between the top surface and the bottom surface of the laminated structure. Within each of the continuous electrical via paths, the via openings are positioned relative to each other to form a diagonal structural path of the conductive via material through the laminated structure. The corresponding via openings of the adjacent insulator layers partially overlap each other. The diagonal structural paths are non-perpendicular to the top surface and the bottom surface.
    Type: Grant
    Filed: April 30, 2012
    Date of Patent: June 24, 2014
    Assignee: International Business Machines Corporation
    Inventors: Luke D. LaCroix, Mark C. H. Lamorey, Janak G. Patel, Peter Slota, Jr., David B. Stone
  • Patent number: 8736057
    Abstract: A substrate having, on a base material, a barrier film for preventing copper diffusion containing one or more metal elements selected from tungsten, molybdenum and niobium, a metal element having a catalytic function in electroless plating such as platinum, gold, silver and palladium, and nitrogen contained in the form of a nitride of the aforementioned one or more metal elements selected from tungsten, molybdenum and niobium. The barrier film for preventing copper diffusion is manufactured by sputtering in a nitrogen atmosphere using a target containing one or more metal elements selected from tungsten, molybdenum and niobium and the aforementioned metal element having a catalytic function in electroless plating.
    Type: Grant
    Filed: November 26, 2008
    Date of Patent: May 27, 2014
    Assignee: Nippon Mining & Metals Co., Ltd.
    Inventors: Junichi Ito, Atsushi Yabe, Junnosuke Sekiguchi, Toru Imori
  • Publication number: 20140131877
    Abstract: A semiconductor package structure, comprises a substrate, a die region having one or more dies disposed on the substrate, and at least one stress relief structure disposed at one or more corners of the substrate, the at least one stress relief structure being adjacent to at least one die of the one or more dies.
    Type: Application
    Filed: November 9, 2012
    Publication date: May 15, 2014
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventor: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
  • Publication number: 20140070419
    Abstract: Some embodiments include constructions which have platinum-containing structures. In some embodiments, the constructions may have a planarized surface extending across the platinum-containing structures and across metal oxide. In some embodiments, the constructions may have a planarized surface extending across the platinum-containing structures, across a first material retaining the platinum-containing structures, and across metal oxide liners along sidewalls of the platinum-containing structures and directly between the platinum-containing structures and the first material. Some embodiments include methods of forming platinum-containing structures. In some embodiments, first material is formed across electrically conductive structures, and metal oxide is formed across the first material. Openings are formed to extend through the metal oxide and the first material to the electrically conductive structures. Platinum-containing material is formed within the openings and over the metal oxide.
    Type: Application
    Filed: November 14, 2013
    Publication date: March 13, 2014
    Applicant: Micron Technology, Inc.
    Inventors: Andrey V. Zagrebelny, Chet E. Carter, Andrew D. Carswell
  • Publication number: 20140061930
    Abstract: A method is provided that includes first etching a substrate according to a first mask. The first etching forms a first etch feature in the substrate to a first depth. The first etching also forms a sliver opening in the substrate. The sliver opening may then be filled with a fill material. A second mask may be formed by removing a portion of the first mask. The substrate exposed by the second mask may be etched with a second etch, in which the second etching is selective to the fill material. The second etching extends the first etch feature to a second depth that is greater than the first depth, and the second etch forms a second etch feature. The first etch feature and the second etch feature may then be filled with a conductive metal.
    Type: Application
    Filed: September 6, 2012
    Publication date: March 6, 2014
    Applicant: International Business Machines Corporation
    Inventors: Steven J. Holmes, David V. Horak, Charles W. Koburger, III, Shom Ponoth, Chih-Chao Yang
  • Patent number: 8618677
    Abstract: A semiconductor package including a substrate, a semiconductor device, a protection layer, a bonding wire, and a molding compound is provided. The substrate has a contact pad and a solder mask, and the contact pad is exposed from the solder mask. The semiconductor device is disposed on the substrate. The protection layer is disposed on the contact pad. The bonding wire connects the semiconductor device to the contact pad. An end of the bonding wire penetrates the protection layer and bonds with a portion of a surface of the contact pad to form a bonding region. The protection layer covers an entire surface of the contact pad except the bonding region. The molding compound covers the semiconductor device, the contact pad, and the bonding wire.
    Type: Grant
    Filed: April 6, 2012
    Date of Patent: December 31, 2013
    Assignee: Advanced Semiconductor Engineering, Inc.
    Inventor: Ta-Chun Lee
  • Patent number: 8614106
    Abstract: A liner-less tungsten contact is formed on a nickel-tungsten silicide with a tungsten rich surface. A tungsten-containing layer is formed using tungsten-containing fluorine-free precursors. The tungsten-containing layer may act as a glue layer for a subsequent nucleation layer or as the nucleation layer. The tungsten plug is formed by standard processes. The result is a liner-less tungsten contact with low resistivity.
    Type: Grant
    Filed: November 18, 2011
    Date of Patent: December 24, 2013
    Assignee: International Business Machines Corporation
    Inventors: Christian Lavoie, Ahmet S. Ozcan, Filippos Papadatos
  • Patent number: 8614107
    Abstract: An electrical structure comprises a dielectric layer present on a semiconductor substrate. A contact opening is present through the dielectric layer. A nickel-tungsten alloy silicide is formed over the semiconductor substrate within the contact opening. A tungsten-containing nucleation layer formed within the contact opening covers the nickel-tungsten alloy silicide and at least a portion of a sidewall of the contact opening. A tungsten contact is formed within the contact opening and separated from the nickel-tungsten alloy silicide and at least a portion of the sidewall by the tungsten-containing nucleation layer.
    Type: Grant
    Filed: February 18, 2013
    Date of Patent: December 24, 2013
    Assignee: International Business Machines Corporation
    Inventors: Christian Lavoie, Ahmet S. Ozcan, Filippos Papadatos
  • Publication number: 20130334693
    Abstract: A method for forming a raised silicide contact, the method including depositing a layer of silicon using a gas cluster implant technique which accelerates clusters of silicon atoms causing them to penetrate a surface oxide on a top surface of the silicide; heating the silicide including the silicon layer to a temperature from about 300° C. to about 950° and holding the temperature for about 0.1 miliseconds to about 600 seconds in an inert atmosphere causing silicon from the layer of silicon to react with the remaining silicide partially formed in the silicon containing substrate; and forming a raised silicide from the layer of silicon, wherein the thickness of the raised silicide is greater than the thickness of the silicide and the raised silicide protrudes above a top surface of the silicon containing substrate.
    Type: Application
    Filed: June 18, 2012
    Publication date: December 19, 2013
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Emre Alptekin, Nathaniel Berliner, Christian Lavoie, Kam-Leung Lee, Ahmet Serkan Ozcan
  • Patent number: 8610280
    Abstract: Some embodiments include constructions which have platinum-containing structures. In some embodiments, the constructions may have a planarized surface extending across the platinum-containing structures and across metal oxide. In some embodiments, the constructions may have a planarized surface extending across the platinum-containing structures, across a first material retaining the platinum-containing structures, and across metal oxide liners along sidewalls of the platinum-containing structures and directly between the platinum-containing structures and the first material. Some embodiments include methods of forming platinum-containing structures. In some embodiments, first material is formed across electrically conductive structures, and metal oxide is formed across the first material. Openings are formed to extend through the metal oxide and the first material to the electrically conductive structures. Platinum-containing material is formed within the openings and over the metal oxide.
    Type: Grant
    Filed: September 16, 2011
    Date of Patent: December 17, 2013
    Assignee: Micron Technology, Inc.
    Inventors: Andrey V. Zagrebelny, Chet E. Carter, Andrew Carswell
  • Patent number: 8598705
    Abstract: A composite substrate for a semiconductor chip includes a first covering layer containing a semiconductor material, a second covering layer, and a core layer arranged between the first covering layer and the second covering layer, wherein the core layer has a greater coefficient of thermal expansion than the covering layers.
    Type: Grant
    Filed: November 9, 2009
    Date of Patent: December 3, 2013
    Assignee: OSRAM Opto Semiconductors GmbH
    Inventors: Jürgen Moosburger, Peter Stauβ, Andreas Plöβl
  • Publication number: 20130277846
    Abstract: The circuit arrangement according to the invention provides a substrate (10), a connecting element (18) and a chip (16). The substrate (10) provides at least a partial metallisation (11) on its surface. The connecting element (18) is applied to the metallisation (11). The chip (16) is applied to the connecting element (18). The connecting element (18) provides an electrically non-conductive glass layer (14), which is applied directly to the metallisation (11), and an adhesive layer (15) between the chip (16) and the glass layer (14).
    Type: Application
    Filed: May 8, 2012
    Publication date: October 24, 2013
    Applicant: Rohde & Schwarz GmbH & Co. KG
    Inventor: Robert Ziegler
  • Patent number: 8545998
    Abstract: Embodiments of the current invention describe a method of plating platinum selectively on a copper film using a self-initiated electroless process. In particular, platinum films are plated onto very thin copper films having a thickness of less than 300 angstroms. The electroless plating solution and the resulting structure are also described. This process has applications in the semiconductor processing of logic devices, memory devices, and photovoltaic devices.
    Type: Grant
    Filed: December 21, 2011
    Date of Patent: October 1, 2013
    Assignee: Intermolecular, Inc.
    Inventors: Bob Kong, Igor Ivanov, Zhi-Wen Sun, Jinhong Tong
  • Publication number: 20130249099
    Abstract: In one aspect, a method of fabricating a metal silicide includes the following steps. A semiconductor material selected from the group consisting of silicon and silicon germanium is provided. A metal(s) is deposited on the semiconductor material. A first anneal is performed at a temperature and for a duration sufficient to react the metal(s) with the semiconductor material to form an amorphous layer including an alloy formed from the metal(s) and the semiconductor material, wherein the temperature at which the first anneal is performed is below a temperature at which a crystalline phase of the alloy is formed. An etch is used to selectively remove unreacted portions of the metal(s). A second anneal is performed at a temperature and for a duration sufficient to crystallize the alloy thus forming the metal silicide. A device contact and a method of fabricating a FET device are also provided.
    Type: Application
    Filed: March 23, 2012
    Publication date: September 26, 2013
    Applicant: International Business Machines Corporation
    Inventors: Christian Lavoie, Dong-Ick Lee, Ahmet Serkan Ozcan, Zhen Zhang