Including Polyimide Patents (Class 257/792)
  • Patent number: 11894403
    Abstract: A semiconductor package including a semiconductor chip on a package substrate, a transparent substrate on the semiconductor chip, an attachment dam between the semiconductor chip and the transparent substrate, the attachment dam extending along an edge of the semiconductor chip, a first molding layer on the package substrate and surrounding a side surface of the semiconductor chip and including a first epoxy resin, and a second molding layer on the package substrate and filling a space between the semiconductor chip and the first molding layer and including a second epoxy resin. The first epoxy resin includes a first filler containing at least one of silica or alumina. The second epoxy resin includes a second filler containing at least one of silica or alumina. The content of the second filler in the second epoxy resin is greater than a content of the first filler in the first epoxy resin.
    Type: Grant
    Filed: April 25, 2021
    Date of Patent: February 6, 2024
    Inventor: Dong Kwan Kim
  • Patent number: 11567405
    Abstract: A photosensitive resin composition is also provided that includes a polymer precursor selected from a polyimide precursor and a polybenzoxazole precursor; a photo-radical polymerization initiator; and a solvent, in which an acid value of an acid group contained in the polymer precursor and having a neutralization point in a pH range of 7.0 to 12.0 is in a range of 2.5 to 34.0 mgKOH/g, and either the polymer precursor contains a radically polymerizable group or the photosensitive resin composition includes a radically polymerizable compound other than the polymer precursor.
    Type: Grant
    Filed: November 20, 2019
    Date of Patent: January 31, 2023
    Assignee: FUJIFILM Corporation
    Inventors: Takeshi Kawabata, Kenta Yoshida, Yu Iwai, Akinori Shibuya
  • Patent number: 11487202
    Abstract: A photosensitive resin composition is also provided that includes a polymer precursor selected from a polyimide precursor and a polybenzoxazole precursor; a photo-radical polymerization initiator; and a solvent, in which an acid value of an acid group contained in the polymer precursor and having a neutralization point in a pH range of 7.0 to 12.0 is in a range of 2.5 to 34.0 mgKOH/g, and either the polymer precursor contains a radically polymerizable group or the photosensitive resin composition includes a radically polymerizable compound other than the polymer precursor.
    Type: Grant
    Filed: November 20, 2019
    Date of Patent: November 1, 2022
    Assignee: FUJIFILM Corporation
    Inventors: Takeshi Kawabata, Kenta Yoshida, Yu Iwai, Akinori Shibuya
  • Patent number: 10811404
    Abstract: Provided are a package structure and a method of manufacturing the same. The package structure includes a die, a passive device, and a package. The die has a front side and a backside opposite to each other. The package is disposed on the backside of the die. The passive device is disposed between the backside of the die and the package.
    Type: Grant
    Filed: December 13, 2018
    Date of Patent: October 20, 2020
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Shih-Ya Huang, Chung-Hao Tsai, Chen-Hua Yu, Chuei-Tang Wang
  • Patent number: 10636689
    Abstract: An apparatus for control of a temperature of a substrate has a temperature-controlled base, a heater, a metal plate, a layer of dielectric material. The heater is thermally coupled to an underside of the metal plate while being electrically insulated from the metal plate. A first layer of adhesive material bonds the metal plate and the heater to the top surface of the temperature controlled base. This adhesive layer is mechanically flexible, and possesses physical properties designed to balance the thermal energy of the heaters and an external process to provide a desired temperature pattern on the surface of the apparatus. A second layer of adhesive material bonds the layer of dielectric material to a top surface of the metal plate. This second adhesive layer possesses physical properties designed to transfer the desired temperature pattern to the surface of the apparatus.
    Type: Grant
    Filed: July 24, 2014
    Date of Patent: April 28, 2020
    Assignee: LAM RESEARCH CORPORATION
    Inventors: Anthony J. Ricci, Keith Comendant, James Tappan
  • Patent number: 10546823
    Abstract: Described is an apparatus which comprises: a die having a first side and a second side opposite to the first side; a die backside film (DBF) or die attach film (DAF) disposed over the first side of the die; and a fluorocarbon layer disposed over the DBF or DAF. Described is a method which comprises: applying a die backside film (DBF) over a first side of a die, wherein the die has a second side which metal bumps; and applying a plasma polymerization process to treat the DBF with a fluorocarbon plasma.
    Type: Grant
    Filed: November 13, 2015
    Date of Patent: January 28, 2020
    Assignee: Intel Corporation
    Inventors: Balu Pathangey, Mihir A. Oka, Andrew Proctor
  • Patent number: 10109810
    Abstract: A flexible display panel, a package method thereof and a display device are provided. The package method includes: bonding a barrier film provided with an adhesive layer on a surface of a side of a display motherboard away from a substrate of the display motherboard, the non-adhesive portion of the adhesive layer loses adhesivity and covers the bonding area; the adhesive portion at least covers the display area; cutting the display motherboard provided with the barrier film, so that the adhesive portion for covering the display area is separate from adjacent portions, and a portion to be retained and a portion to be removed in the barrier film are separate; and stripping off portions, except the adhesive portion for covering the display area, in the adhesive layer and the portion to be removed in the barrier film.
    Type: Grant
    Filed: September 7, 2016
    Date of Patent: October 23, 2018
    Assignee: BOE TECHNOLOGY GROUP CO., LTD.
    Inventor: Wei Wang
  • Patent number: 9206314
    Abstract: A polycarbonate resin composition which has a high biogenic matter content, is excellent in transparency, surface hardness and impact resistance and is useful as an industrial material having excellent moldability.
    Type: Grant
    Filed: July 31, 2013
    Date of Patent: December 8, 2015
    Assignees: TEIJIN LIMITED, KANEKA CORPORATION
    Inventors: Hiroshi Okamoto, Toyohisa Fujimoto
  • Patent number: 9190349
    Abstract: An integrated circuit packaging system and method of manufacture thereof including: providing an unplated leadframe having a contact protrusion; depositing a solder resist on the contact protrusion; forming a contact pad and traces by etching the unplated leadframe; applying a trace protection layer on the contact pad and the traces; removing the solder resist; forming a recess in the trace protection layer by etching a top surface of the contact pad to a recess distance below a top surface of the trace protection layer; and depositing an external connector directly on the top surface of the contact pad.
    Type: Grant
    Filed: June 28, 2013
    Date of Patent: November 17, 2015
    Assignee: STATS ChipPAC Ltd.
    Inventors: Byung Tai Do, Arnel Senosa Trasporto, Linda Pei Ee Chua, Asri Yusof
  • Patent number: 9169353
    Abstract: In the invention, a sealing composition for a semiconductor is provided which includes a polymer that includes two or more cationic functional groups including at least one of a tertiary nitrogen atom or a quaternary nitrogen atom, that has a weight average molecular weight of from 2,000 to 1,000,000, and that has a branching degree of 48% or more, wherein a content of sodium and a content of potassium in the sealing composition are each 10 ppb by weight or less on an element basis.
    Type: Grant
    Filed: January 16, 2013
    Date of Patent: October 27, 2015
    Assignee: MITSUI CHEMICALS, INC.
    Inventors: Shoko Ono, Yasuhisa Kayaba, Hirofumi Tanaka, Kazuo Kohmura, Tsuneji Suzuki, Shigeru Mio
  • Patent number: 8969219
    Abstract: The present invention relates to a method for preparation of an ultraviolet (UV)-curable inorganic-organic hybrid resin containing about or less than 4% volatiles and less than 30% organic residues. The UV-curable inorganic-organic hybrid resin obtained according to this method can be UV-cured within a markedly very short time and enables, upon curing, the formation of a transparent shrink-and crack-free glass-like product having high optical quality, high thermal stability and good bonding properties. In view of these properties, this hybrid resin can be used in various applications such as electro-optic, microelectronic, stereolithography and biophotonic applications.
    Type: Grant
    Filed: December 3, 2009
    Date of Patent: March 3, 2015
    Assignee: Soreq Nuclear Research Center
    Inventor: Raz Gvishi
  • Publication number: 20150028497
    Abstract: The present invention provides an encapsulant with a base for use in semiconductor encapsulation, for collectively encapsulating a device mounting surface of a substrate on which semiconductor devices are mounted, or a device forming surface of a wafer on which semiconductor devices are formed, the encapsulant comprising the base, an encapsulating resin layer composed of an uncured or semi-cured thermosetting resin formed on one surface of the base, and a surface resin layer formed on the other surface of the base. The encapsulant enables a semiconductor apparatus having a good appearance and laser marking property to be manufactured.
    Type: Application
    Filed: July 17, 2014
    Publication date: January 29, 2015
    Inventors: Tomoaki NAKAMURA, Toshio SHIOBARA, Hideki AKIBA, Susumu SEKIGUCHI
  • Patent number: 8912669
    Abstract: Provided are a sealing resin sheet, wherein a clean, smooth and flat ground surface is obtained by grinding after resin sealing, a method for producing an electronic component package using the same, and an electronic component package obtained by the production method. The present invention provides a sealing resin sheet, wherein a ground surface has a mean surface roughness Ra of 1 ?m or less when grinding is performed under conditions of a grind bite peripheral velocity of 1000 m/minute, a feed pitch of 100 ?m and a cut depth of 10 ?m after a heat curing treatment is performed at 180° C. for 1 hour; and a Shore D hardness at 100° C. after the heat curing treatment is 70 or more.
    Type: Grant
    Filed: July 3, 2013
    Date of Patent: December 16, 2014
    Assignee: Nitto Denko Corporation
    Inventors: Eiji Toyoda, Yusaku Shimizu
  • Patent number: 8895357
    Abstract: Presented is an integrated circuit packaged at the wafer level wafer (also referred to as a wafer level chip scale package, WLCSP), and a method of manufacturing the same. The WLCSP comprises a die having an electrically conductive redistribution layer, RDL, formed above the upper surface of the die, the RDL defining a signal routing circuit. The method comprises the steps of: depositing the electrically conductive RDL so as to form an electrically conductive ring surrounding the signal routing circuit; and coating the side and lower surfaces of the die with an electrically conductive shielding material.
    Type: Grant
    Filed: April 4, 2013
    Date of Patent: November 25, 2014
    Assignee: NXP B.V.
    Inventors: Tonny Kamphuis, Leonardus Antonius Elisabeth van Gemert, Caroline Catharina Maria Beelen-Hendrikx
  • Publication number: 20140332865
    Abstract: A semiconductor device includes a substrate having an edge, a semiconductor layer provided on a substrate, an electrode pad provided on the semiconductor layer, an inorganic insulating film having a first opening through which an upper surface of the electrode pad is exposed, and a resin film provided on the inorganic insulating film, the resin film having a second opening and a third opening separated from each other, where the upper surface of the electrode pad is exposed through the second opening, where the third opening is located between the second opening and the edge of the substrate, and where a bottom of the third opening is constituted by the resin film or the inorganic insulating film.
    Type: Application
    Filed: May 9, 2014
    Publication date: November 13, 2014
    Applicant: SUMITOMO ELECTRIC DEVICE INNOVATIONS, INC.
    Inventor: Hitoshi Haematsu
  • Patent number: 8847415
    Abstract: Thermosetting resin compositions useful for liquid compression molding encapsulation of a silicon wafer are provided. The so-encapsulated silicon wafers offer improved resistance to warpage, compared to unencapsulated wafers or wafers encapsulated with known encapsulation materials.
    Type: Grant
    Filed: December 21, 2012
    Date of Patent: September 30, 2014
    Assignee: Henkel IP & Holding GmbH
    Inventors: Jie Bai, Afranio Torres-Filho, Kathryn Bearden
  • Publication number: 20140284821
    Abstract: A method for densifying thermoplastics, particularly polyimides, for use in conjunction with electronic circuits while producing improved physical properties and a high degree of crystallinity, involves variable frequency microwave (VFM) processing at temperatures typically 100° C. below the glass transition temperature or lower, for times of about 50 to 100 minutes. It is particularly applicable to polymers based on BPDA-PPD, but may also be generally applied to other intentionally designed polyimide structures with the same features. The invention enables the creation of layered structures involving integrated circuits with small feature sizes and overcoatings of polymers with high Tg and other desirable properties.
    Type: Application
    Filed: March 22, 2013
    Publication date: September 25, 2014
    Inventor: Robert L. Hubbard
  • Patent number: 8786181
    Abstract: The present invention relates to a blend comprising; a) at least one polymer or copolymer or a mixture of a plurality of polymers and/or copolymers which contain a main chain and a side chain, where at least one side chain contains a structural unit of the following formula (I), the symbols and indices used here are as defined below; b) at least one host molecule which has electron- or hole-transporting functionality, and c) at least one emitter molecule.
    Type: Grant
    Filed: October 14, 2011
    Date of Patent: July 22, 2014
    Assignees: Merck Patent GmbH, Fraunhofer-Gesellschaft Forschung E.V.
    Inventors: Thomas Eberle, Rémi Manouk Anémian, Manuel Thesen, Hartmut Krueger, Armin Wedel, Beatrice Salert, Stefanie Kreissl
  • Patent number: 8779607
    Abstract: A method of manufacturing a device includes forming a covering layer having affinity for a filler to be injected into a space between a first base and a second base, on at least one of the opposing surfaces of the first base and the second base, and then injecting the filler into the space between the first base and the second base.
    Type: Grant
    Filed: June 9, 2011
    Date of Patent: July 15, 2014
    Assignee: PS4 Luxco S.A.R.L.
    Inventor: Hiroyuki Ode
  • Patent number: 8749077
    Abstract: An embodiment 3DIC device includes a semiconductor chip, a die, and a polymer. The semiconductor chip includes a semiconductor substrate, wherein the semiconductor substrate comprises a first edge, and a low-k dielectric layer over the semiconductor substrate. The die is disposed over and bonded to the semiconductor chip. The polymer is molded onto the semiconductor chip and the die. The polymer includes a portion level with the low-k dielectric layer, wherein the portion of the polymer comprises a second edge vertically aligned to the first edge of the semiconductor substrate and a third edge contacting the low-k dielectric layer, wherein the second and the third edges are opposite edges of the portion of the polymer.
    Type: Grant
    Filed: July 23, 2013
    Date of Patent: June 10, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chih-Wei Wu, Szu Wei Lu, Jing-Cheng Lin, Shin-Puu Jeng, Chen-Hua Yu
  • Patent number: 8710682
    Abstract: The present invention provides polyimide polymer materials for passivating semiconductor wafers and methods for fabricating thereof. The present invention further provides a device that includes a semiconductor wafer and a passivating layer disposed on the surface of the wafer, wherein the passivating layer comprises such polyimide polymers.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: April 29, 2014
    Assignee: Designer Molecules Inc, Inc.
    Inventors: Stephen M Dershem, Farhad G Mizori, James T Huneke
  • Patent number: 8710653
    Abstract: A semiconductor device, includes: a wiring substrate, a stacked body mounted on the wiring substrate, an underfill layer filled into gaps between respective semiconductor chips of the stacked body; and a molding body made up of a molding resin covered and formed at outside of the stacked body and so on. The underfill layer is made up of a cured product of a resin material containing an amine-based curing agent, and the cured product has a Tg of 65° C. or more and 100° C. or less.
    Type: Grant
    Filed: February 15, 2012
    Date of Patent: April 29, 2014
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Masatoshi Fukuda, Hiroshi Watabe
  • Publication number: 20140110859
    Abstract: Systems and methods are provided for the embedding of thin chips. A well region is generated in a substrate that includes a conductive material disposed on a flexible polymer. The standoff well region can be generated by pattern the conductive material, where the thin chip is embedded in the standoff well region. A cavity can be generated in the polymer layer to form a polymer well region, where the thin chip is embedded in the polymer well region.
    Type: Application
    Filed: March 15, 2013
    Publication date: April 24, 2014
    Applicant: MC10, Inc.
    Inventor: MC10, Inc.
  • Patent number: 8698262
    Abstract: The present invention provides a new type wireless chip that can be used without being fixed on a product. Specifically, a wireless chip can have a new function by a sealing step. One feature of a wireless chip according to the present invention is to have a structure in which an integrated circuit is sealed by films. In particular, the films sealing the integrated circuit have a hollow structure; therefore the wireless chip can have a new function.
    Type: Grant
    Filed: August 30, 2005
    Date of Patent: April 15, 2014
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Takuya Tsurume, Koji Dairiki, Naoto Kusumoto
  • Patent number: 8643199
    Abstract: Dendrimer/hyperbranched materials are combined with polyimide to form a low CTE material for use as a dielectric substrate layer or an underfill. In the alternative, ruthenium carbene complexes are used to catalyze ROMP cross-linking reactions in polyimides to produce a class of cross-linkable, thermal and mechanical stable material for use as a dielectric substrate or underfill. In another alternative, dendrimers/hyperbranched materials are synthesized by different methods to produce low viscosity, high Tg, fast curing, mechanically and chemically stable materials for imprinting applications.
    Type: Grant
    Filed: January 28, 2009
    Date of Patent: February 4, 2014
    Assignee: Intel Corporation
    Inventors: Stephen E. Lehman, Jr., James C. Matayabas, Jr., Saikumar Jayaraman
  • Publication number: 20140015149
    Abstract: A semiconductor encapsulation adhesive composition comprising (a) an epoxy resin, (b) a curing agent and (c) an antioxidant.
    Type: Application
    Filed: July 2, 2013
    Publication date: January 16, 2014
    Inventors: Kazutaka Honda, Tetsuya Enomoto, Yuuki Nakamura
  • Publication number: 20140008821
    Abstract: Provided are a sealing resin sheet, wherein a clean, smooth and flat ground surface is obtained by grinding after resin sealing, a method for producing an electronic component package using the same, and an electronic component package obtained by the production method. The present invention provides a sealing resin sheet, wherein a ground surface has a mean surface roughness Ra of 1 ?m or less when grinding is performed under conditions of a grind bite peripheral velocity of 1000 m/minute, a feed pitch of 100 ?m and a cut depth of 10 ?m after a heat curing treatment is performed at 180° C. for 1 hour; and a Shore D hardness at 100° C. after the heat curing treatment is 70 or more.
    Type: Application
    Filed: July 3, 2013
    Publication date: January 9, 2014
    Inventors: Eiji Toyoda, Yusaku Shimizu
  • Patent number: 8618674
    Abstract: A semiconductor device includes a carrier and a first chip attached to the carrier. The semiconductor device includes a sintered insulation material over at least a portion of the carrier and the first chip.
    Type: Grant
    Filed: September 25, 2008
    Date of Patent: December 31, 2013
    Assignee: Infineon Technologies AG
    Inventors: Ivan Nikitin, Joachim Mahler
  • Patent number: 8587119
    Abstract: An embodiment of the disclosure includes a conductive feature on a semiconductor die. A substrate is provided. A bond pad is formed over the substrate. The bond pad has a first width. A polyimide layer is formed over the substrate and the bond pad. The polyimide layer has a first opening over the bond pad with a second width. A silicon-based protection layer overlies the polyimide layer. The silicon-based protection layer has a second opening over the bond pad with a third width. The first opening and the second opening form a combined opening having sidewalls to expose a portion of the bond pad. A UBM layer is formed over the sidewalls of combined opening to contact the exposed portion of the bond pad. A conductive feature overlies the UBM layer.
    Type: Grant
    Filed: April 16, 2010
    Date of Patent: November 19, 2013
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chien-Ling Hwang, Yi-Wen Wu, Chung-Shi Liu
  • Publication number: 20130224653
    Abstract: A novel polyimide which retains the characteristics of polyimides, that is, excellent heat resistance, electrical insulation and chemical resistance, of which dielectric constant is lower than those of the known polyimides, as well as a composition containing the same and a process for producing the same, is disclosed. The polyimide of the present invention is a cross-linked polyimide having a dielectric constant of not more than 2.7, which was produced by polycondensing (a) tetramine(s), (a) tetracarboxylic dianhydride(s) and (an) aromatic diamine(s) in the presence of a catalyst.
    Type: Application
    Filed: April 3, 2013
    Publication date: August 29, 2013
    Applicant: PI R&D Co., Ltd
    Inventor: PI R&D Co., Ltd
  • Publication number: 20130200502
    Abstract: A method of manufacturing a semiconductor device includes providing a transfer foil. A plurality of semiconductor chips is placed on and adhered to the transfer foil. The plurality of semiconductor chips adhered to the transfer foil is placed over a multi-device carrier. Heat is applied to laminate the transfer foil over the multi-device carrier, thereby accommodating the plurality of semiconductor chips between the laminated transfer foil and the multi-device carrier.
    Type: Application
    Filed: February 8, 2012
    Publication date: August 8, 2013
    Applicant: INFINEON TECHNOLOGIES AG
    Inventors: Ivan Nikitin, Stefan Landau, Joachim Mahler, Alexander Heinrich, Ralf Wombacher
  • Patent number: 8502401
    Abstract: A polymeric composition comprising a first polymer chosen from a poly(arylene ether) polymer including polymer repeat units of the following structure: —(O—Ar1—O—Ar2—O—)m—(—O—Ar3—O—Ar4—O)n- where Ar1, Ar2, Ar3, and Ar4 are identical or different aryl radicals, m is 0 to 1, n is 1 m; a polysulfone, a polyimide, a poly(etherketone), a polyurea, a polyurethane, and combinations thereof and a second polymer comprising a per(phenylethynyl) arene polymer derivative. Cured films containing the polymer can exhibit at least one of the following properties: Tg from 160° C. to 180° C., a dielectric constant below 2.7 with frequency independence, and a maximum moisture absorption of less than 0.17 wt %. Accordingly, the polymer is especially useful, for example, in interlayer dielectrics and in die-attach adhesives.
    Type: Grant
    Filed: August 10, 2009
    Date of Patent: August 6, 2013
    Assignee: Delsper LP
    Inventors: William Franklin Burgoyne, Jr., Mark David Conner, Andrew Francis Nordquist, William Steven Collins
  • Patent number: 8461699
    Abstract: The positive tone photosensitive composition of the invention comprises an alkali-soluble resin having a phenolic hydroxyl group, a compound producing an acid by light, a thermal crosslinking agent and an acrylic resin. It is possible to provide a positive tone photosensitive composition that can be developed with an aqueous alkali solution, has sufficiently high sensitivity and resolution, and can form a resist pattern with excellent adhesiveness and thermal shock resistance.
    Type: Grant
    Filed: December 16, 2009
    Date of Patent: June 11, 2013
    Assignee: Hitachi Chemical Company, Ltd.
    Inventors: Hiroshi Matsutani, Takumi Ueno, Alexandre Nicolas, Yukihiko Yamashita, Ken Nanaumi, Akitoshi Tanimoto
  • Patent number: 8450840
    Abstract: Parylene-coated, ultra ruggedized ball grid array electronic components include a substrate with electronic components attached to one surface, and solder balls attached to a second substrate surface through openings formed in the parylene coating.
    Type: Grant
    Filed: December 27, 2010
    Date of Patent: May 28, 2013
    Assignee: TeleCommunication Systems, Inc.
    Inventor: Thanh Tran
  • Patent number: 8450856
    Abstract: In a semiconductor device, an organic insulation pattern is disposed between first and second rerouting patterns. The organic insulation pattern may absorb the physical stress that occurs when the first and second rerouting patterns expand under heat. Since the organic insulation pattern is disposed between the first and second rerouting patterns, insulating properties can be increased relative to a semiconductor device in which a semiconductor pattern is disposed between rerouting patterns. Also, since a seed layer pattern is disposed between the first and second rerouting patterns and the organic insulation pattern and between the substrate and the organic insulation pattern, the adhesive strength of the first and second rerouting patterns is enhanced. This also reduces any issues with delamination. Also, the seed layer pattern prevents the metal that forms the rerouting pattern from being diffused to the organic insulation pattern.
    Type: Grant
    Filed: September 22, 2011
    Date of Patent: May 28, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Un-Byoung Kang, Kwang-chul Choi, Jung-Hwan Kim, Tae Hong Min, Hojin Lee, Minseung Yoon
  • Patent number: 8415812
    Abstract: The present invention provides polyimide polymer materials for passivating semiconductor wafers and methods for fabricating thereof. The present invention further provides a device that includes a semiconductor wafer and a passivating layer disposed on the surface of the wafer, wherein the passivating layer comprises such polyimide polymers.
    Type: Grant
    Filed: September 2, 2010
    Date of Patent: April 9, 2013
    Assignee: Designer Molecules, Inc.
    Inventors: Stephen M Dershem, Farhad G Mizori, James T Huneke
  • Patent number: 8373287
    Abstract: A polymeric composition comprising a first polymer chosen from a poly(arylene ether) polymer including polymer repeat units of the following structure: —(O—Ar1—O—Ar2—O—)m—(—O—Ar3—O—Ar4—O)n- where Ar1, Ar2, Ar3, and Ar4 are identical or different aryl radicals, m is 0 to 1, n is 1 m; a polysulfone, a polyimide, a poly(etherketone), a polyurea, a polyurethane, and combinations thereof and a second polymer comprising a per(phenylethynyl) arene polymer derivative. Cured films containing the polymer can exhibit at least one of the following properties: Tg from 160° C. to 180° C., a dielectric constant below 2.7 with frequency independence, and a maximum moisture absorption of less than 0.17 wt %. Accordingly, the polymer is especially useful, for example, in interlayer dielectrics and in die-attach adhesives.
    Type: Grant
    Filed: August 10, 2009
    Date of Patent: February 12, 2013
    Assignee: Greene, Tweed IP, Inc.
    Inventors: William Franklin Burgoyne, Jr., Mark David Conner, Andrew Francis Nordquist, William Steven Collins
  • Patent number: 8330264
    Abstract: This invention discloses an electronic package for containing a vertical semiconductor chip that includes a laminated board having a via connector and conductive traces distributed on multiple layers of the laminated board connected to the via connector. The semiconductor chip having at least one electrode connected to the conductive traces for electrically connected to the conductive traces at a different layer on the laminated board and the via connector dissipating heat generated from the vertical semiconductor. A ball grid array (BGA) connected to the via connector functioning as contact at a bottom surface of the package for mounting on electrical terminals disposed on a printed circuit board (PCB) wherein the laminated board having a thermal expansion coefficient in substantially a same range the PCB whereby the BGA having a reliable electrical contact with the electrical terminals.
    Type: Grant
    Filed: April 24, 2012
    Date of Patent: December 11, 2012
    Assignee: Alpha and Omega Semiconductor Incorporated
    Inventors: Ming Sun, Yueh Se Ho
  • Publication number: 20120299203
    Abstract: One aspect of the present invention provides a polymer having repeating units represented by the formulas (1-1), (1-2) and (1-3) and weight-average molecular weight of from 3,000 to 500,000, as determined by GPC using tetrahydrofuran as a solvent, reduced to polystyrene. Another aspect of the present invention provides an adhesive composition comprising (A) the polymer, (B) a thermosetting resin, and (C) a compound having flux activity. Further, the present invention provides an adhesive sheet having an adhesive layer made of the adhesive composition, a protective material for a semiconductor device, which has the adhesive layer, and a semiconductor device having a cured product obtained from the adhesive composition.
    Type: Application
    Filed: May 11, 2012
    Publication date: November 29, 2012
    Applicant: SHIN-ETSU CHEMICAL CO., LTD.
    Inventors: Michihiro SUGO, Kazunori KONDO
  • Patent number: 8310069
    Abstract: The symbolization of a semiconductor device (100) is incorporated in a thin sheet (130) attached to the top of the device, facing outwardly with its bare surface. The material of the sheet (about 1 to 10 ?m thick) includes regions of a first optical reflectivity and a first color, and regions (133) of a second optical reflectivity and a second color, which differ from, and contrast with, the first reflectivity and color. Preferred choices for the sheet material include the compound o-cresol novolac epoxy and the compound bisphenol-A, more preferably with the chemical imidazole added to the film material. A preferred embodiment of the invention is a packaged device with a semiconductor chip a (101) connected to a substrate (102); the connection is achieved by bonding wires (111) forming an arch with a top 111a. The chip, the wire arches, and the substrate are embedded in an encapsulation material (120), which borders on the attached top sheet so that the arch tops touch the border (131).
    Type: Grant
    Filed: September 16, 2008
    Date of Patent: November 13, 2012
    Assignee: Texas Instruements Incorporated
    Inventors: Kazuaki Ano, Wen Yu Lee
  • Patent number: 8304924
    Abstract: The invention provides a composition for sealing a semiconductor, the composition being able to form a thin resin layer, suppress the diffusion of a metal component to a porous interlayer dielectric layer, and exhibit superior adherence with respect to an interconnection material. The composition for sealing a semiconductor contains a resin having two or more cationic functional groups and a weight-average molecular weight of from 2,000 to 100,000; contains sodium and potassium each in an amount based on element content of not more than 10 ppb by weight; and has a volume average particle diameter, measured by a dynamic light scattering method, of not more than 10 nm.
    Type: Grant
    Filed: May 28, 2010
    Date of Patent: November 6, 2012
    Assignee: Mitsui Chemicals, Inc.
    Inventors: Shoko Ono, Kazuo Kohmura
  • Publication number: 20120228784
    Abstract: Disclosed is a semiconductor device configured by encapsulating a semiconductor element, partially or entirely covered with a polyimide, using an epoxy resin composition for encapsulating semiconductor device which contains an epoxy resin (A), a phenol resin (B), a curing accelerator (C), an inorganic filler (D), and a silane coupling agent (E) represented by the formula (1): (in the formula (1), each of R1, R2 and R3 represents a C1-4 hydrocarbon group, all of them may be the same or different from each other, and n represents an integer from 0 to 2), and/or a hydrolytic condensate thereof.
    Type: Application
    Filed: November 11, 2010
    Publication date: September 13, 2012
    Inventor: Tatsu Suzuki
  • Patent number: 8203221
    Abstract: There is provided a semiconductor device which has been improved in adhesion between leads and a sealing resin (molding resin), and thus does not undergo peeling therebetween, and has high reliability.
    Type: Grant
    Filed: August 14, 2009
    Date of Patent: June 19, 2012
    Assignee: Hitachi, Ltd.
    Inventor: Tomio Iwasaki
  • Patent number: 8178972
    Abstract: A semiconductor device is obtained, in which excellent characteristics are achieved, the reliability is improved, and an SiC wafer can also be used for the fabrication. A plurality of Schottky-barrier-diode units 10 is formed on an SiC chip 9, and each of the units 10 has an external output electrode 4 independently of each other. Bumps 11 (the diameter is from several tens to several hundreds of ?m) are formed only on the external output electrodes 4 of non-defective units among the units 10 formed on the SiC chip 9, meanwhile bumps are not formed on the external output electrodes 4 of defective units in which the withstand voltage is too low, or the leakage current is too much.
    Type: Grant
    Filed: November 17, 2010
    Date of Patent: May 15, 2012
    Assignee: Mitsubishi Denki Kabushiki Kaisha
    Inventor: Naoki Yutani
  • Patent number: 8154124
    Abstract: A semiconductor chip has a main surface, a back surface and a plurality of side surfaces. A plurality of electrodes is provided on the main surface of the semiconductor chip so as to be arranged in a plurality of lines. An insulating film is formed on the main surface of the semiconductor chip so as to expose at least one of the plurality of electrodes. A plurality of leads are formed on the insulating film, each of the plurality of leads having a first end and a second end, and the first end of the lead being connected to the one of the plurality of electrodes. A base resin film is formed on the insulting film and the plurality of leads, the base resin film having a plurality of electrodes holes exposing a part of the second end of each of the leads and a device hole in which the first end of the lead and the one of the plurality of electrodes are located.
    Type: Grant
    Filed: December 17, 2007
    Date of Patent: April 10, 2012
    Assignee: Oki Electric Industry Co., Ltd.
    Inventors: Yoshikazu Takahashi, Masami Suzuki, Masaru Kimura
  • Patent number: 8120153
    Abstract: A cost-effective, ultra-compact, hybrid power module packaging system and method for making allows device operation in conventional and high temperature ranges over 300° C. Double metal leadframes are directly bonded to the front- and backside of semiconductor chips, and injection-molded high temperature polymer materials encapsulate the module. The invention eliminates the use of unreliable metal wirebonds and solders joints, and expensive aluminum nitride ceramic substrates commonly used in conventional and high temperature hybrid power modules. Advantages of the new power modules include high current carrying capability, low package parasitic impedance, low thermo-mechanical stress under high temperature cycling, low package thermal resistance (double-side cooling), modularity for easy system-level integration, and low-cost manufacturing of devices compatible with current electronic packaging industry. A first embodiment uses molybdenum leadframes for operation in temperatures over 300° C.
    Type: Grant
    Filed: September 14, 2006
    Date of Patent: February 21, 2012
    Assignee: University of Central Florida Research Foundation, Inc.
    Inventor: Zheng John Shen
  • Publication number: 20120038067
    Abstract: The disclosure provides methods and materials suitable for use as encapsulation barriers in electronic devices. In one embodiment, for example, there is provided an electroluminescent device or other electronic device encapsulated by alternating layers of a silicon-containing bonding material and a ceramic material. The encapsulation methods provide, for example, electronic devices with increased stability and shelf-life. The invention is useful, for example, in the field of microelectronic devices.
    Type: Application
    Filed: March 4, 2009
    Publication date: February 16, 2012
    Inventors: Yigal D. Blum, William Siu-Keung Chu, David Brent MacQueen, Yijian Shi
  • Publication number: 20110260343
    Abstract: A polymeric composition comprising a first polymer chosen from a poly(arylene ether) polymer including polymer repeat units of the following structure: —(O—Ar1—O—Ar2—O—)m—(—O—Ar3—O—Ar4—O)n- where Ar1, Ar2, Ar3, and Ar4 are identical or different aryl radicals, m is 0 to 1, n is 1 m; a polysulfone, a polyimide, a poly(etherketone), a polyurea, a polyurethane, and combinations thereof and a second polymer comprising a per(phenylethynyl) arene polymer derivative. Cured films containing the polymer can exhibit at least one of the following properties: Tg from 160° C. to 180° C., a dielectric constant below 2.7 with frequency independence, and a maximum moisture absorption of less than 0.17 wt %. Accordingly, the polymer is especially useful, for example, in interlayer dielectrics and in die-attach adhesives.
    Type: Application
    Filed: August 10, 2009
    Publication date: October 27, 2011
    Applicant: AIR PRODUCTS AND CHEMICALS, INC.
    Inventors: William Franklin Burgoyne, JR., Mark David Conner, Andrew Francis Nordquist, William Steven Collins
  • Patent number: 8017245
    Abstract: A composition for preparing an organic insulator, the composition comprising (i) at least one organic-inorganic hybrid material; (ii) at least one organometallic compound and/or organic polymer; and (iii) at least one solvent for dissolving the above two components, so that an organic insulator using the same has a low threshold voltage and driving voltage, and high charge carrier mobility and Ion/Ioff ratio, thereby enhancing insulator characteristics. Further, the preparation of organic insulating film can be carried out by wet process, so that simplification of the process and cut of cost are achieved.
    Type: Grant
    Filed: May 13, 2005
    Date of Patent: September 13, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Sang Yoon Lee, Jong Jin Park, Yi Yeol Lyu, Bon Won Koo, Young Hun Byun, Eun Mi Seo
  • Patent number: 8004078
    Abstract: Provided is an adhesive composition for a semiconductor device. For example, the adhesive composition comprises a binder resin and a silicon carbide filler. The silicon carbide filler has relatively high thermal conductivity and a relatively low coefficient of thermal expansion (CTE). Accordingly, the adhesive composition containing the silicon carbide filler exhibits improved heat dissipation performance and electrical performance due to high thermal conductivity and shows inhibition of delamination or cracking of semiconductor devices due to low CTE. The silicon carbide has high thermal conductivity, but is electrically non-conductive. Therefore, an electrically conductive adhesive can be obtained by additional incorporation of a silver (Ag) filler into the binder resin.
    Type: Grant
    Filed: March 17, 2009
    Date of Patent: August 23, 2011
    Assignee: Amkor Technology, Inc.
    Inventors: Jae Kyu Song, Bong Chan Kim, Min Yoo