With Shaped Contacts Or Opaque Masking Patents (Class 257/91)
  • Patent number: 8928007
    Abstract: An electro-optical device includes: a pixel region that is formed on a substrate and in which a light emitting element that has a first electrode, a second electrode and a light emitting layer formed between the first electrode and the second electrode is arranged; a partition wall portion that is formed above the substrate and located on an outer side of the pixel region; a connecting line that is formed above the substrate and located on an outer side of the partition wall portion; and a connecting section that is formed above the substrate and electrically connects the second electrode to the connecting line, wherein the second electrode covers and extends over the pixel region and the partition wall portion and does not overlap the connecting line in a planar view.
    Type: Grant
    Filed: April 25, 2011
    Date of Patent: January 6, 2015
    Assignee: Seiko Epson Corporation
    Inventors: Suguru Akagawa, Yuki Hanamura
  • Patent number: 8928014
    Abstract: In accordance with certain embodiments, an electric device includes a flexible substrate having first and second conductive traces on a first surface thereof and separated by a gap therebetween, an electronic component spanning the gap, and a stiffener configured to substantially prevent flexing of the substrate proximate the gap during flexing of the substrate.
    Type: Grant
    Filed: August 12, 2013
    Date of Patent: January 6, 2015
    Assignee: Cooledge Lighting Inc.
    Inventors: Michael A. Tischler, Paul Palfreyman, Philippe M. Schick
  • Patent number: 8927303
    Abstract: The present invention relates to a light-emitting diode (LED) and a method for manufacturing the same. The LED comprises an LED die, one or more metal pads, and a fluorescent layer. The characteristics of the present invention include that the metals pads are left exposed for the convenience of subsequent wiring and packaging processes. In addition, the LED provided by the present invention is a single light-mixing chip, which can be packaged directly without the need of coating fluorescent powders on the packaging glue. Because the fluorescent layer and the packaging glue are not processed simultaneously and are of different materials, the stress problem in the packaged LED can be reduced effectively.
    Type: Grant
    Filed: September 2, 2009
    Date of Patent: January 6, 2015
    Assignee: Formosa Epitaxy Incorporation
    Inventors: Wei-Kang Cheng, Jia-Lin Li, Shyi-Ming Pan, Kuo-Chi Huang
  • Patent number: 8928008
    Abstract: A light emitting device package is provided. The light emitting device package comprises a package body comprising a first cavity, and a second cavity connected to the first cavity; a first lead electrode, at least a portion of which is disposed within the second cavity; a second lead electrode, at least a portion of which is disposed within the first cavity; a light emitting device disposed within the second cavity; a first wire disposed within the second cavity, the first wire electrically connecting the light emitting device to the first lead electrode; and a second wire electrically connecting the light emitting device to the second lead electrode.
    Type: Grant
    Filed: May 24, 2011
    Date of Patent: January 6, 2015
    Assignee: LG Innotek Co., Ltd.
    Inventors: Wan Ho Kim, Jun Seok Park
  • Patent number: 8916857
    Abstract: A light-emitting element disclosed in the present invention includes a light-emitting layer and a first layer between a first electrode and a second electrode, in which the first layer is provided between the light-emitting layer and the first electrode. The present invention is characterized by the device structure in which the first layer comprising a hole-transporting material is doped with a hole-blocking material or an organic compound having a large dipole moment. This structure allows the formation of a high performance light-emitting element with high luminous efficiency and long lifetime. The device structure of the present invention facilitates the control of the rate of the carrier transport, and thus, leads to the formation of a light-emitting element with a well-controlled carrier balance, which contributes to the excellent characteristics of the light-emitting element of the present invention.
    Type: Grant
    Filed: November 24, 2012
    Date of Patent: December 23, 2014
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Satoko Shitagaki, Satoshi Seo, Ryoji Nomura
  • Patent number: 8916889
    Abstract: A light emitting device includes a substrate, light emitting units, an insulation layer, a current distribution layer and a reflective layer. The substrate has an upper surface. The light emitting units are disposed on the upper surface and include at least one first light emitting diode (LED) and at least one second LED. A first side wall of the first LED is adjacent to a second side wall of the second LED so as to define a concave portion exposing a portion of the upper surface. The insulation layer at least covers the first side wall and the second side wall. The current distribution layer covers the concave portion and at least covers a portion of the second LED. The reflective layer covers the current distribution layer and is electrically connected to the first LED and the second LED.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: December 23, 2014
    Assignee: Genesis Photonics Inc.
    Inventors: Jing-En Huang, Yi-Ru Huang, Chih-Ling Wu, Yu-Yun Lo
  • Patent number: 8912555
    Abstract: A semiconductor light-emitting device includes a circuit board with a layout layer and a die bonding area. At least one positive endpoint, negative endpoint and function endpoint are disposed on the layout layer. At least one semiconductor light-emitting chip is disposed within the die bonding area, and is electrically coupled to the positive endpoint, the negative endpoint and the function endpoint to facilitate various connection configurations.
    Type: Grant
    Filed: April 12, 2013
    Date of Patent: December 16, 2014
    Assignee: Phostek, Inc.
    Inventors: Shih-Feng Shao, Heng Liu, Jinn Kong Sheu
  • Publication number: 20140361322
    Abstract: There is herein described electronic components with improved display contrast and a method of manufacturing such electronic components. More particularly, there is described electronic components having improved display contrast by using a non-transparent or substantially non-transparent material (520) to block light from an emitter source (512, 514, 516) to surrounding components such as emitters, sensors or components of this nature.
    Type: Application
    Filed: December 19, 2012
    Publication date: December 11, 2014
    Applicant: MLED Limited
    Inventors: Zheng Gong, James Small, James Ronald Bonar
  • Patent number: 8907355
    Abstract: The present invention discloses a diode and a manufacturing method thereof and a display apparatus. The diode comprises a composite anode, a transparent metal oxide layer, a basic stack layer, and a composite cathode. The composite anode comprises a transparent anode layer and a first transparent metal layer. The first transparent metal layer is formed on the transparent anode layer. The transparent metal oxide layer is formed on the first transparent metal layer. The basic stack layer is formed on the transparent metal oxide layer. The composite cathode comprises two second transparent metal layers. The two second transparent metal layers are formed on the basic stack layer. Both transmittance and efficiency of the diode are significantly improved. The reliability of the diode is improved to elongate the lifetime of the diode.
    Type: Grant
    Filed: March 12, 2013
    Date of Patent: December 9, 2014
    Assignee: Shenzhen China Star Optoelectronics Technology Co., Ltd.
    Inventor: Jinchuan Li
  • Patent number: 8901586
    Abstract: Disclosed are a light emitting device and a method of manufacturing the same. The light emitting device includes a substrate; a light emitting structure disposed on the substrate and having a stack structure in which a first conductivity type semiconductor layer, an active layer and a second conductivity type semiconductor layer are stacked; a lens disposed on the light emitting structure; and a first terminal portion and a second terminal portion electrically connected to the first conductivity type semiconductor layer and the second conductivity type semiconductor layer, respectively. At least one of the first and second terminal portions extends from a top surface of the light emitting structure along respective side surfaces of the light emitting structure and the substrate.
    Type: Grant
    Filed: July 12, 2011
    Date of Patent: December 2, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Hak Hwan Kim, Ho Sun Paek, Hyung Kun Kim, Sung Kyong Oh, Jong In Yang
  • Patent number: 8901575
    Abstract: The present invention relates to an AC light emitting diode. An object of the present invention is to provide an AC light emitting diode wherein various designs for enhancement of the intensity of light, prevention of flickering of light or the like become possible, while coming out of a unified method of always using only one metal wire with respect to one electrode when electrodes of adjacent light emitting cells are connected through metal wires. To this end, the present invention provides an AC light emitting diode comprising a substrate; bonding pads positioned on the substrate; a plurality of light emitting cells arranged in a matrix form on the substrate; and a wiring means electrically connecting the bonding pads and the plurality of light emitting cells, wherein the wiring means includes a plurality of metal wires connecting an electrode of one of the light emitting cells with electrodes of other electrodes adjacent to the one of the light emitting cells.
    Type: Grant
    Filed: August 1, 2006
    Date of Patent: December 2, 2014
    Assignee: Seoul Viosys Co., Ltd.
    Inventor: Jae Ho Lee
  • Patent number: 8896236
    Abstract: An organic light emitting diode (OLED) display is provided. The OLED display includes: a substrate; an organic light emitting element including a first electrode on the substrate, an organic emission layer on the first electrode, and a second electrode on the organic emission layer; and an encapsulation member encapsulating the organic light emitting element and including a first conductive layer on the organic light emitting element and electrically connected to the second electrode, an insulation layer on the first conductive layer, and a second conductive layer on the insulation layer and configured to electrically connect to the first electrode.
    Type: Grant
    Filed: May 22, 2012
    Date of Patent: November 25, 2014
    Assignee: Samsung Display Co., Ltd.
    Inventors: Hae-Goo Jung, Do-Hyung Ryu, Kuen-Dong Ha
  • Patent number: 8895989
    Abstract: A thin-film semiconductor device for a display apparatus according to the present disclosure includes: a gate electrode above a substrate; a gate insulating film above the gate electrode; a semiconductor layer on the gate insulating film; a first electrode above the semiconductor layer; a second electrode in a same layer as the first electrode; an interlayer insulating film covering the first electrode and the second electrode; a gate line above the interlayer insulating film; and a power supply line in a same layer as the gate line and adjacent to the gate line. Furthermore, the gate electrode and the gate line are electrically connected via a first conductive portion, and the second electrode and the power supply line are electrically connected via a second conductive portion.
    Type: Grant
    Filed: November 27, 2012
    Date of Patent: November 25, 2014
    Assignee: Panasonic Corporation
    Inventor: Arinobu Kanegae
  • Patent number: 8896002
    Abstract: A method for producing a semiconductor laser having an edge window structure includes the steps of forming masks of insulating films on a nitride-based III-V compound semiconductor substrate including first regions and second regions periodically arranged in parallel therebetween; and growing a nitride-based III-V compound semiconductor layer in a region not covered by the masks. The first region between each two adjacent second regions has two or more positions, symmetrical with respect to a center line thereof, where laser stripes are to be formed. The masks are formed on one or both sides of each of the positions where the laser stripes are to be formed at least near a position where edge window structures are to be formed such that the masks are symmetrical with respect to the center line. The nitride-based III-V compound semiconductor layer includes an active layer containing at least indium and gallium.
    Type: Grant
    Filed: September 29, 2009
    Date of Patent: November 25, 2014
    Assignee: Sony Corporation
    Inventors: Rintaro Koda, Masaru Kuramoto, Eiji Nakayama, Tsuyoshi Fujimoto
  • Patent number: 8890174
    Abstract: A light emitter and a method of manufacturing a light emitter. The light emitter includes a first electrode, a charge injection transport layer, a light-emitting layer, and a second electrode that are layered in this order. At least the light-emitting layer is defined by a bank that has at least one liquid-repellent surface. The charge injection transport layer is principally composed of a metal compound that is more liquid-philic than the surface of the bank. The charge injection transport layer includes a recessed structure so that in a region defined by the bank, the charge injection transport layer is lower than a bottom surface of the bank.
    Type: Grant
    Filed: August 9, 2011
    Date of Patent: November 18, 2014
    Assignee: Panasonic Corporation
    Inventors: Kenji Harada, Takayuki Takeuchi, Seiji Nishiyama, Takahiro Komatsu
  • Patent number: 8890173
    Abstract: A light emitter and method for manufacturing a light emitter. The light emitter includes a first electrode, a charge injection transport layer, a light-emitting layer, and a second electrode that are layered in this order. At least the light-emitting layer is defined by bank. The charge injection transport layer includes a recessed portion having an inner bottom surface in contact with a bottom surface of the light-emitting layer and an inner side surface continuous with the inner bottom surface and in contact at least partly with a side surface of the light-emitting layer. The inner side surface has a lower edge continuous with the inner bottom surface, and an upper edge is aligned with a portion of a bottom periphery of the bank, the portion being in contact with the light-emitting layer or in contact with a bottom surface of the bank.
    Type: Grant
    Filed: August 9, 2011
    Date of Patent: November 18, 2014
    Assignee: Panasonic Corporation
    Inventors: Kenji Harada, Takayuki Takeuchi, Seiji Nishiyama, Takahiro Komatsu
  • Patent number: 8891581
    Abstract: A multi-wavelength semiconductor laser device includes a block having a V-shaped groove with two side faces extending in a predetermined direction; and laser diodes with different light emission wavelengths mounted on the side faces of the groove in the block so that their laser beams are emitted in the predetermined direction.
    Type: Grant
    Filed: January 29, 2014
    Date of Patent: November 18, 2014
    Assignee: Mitsubishi Electric Corporation
    Inventor: Yuji Okura
  • Patent number: 8890182
    Abstract: Provided are a light emitting device, a light emitting device package, and a lighting system. The light emitting device includes a light emitting structure including a first conductive type semiconductor layer, a second conductive type semiconductor layer, and an active layer between the first conductive type semiconductor layer and the second conductive type semiconductor layer and a light extraction pattern in which a period (a) exceeds ?/n (where, ? is a wavelength of light emitted from the active layer, and n is a refractive index of the light emitting structure) on the light emitting structure. The period (a) may be in the range of 5×(?/n) a 15×(?/n). An etching depth (h) of the light extraction pattern may be equal to or greater than ?/n.
    Type: Grant
    Filed: July 3, 2013
    Date of Patent: November 18, 2014
    Assignee: LG Innotek Co., Ltd.
    Inventor: Sun Kyung Kim
  • Patent number: 8890204
    Abstract: To provide a light emitting device in which generation of cross talk between adjacent light emitting elements is suppressed, even when the light emitting device uses a light emitting element having high current efficiency. Also, to provide a light emitting device having high display quality even when the light emitting device uses a light emitting element having high current efficiency. The light emitting device has a pixel portion including a plurality of light emitting elements, wherein each of the plurality of light emitting elements includes a plurality of light emitting bodies provided between a first electrode and a second electrode and a conductive layer formed between the plurality of light emitting bodies, wherein the conductive layer is provided for each light emitting element, and wherein an edge portion of the conductive layer is covered with the plurality of light emitting bodies.
    Type: Grant
    Filed: January 30, 2014
    Date of Patent: November 18, 2014
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Satoshi Seo, Shunpei Yamazaki
  • Patent number: 8883533
    Abstract: A method for manufacturing an LED package comprising steps of: providing a substrate and forming spaced electrode structures on the substrate; providing a mold on the top surface of the substrate wherein the mold defines spaced annular grooves which cooperate with the top surface of the substrate to define cavities; filling the cavities with metal material; removing the mold and hardening the metal material to form reflection cups wherein each reflection cup surrounds a corresponding electrode structure and defines a recess; polishing surfaces of the reflection cups and the electrode structures; arranging LED chips in the recesses with each LED chip electrically connected to the electrode structure; injecting an encapsulation layer in the recesses to seal the LED chips; and cutting the substrate to obtain individual LED packages.
    Type: Grant
    Filed: August 10, 2012
    Date of Patent: November 11, 2014
    Assignee: Advanced Optoelectronic Technology, Inc.
    Inventors: Hsin-Chiang Lin, Pin-Chuan Chen, Lung-Hsin Chen
  • Patent number: 8884322
    Abstract: A light-emitting device includes a first electrode area on a substrate and a functional light-emitting layer on the first electrode area. A second electrode area is disposed on the functional light-emitting layer. A light outlet layer is disposed in a radiation path of the functional light-emitting layer. The light outlet layer incorporates a number of optical elements whose distribution and/or geometrical shape vary across a surface of the light outlet layer.
    Type: Grant
    Filed: November 21, 2012
    Date of Patent: November 11, 2014
    Assignee: OSRAM Opto Semiconductor GmbH
    Inventors: Florian Schindler, Markus Klein, Benjamin Claus Krummacher
  • Patent number: 8884327
    Abstract: According to one embodiment, a semiconductor light emitting device includes a light emitting chip and a fluorescent material layer. The light emitting chip includes a semiconductor layer, a first electrode, a second electrode, an insulating layer, a first interconnect layer, a second interconnect layer, a first metal pillar, a second metal pillar, and a resin layer. The semiconductor layer includes a light emitting layer, a first major surface, and a second major surface formed on a side opposite to the first major surface. The fluorescent material layer is provided on the first major surface and has a larger planer size than the light emitting chip.
    Type: Grant
    Filed: September 21, 2010
    Date of Patent: November 11, 2014
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Yoshiaki Sugizaki, Hideki Shibata, Akihiro Kojima, Masayuki Ishikawa, Hideo Tamura, Tetsuro Komatsu
  • Patent number: 8883531
    Abstract: An OLED display device is provided. The OLED display device includes a substrate segmented into a plurality sub-pixel regions, a thin film transistor formed in each of the sub-pixel regions, an insulating layer and a planarization layer formed on the thin film transistor, a semitransparent reflective layer selectively formed in each sub-pixel region on the planarization layer, a protective layer formed on the semitransparent reflective layer, an anode electrode formed in a region corresponding to the semitransparent reflective layer on the protective layer and connected to the thin film transistor, an organic light emitting layer connected to the anode electrode, and emitting light, and a cathode electrode formed on the organic light emitting layer.
    Type: Grant
    Filed: December 3, 2012
    Date of Patent: November 11, 2014
    Assignee: LG Display Co., Ltd.
    Inventors: Se June Kim, Joon Suk Lee, Yong Chul Kim, Sung Bin Shim
  • Patent number: 8877532
    Abstract: A method of manufacturing an organic electroluminescence display device includes an organic compound layer which is placed between a pair of electrodes and includes at least an emission layer, the organic compound layer being two-dimensionally arranged, includes forming the organic compound layer which is insoluble in water in an entire emission region on a substrate, providing a mask layer containing a water-soluble material in at least a part of a region on the organic compound layer, removing a part of the organic compound layer which is provided in a region which is other than the region in which the mask layer is provided, removing the mask layer, and forming, after the removing of the mask layer, a layer containing at least an alkali metal or an alkaline-earth metal in a region including at least the emission region.
    Type: Grant
    Filed: March 15, 2012
    Date of Patent: November 4, 2014
    Assignee: Canon Kabushiki Kaisha
    Inventors: Tomoyuki Hiroki, Taro Endo, Itaru Takaya, Koichi Ishige, Nobuhiko Sato
  • Patent number: 8878205
    Abstract: Several embodiments of light emitting diode packaging configurations including a substrate with a cavity are disclosed herein. A patterned wafer has a plurality of individual LED attachment sites, and an alignment wafer has a plurality of individual cavities. The patterned wafer and the alignment wafer are superimposed with the LED attachment sites corresponding generally to the cavities of the alignment wafer. At least one LED is placed in the cavities using the cavity to align the LED relative to the patterned wafer. The LED is electrically connected to contacts on the patterned wafer, and a phosphor layer is formed in the cavity to cover at least a part of the LED.
    Type: Grant
    Filed: May 14, 2013
    Date of Patent: November 4, 2014
    Assignee: Micron Technology, Inc.
    Inventor: Jonathon G. Greenwood
  • Patent number: 8878263
    Abstract: Disclosed herein is a semiconductor device including: a semiconductor substrate; a gate insulating film formed on surfaces of the semiconductor substrate including an internal surface of a hole formed in the semiconductor substrate and formed by radical oxidation or plasma oxidation; and a gate electrode formed as buried in the hole. The gate insulating film and the gate electrode form a vertical MOS.
    Type: Grant
    Filed: May 21, 2010
    Date of Patent: November 4, 2014
    Assignee: Sony Corporation
    Inventor: Shuji Manda
  • Patent number: 8878226
    Abstract: A light emitting device includes a substrate, and a plurality of light emitting structures disposed thereon. Each of the light emitting structures includes an auxiliary electrode disposed on the substrate, a first insulating layer disposed on the substrate and covering the auxiliary electrode, an electrode disposed on the first insulating layer, a second insulating layer disposed on the first insulating layer and having a first opening exposing the electrode, an organic light emitting layer disposed in the first opening, a cathode disposed on the organic light emitting layer, at least a conductive structure penetrating through the first insulating layer and the second insulating layer, and a closed ring structure disposed on the second insulating layer and around the cathode, wherein a thickness of the closed ring structure is larger than that of the cathode.
    Type: Grant
    Filed: January 17, 2013
    Date of Patent: November 4, 2014
    Assignee: Industrial Technology Research Institute
    Inventors: Jing-Yi Yan, Shu-Tang Yeh, Chih-Chieh Hsu, Chen-Wei Lin, Kuang-Jung Chen
  • Patent number: 8878204
    Abstract: Submount based light emitter components and methods are provided herein. In one aspect, a submount based light emitter component can include a primary submount, a secondary submount, and at least one light emitter chip. The at least one light emitter chip can be disposed over the primary submount and electrically connected to the secondary submount.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: November 4, 2014
    Assignee: Cree, Inc.
    Inventors: Jesse Colin Reiherzer, Christopher P. Hussell, Erin Welch
  • Publication number: 20140319554
    Abstract: A conductive particle comprising a polyhedral shape in which two neighboring sides among a plurality of sides form an intersection line, and two sides meeting on the intersection line form an angle.
    Type: Application
    Filed: September 24, 2013
    Publication date: October 30, 2014
    Applicant: Samsung Display Co., Ltd.
    Inventor: Dae-Geun LEE
  • Publication number: 20140319556
    Abstract: A display panel includes: a substrate on which a plurality of feed terminals corresponding to a plurality of pixels are provided; a plurality of pixel electrodes corresponding to the respective pixels; a common electrode common to the pixels; and a plurality of light-emitting layers corresponding to the respective pixels and provided between the pixel electrodes and the common electrode. In plan view, within each of the pixels, the light-emitting layer and the feed terminal do not overlap, feed terminals of each column of pixels are provided in a column, and the common electrode is electrically connected to conductive layers, the conductive layers each having a shape of a line that overlaps a corresponding one of the columns of feed terminals. Accordingly, the display panel achieves a high aperture ratio even with the conductive layers formed therein.
    Type: Application
    Filed: December 7, 2012
    Publication date: October 30, 2014
    Applicant: Panasonic Corporation
    Inventor: Tetsuro Kondoh
  • Publication number: 20140319555
    Abstract: A display panel includes a substrate, an active layer, a gate insulating layer, a gate electrode structure, an insulating interlayer, a switching element, and a planarization insulating layer. The active layer includes a source region and a drain region, and is disposed on the substrate. The gate insulating layer is disposed on the active layer. The gate electrode structure includes a plurality of gate electrode layer which are at least partially overlapped with each other. The gate electrode structure is disposed on the gate insulating layer. The insulating interlayer covers the gate electrode structure. The switching element includes a source electrode and a drain electrode, and the source electrode and the drain electrode are in contact with the source region and the drain region, respectively. The planarization insulating layer covers the switching element.
    Type: Application
    Filed: January 17, 2014
    Publication date: October 30, 2014
    Applicant: SAMSUNG DISPLAY CO., LTD.
    Inventors: VALERIY PRUSHINSKIY, Min-Soo Kim
  • Patent number: 8872200
    Abstract: Disclosed herein is a display device including a plurality of pixels configured to have a first electrode, a light emitting layer, and a second electrode in that order over a substrate, wherein: the plurality of pixels include a first pixel having a first light emitting layer common to the pixels and a second pixel having the first light emitting layer and a second light emitting layer provided on each second pixel basis; and a surface of the first electrode in the first pixel is closer to the substrate than a surface of the first electrode in the second pixel.
    Type: Grant
    Filed: March 8, 2012
    Date of Patent: October 28, 2014
    Assignee: Sony Corporation
    Inventor: Tsutomu Mori
  • Patent number: 8872219
    Abstract: A multi-dimensional solid state lighting (SSL) device array system and method are disclosed. An SSL device includes a support, a pillar having several sloped facets mounted to the support, and a flexible substrate pressed against the pillar. The substrate can carry a plurality of solid state emitters (SSEs) facing in various directions corresponding to the sloped facets of the pillar. The flexible substrate can be a flat substrate prepared using planar mounting techniques, such as wirebonding techniques, before bending the substrate against the pillar.
    Type: Grant
    Filed: July 3, 2013
    Date of Patent: October 28, 2014
    Assignee: Micron Technology, Inc.
    Inventors: Alan Mondada, Fernando Gonzalez, Willard L. Hofer
  • Patent number: 8872201
    Abstract: An organic light emitting diode (OLED) display is disclosed. In one embodiment, the OLED display includes i) a substrate having first and second surfaces opposing each other and ii) an organic light emitting diode (OLED) formed over the substrate, wherein the OLED is closer to the first surface than the second surface of the substrate. The display may also include i) a light scattering layer formed between the first surface of the substrate and the organic light emitting diode and ii) a light absorbing layer formed between the first surface of the substrate and the light scattering layer or on the second surface of the substrate.
    Type: Grant
    Filed: March 23, 2011
    Date of Patent: October 28, 2014
    Assignee: Samsung Display Co., Ltd.
    Inventors: Gun-Shik Kim, Jun-Sik Oh, Jang-Seok Ma
  • Patent number: 8872209
    Abstract: A light emitting diode chip includes a semiconductor layer sequence, the semiconductor layer sequence having an active layer that generates electromagnetic radiation, wherein the light emitting diode chip has a radiation exit area at a front side. At a rear side lying opposite the radiation exit area, the light emitting diode chip has, at least in regions, a mirror layer containing silver. A functional layer that reduces corrosion and/or improves adhesion of the mirror layer is arranged on the mirror layer, wherein a material from which the functional layer is formed is also distributed in the entire mirror layer. The material of the functional layer has a concentration gradient in the mirror layer, wherein the concentration of the material of the functional layer in the mirror layer decreases proceeding from the functional layer in the direction toward the semiconductor layer sequence.
    Type: Grant
    Filed: February 15, 2011
    Date of Patent: October 28, 2014
    Assignee: OSRAM Opto Semiconductors GmbH
    Inventors: Markus Maute, Karl Engl, Stefanie Rammelsberger, Nikolaus Gmeinwieser, Johann Eibl
  • Patent number: 8866173
    Abstract: A light emitting device according to the embodiment may include a light emitting structure including a first semiconductor layer, an active layer, and a second semiconductor layer; an electrode on the light emitting structure; a protection layer under a peripheral region of the light emitting structure; and an electrode layer under the light emitting structure, wherein the protection layer comprises a first layer, a second layer, and a third layer, wherein the first layer comprises a first metallic material, and wherein the second layer is disposed between the first layer and the third layer, the second layer has an insulating material or a conductive material.
    Type: Grant
    Filed: July 18, 2012
    Date of Patent: October 21, 2014
    Assignee: LG Innotek Co., Ltd.
    Inventor: Hwan Hee Jeong
  • Patent number: 8866166
    Abstract: A light emission package includes at least one solid state emitter, a leadframe, and a body structure encasing a portion of the leadframe. At least one aperture is defined in an electrical lead to define multiple electrical lead segments, with at least a portion of the aperture disposed outside an exterior side wall of the package. A recess may be defined in the exterior side wall to receive a bent portion of an electrical lead. A body structure cavity may be bounded by a floor, and side wall portions and end wall portions that are separated by transition wall portions including a curved or segmented upper edge, with different wall portions being disposed at different angles of inclination.
    Type: Grant
    Filed: July 29, 2013
    Date of Patent: October 21, 2014
    Assignee: Cree, Inc.
    Inventor: Christopher P. Hussell
  • Patent number: 8866165
    Abstract: A light emitting apparatus includes a plurality of single crystal semiconductor thin films that emit light. The single crystal semiconductor thin films are secured in intimate contact to the surface of a substrate or a bonding layer formed on the substrate. A first conductive electrode is formed on the single crystal semiconductor thin film and is connected to a first conductive side metal layer. The first conductive side metal layer is closer to the surface of the substrate than a top surface of the single crystal semiconductor thin film. A second conductive electrode is formed on the single crystal semiconductor thin film. A second conductive side metal layer is connected to the second conductive electrode. The second conductive side metal layer is closer to the surface of the substrate than the top surface of the single crystal semiconductor thin film.
    Type: Grant
    Filed: September 30, 2010
    Date of Patent: October 21, 2014
    Assignee: Oki Data Corporation
    Inventor: Mitsuhiko Ogihara
  • Patent number: 8866160
    Abstract: A hole injection layer and a light-emitting layer are laminated between a first electrode and a second electrode of a light emitter. A bank defines an area in which the light-emitting layer is to be formed. In the area defined by the bank, a hole injection layer has a recess in an upper surface thereof. An upper peripheral edge of the recess is covered with a part of the bank.
    Type: Grant
    Filed: August 9, 2011
    Date of Patent: October 21, 2014
    Assignee: Panasonic Corporation
    Inventor: Seiji Nishiyama
  • Patent number: 8866164
    Abstract: A semiconductor light emitting device having a light emitting structure including at least one first conductive GaN based semiconductor layer, an active layer above the at least one first conductive GaN based semiconductor layer, and at least one second conductive GaN based semiconductor layer above the active layer, a plurality of patterns disposed from the at least one second conductive GaN based semiconductor layer through a portion of the at least one first conductive GaN based semiconductor layer, and an insulating member on the plurality of patterns. The plurality of patterns include a lower part contacting with the light emitting structure and a upper part contacting with the light emitting structure. A first base angle of the lower part is different from the second base angle of the upper part.
    Type: Grant
    Filed: April 12, 2010
    Date of Patent: October 21, 2014
    Assignee: LG Innotek Co., Ltd.
    Inventor: Sang Youl Lee
  • Patent number: 8860042
    Abstract: A light component includes a printed circuit board and a plurality of lighting emitting diodes (LEDs). The printed circuit board has a metal substrate. The LEDs are disposed on the printed circuit board, wherein two opposite edges of the metal substrate protrude out and are bent towards the LEDs to form two metal clamps.
    Type: Grant
    Filed: March 5, 2012
    Date of Patent: October 14, 2014
    Assignee: Lextar Electronics Corporation
    Inventors: Xin-Lin Zhou, Chen-Yi Su
  • Patent number: 8860067
    Abstract: A semiconductor light emitting device having an n-electrode and a p-electrode provided on the same surface side of a semiconductor film, wherein current spread in the semiconductor film is promoted, so that the improvements in luminous efficiency and reliability, the emission intensity uniformalization across the surface, and a reduction in the forward voltage, can be achieved. The semiconductor light emitting device includes a semiconductor film including an n-type semiconductor layer, an active layer, and a p-type semiconductor layer; the n-electrode formed on an exposed surface of the n-type semiconductor layer exposed by removing parts of the p-type semiconductor layer, of the active layer, and of the n-type semiconductor layer with accessing from the surface side of the p-type semiconductor layer; and the p-electrode. A current guide portion having conductivity higher than that of the n-type semiconductor layer is provided on or in the n-type semiconductor layer over the p-type electrode.
    Type: Grant
    Filed: December 5, 2011
    Date of Patent: October 14, 2014
    Assignee: Stanley Electric Co., Ltd.
    Inventors: Yusuke Yokobayashi, Satoshi Tanaka, Tatsuma Saito
  • Patent number: 8859311
    Abstract: A flip-chip light-emitting diode structure comprises a carrier substrate, a light-emitting die structure, a reflective layer, an aperture, a dielectric layer, a first contact layer and a second contact layer. The light-emitting die structure, located on the carrier substrate, comprises a first type semiconductor layer, a second type semiconductor layer and a light emitting layer. The light emitting layer is formed between the first type and the second type semiconductor layer. The reflective layer is located on the first type semiconductor layer. The aperture penetrates the light-emitting die structure. The dielectric layer covers an inner sidewall of the aperture and extends to a portion of a surface of the reflective layer. The first contact layer is disposed on the part of the reflective layer not covered by the dielectric layer. The second contact layer fills up the aperture and is electrically connected to the second type semiconductor layer.
    Type: Grant
    Filed: August 13, 2013
    Date of Patent: October 14, 2014
    Assignee: Lextar Electronics Corporation
    Inventors: Chia-En Lee, Yan-Hao Chen
  • Patent number: 8860046
    Abstract: A two dimensional array light-emitting diode device is disclosed, which includes a transparent substrate including a first surface; a plurality of adjacent light-emitting diode units arranged on the first surface, wherein each of the light-emitting diode units including a plurality of sides and a circumference; and a plurality of conductive connecting structures arranged on the first surface, electrically connecting the plurality of light-emitting diode units mentioned above; wherein the sides of each of the light-emitting diode units have a plurality of vertical distances between the closest light-emitting diode units, and when the plurality of vertical distances larger than 50 ?m, the sides are not near the closest light-emitting diode units; wherein the ratio of the total length of the sides not near the light-emitting diode units of each light-emitting diode unit and the circumference of the light-emitting diode unit is larger than 50%.
    Type: Grant
    Filed: February 14, 2013
    Date of Patent: October 14, 2014
    Assignee: Epistar Corporation
    Inventors: Jhih-Sian Wang, Chia-Liang Hsu, Yi-Ming Chen, Yi-Tang Lai
  • Publication number: 20140299900
    Abstract: The present invention discloses a plurality of interdigitated pixels arranged in an array, having a very low series-resistances with improved current spreading and improved heat-sinking Each pixel is a square with sides of dimension 1. The series resistance is minimized by increasing the perimeter of an active region for the pixels. The series resistance is also minimized by shrinking the space between a mesa and n-contact for each pixel.
    Type: Application
    Filed: June 20, 2014
    Publication date: October 9, 2014
    Applicant: The Regents of the University of California
    Inventors: Arpan Chakraborty, Likun Shen, Umesh K. Mishra
  • Patent number: 8853718
    Abstract: A display device is provided with a reinforced power line. The display device includes a common power line. A light emission layer is interposed between a first and a second electrode. A passivation layer is formed over the second electrode and has a stepped shape. An auxiliary metal layer is coupled to a common power line. At least a portion of the auxiliary metal layer is formed over the passivation layer and has a shape that follows the stepped shape of the passivation layer.
    Type: Grant
    Filed: February 29, 2012
    Date of Patent: October 7, 2014
    Assignee: LG Display Co., Ltd.
    Inventors: Jaehyuk Lee, Myungseop Kim
  • Publication number: 20140291710
    Abstract: A light emitting device includes a package having a recess, a lead frame buried in the package so that one end of the lead frame is exposed at a bottom of the recess and another end protrudes to an exterior of the package, a light emitting element arranged on the lead frame exposed at the bottom of the recess, and an encapsulant filled in the recess. The package includes, at the side face where the lead frame protrudes, a first side face formed inwardly relative to a side face of the lead frame, and a second side face formed at a lower portion of the first side face and protruded so as to cover a top face of the lead frame.
    Type: Application
    Filed: June 10, 2014
    Publication date: October 2, 2014
    Inventor: Takeo KURIMOTO
  • Patent number: 8847250
    Abstract: The upper surface portion of a planarization layer is planarized. In an anode formed on the planarization layer, upper surface portions at edge regions by a bank are located above an upper surface portion at a central region. A hole injection transporting layer is layered along the upper surface portions of the anode, and in the hole injection transporting layer, upper surface portions at the edge regions near the bank are located above an upper surface portion at the central region. In an organic light-emitting layer, upper surface portions at the edge regions (regions D1 and D2) near the bank are located above an upper surface portion at the central region (region D3). As a result, thicknesses T11 and T12 of the light-emitting layer are equivalent to a thickness T13 of the organic light-emitting layer.
    Type: Grant
    Filed: May 7, 2012
    Date of Patent: September 30, 2014
    Assignee: Panasonic Corporation
    Inventors: Yuuki Abe, Hideaki Matsushima
  • Patent number: 8847265
    Abstract: A light-emitting device includes a first conductive semiconductor layer formed on a substrate, a mask layer formed on the first conductive semiconductor layer and having a plurality of holes, a plurality of vertical light-emitting structures vertically grown on the first conductive semiconductor layer through the plurality of holes, a current diffusion layer surrounding the plurality of vertical light-emitting structures on the first conductive semiconductor layer, and a dielectric reflector filling a space between the plurality of vertical light-emitting structures on the current diffusion layer.
    Type: Grant
    Filed: April 30, 2013
    Date of Patent: September 30, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Dong-hoon Lee, Geon-wook Yoo, Nam-goo Cha, Kyung-wook Hwang
  • Patent number: 8847251
    Abstract: A substrate on which LEDs are to be mounted to form an element row and which includes a first line and a second line disposed such that the element row is interposed therebetween. The first line includes a first main line portion extending mainly in the row direction of the element row, and a first connecting portion including a portion for connecting to the LEDs. The second line includes a second main line portion extending mainly in the row direction of the element row, and a second connecting portion including a portion for connecting to the LEDs. The gap between the first main line portion and the second main line portion is larger at LED mounting positions than at positions other than the LED mounting positions.
    Type: Grant
    Filed: October 18, 2012
    Date of Patent: September 30, 2014
    Assignee: Panasonic Corporation
    Inventors: Kenji Sugiura, Masumi Abe