Diffusion Into Or Out Of Group Iii-v Compound (epo) Patents (Class 257/E21.142)
  • Patent number: 8956890
    Abstract: The present invention provides a method for producing a Group III nitride semiconductor light-emitting device wherein a p-cladding layer has a uniform Mg concentration. A p-cladding layer having a superlattice structure in which AlGaN and InGaN are alternately and repeatedly deposited is formed in two stages of the former process and the latter process where the supply amount of the Mg dopant gas is different. The supply amount of the Mg dopant gas in the latter process is half or less than that in the former process. The thickness of a first p-cladding layer formed in the former process is 60% or less than that of the p-cladding layer, and 160 ? or less.
    Type: Grant
    Filed: August 15, 2013
    Date of Patent: February 17, 2015
    Assignee: Toyoda Gosei Co., Ltd.
    Inventors: Atsushi Miyazaki, Koji Okuno
  • Patent number: 8921174
    Abstract: Disclosed herein is a method for fabricating a complementary tunneling field effect transistor based on a standard CMOS IC process, which belongs to the field of logic devices and circuits of field effect transistors in ultra large scaled integrated (ULSI) circuits. In the method, an intrinsic channel and body region of a TFET are formed by means of complementary P-well and N-well masks in the standard CMOS IC process to form a well doping, a channel doping and a threshold adjustment by implantation. Further, a bipolar effect in the TFET can be inhibited via a distance between a gate and a drain on a layout so that a complementary TFET is formed. In the method according to the invention, the complementary tunneling field effect transistor (TFET) can be fabricated by virtue of existing processes in the standard CMOS IC process without any additional masks and process steps.
    Type: Grant
    Filed: June 14, 2012
    Date of Patent: December 30, 2014
    Assignee: Peking University
    Inventors: Ru Huang, Qianqian Huang, Zhan Zhan, Yingxin Qiu, Yangyuan Wang
  • Patent number: 8450130
    Abstract: Provided is a semiconductor laser, wherein (?a??w)>15 (nm) and Lt<25 (?m), where ?w is the wavelength of light corresponding to the band gap of the active layer disposed at a position within a distance of 2 ?m from one end surface in a resonator direction, ?a is the wavelength of light corresponding to the band gap of the active layer disposed at a position that is spaced a distance of equal to or more than ( 3/10)L and ?( 7/10)L from the one end surface in a resonator direction, “L” is the resonator length, and “Lt” is the length of a transition region provided between the position of the active layer with a band gap corresponding to a light wavelength of ?w+2 (nm) and the position of the active layer with a band gap corresponding to a light wavelength of ?a?2 (nm) in the resonator direction.
    Type: Grant
    Filed: June 19, 2012
    Date of Patent: May 28, 2013
    Assignee: Renesas Electronics Corporation
    Inventors: Kentaro Tada, Kenji Endo, Kazuo Fukagai, Tetsuro Okuda, Masahide Kobayashi
  • Patent number: 8012813
    Abstract: A three mask process for forming an LCD substrate includes, depositing in sequence on a base substrate a gate metallic layer, a gate insulation layer and a channel layer. A first photoresist pattern is used to form a gate electrode of a switching device, a channel pattern and a gate line on the gate electrode. A transparent conductive layer and a source metallic layer are deposited in sequence on the base substrate having the channel pattern. A source electrode and a drain electrode of the switching device, a pixel electrode and a source line electronically connected to the drain electrode, are formed by a second photoresist pattern. A first protective insulation layer is formed, and the first protective insulation layer on the pixel electrode is removed by a third photoresist pattern. Therefore, by the three masks process yields a simplified manufacturing process in which the lower portion of the source metallic pattern is not formed and display quality is improved.
    Type: Grant
    Filed: December 21, 2006
    Date of Patent: September 6, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Eun-Guk Lee
  • Patent number: 7846823
    Abstract: A masking paste used as a mask for controlling diffusion when diffusing a p-type dopant and an n-type dopant into a semiconductor substrate and forming a high-concentration p-doped region and a high concentration n-doped region is provided that contains at least a solvent, a thickening agent, and SiO2 precursor and/or a TiO2 precursor. Further, a manufacturing method of a solar cell is provided in which the masking paste is pattern-formed on the semiconductor substrate and then the p-type dopant and the n-type dopant are diffused.
    Type: Grant
    Filed: August 8, 2006
    Date of Patent: December 7, 2010
    Assignee: Sharp Kabushiki Kaisha
    Inventor: Yasushi Funakoshi
  • Patent number: 7727868
    Abstract: A method and device for reducing a dopant diffusion rate in a doped semiconductor region is provided. The methods and devices include selecting a plurality of dopant elements. Selection of a plurality of dopant elements includes selecting a first dopant element with a first atomic radius larger than a host matrix atomic radius and selecting a second dopant element with a second atomic radius smaller than a host matrix atomic radius. The methods and devices further include selecting amounts of each dopant element of the plurality of dopant elements wherein amounts and atomic radii of each of the plurality of dopant elements complement each other to reduce a host matrix lattice strain. The methods and devices further include introducing the plurality of dopant elements to a selected region of the host matrix and annealing the selected region of the host matrix.
    Type: Grant
    Filed: August 30, 2005
    Date of Patent: June 1, 2010
    Assignee: Micron Technology, Inc.
    Inventors: Paul A. Farrar, Jerome M. Eldridge
  • Patent number: 7713770
    Abstract: A method for fabricating a nitride semiconductor light emitting device, and a nitride semiconductor light emitting device fabricated thereby are provided. The method includes: forming a first conductive nitride semiconductor layer on a substrate; forming an active layer on the first conductive nitride semiconductor layer; forming a second conductive nitride semiconductor layer on the active layer; and lowering a temperature while adding oxygen to the result by performing a thermal process.
    Type: Grant
    Filed: September 27, 2006
    Date of Patent: May 11, 2010
    Assignee: LG Innotek Co., Ltd.
    Inventor: Dae Sung Kang
  • Patent number: 7611977
    Abstract: This invention discloses a process of phosphorus diffusion for manufacturing solar cell, comprising annealing a mono-crystalline silicon wafer in a nitrogen atmosphere at 900-950° C. for twenty to thirty minutes, carrying oxidation treatment in a hydrogen chloride atmosphere at 850-1050° C. to form a 10 to 30 nm thick oxide layer on the surface of said silicon wafer, diffusing from a phosphorus source at 850-900° C., until a block resistance of a material surface is controlled at 40 to 50 ohms, and the junction depth is at 0.2 to 1.0 microns, and annealing in a nitrogen atmosphere at 700-750° C. for thirty to sixty minutes to complete the phosphorus diffusion of said mono-crystalline silicon wafer. This invention allows the use of 4 N˜5 N mono-crystalline silicon as the material for manufacturing solar cells, so, the low purity material such as metallurgical silicon can be used, which greatly reduces the cost of materials.
    Type: Grant
    Filed: October 3, 2008
    Date of Patent: November 3, 2009
    Assignee: CSI Cells Co. Ltd.
    Inventors: Lingjun Zhang, Yunxiang Zuo
  • Patent number: 7439609
    Abstract: An improved p-type gallium nitride-based semiconductor device is disclosed. The device includes a structure with at least one p-type Group III nitride layer that includes some gallium, a first silicon dioxide layer on the p-type layer, a layer of a Group II metal source composition on the first SiO2layer, and a second SiO2 layer on the Group II metal source composition layer.
    Type: Grant
    Filed: March 29, 2004
    Date of Patent: October 21, 2008
    Assignee: Cree, Inc.
    Inventor: Gerald H. Negley
  • Publication number: 20080014671
    Abstract: There are provided preflow periods t11, t12 in which group III element materials TMG, TMA and TMI are not supplied from a group III element material container to a reaction region (reactor), while a group V element material PH3 and an Mg dopant material are supplied from a group V element material container and a dopant material container to the reaction region (reactor) after an Mg-undoped group III-V compound semiconductor layer is crystallinically grown and before an Mg-doped group III-V compound semiconductor layer is crystallinically grown. According to the semiconductor manufacturing method, an Mg doping profile can be accurately controlled.
    Type: Application
    Filed: July 9, 2007
    Publication date: January 17, 2008
    Applicant: SHARP KABUSHIKI KAISHA
    Inventors: Kei Yamamoto, Junichi Nakamura
  • Patent number: 7303967
    Abstract: Disclosed is a method for fabricating a transistor of a semiconductor device, the method comprising the steps of: providing a semiconductor; forming a gate electrode; performing a low-density ion implantation process with respect to the substrate, thereby forming an LDD ion implantation layer; forming an insulation spacer on a sidewall of the gate electrode; forming a diffusion barrier; performing a high-density ion implantation process with respect to the substrate, thereby forming a source/drain; performing a first thermal treatment process with respect to a resultant structure, so as to activate impurities in the source/drain, and simultaneously causing a diffusion velocity of the impurities in the source/drain to be reduced by the diffusion barrier; and forming a salicide layer.
    Type: Grant
    Filed: June 23, 2004
    Date of Patent: December 4, 2007
    Assignee: Hynix Semiconductor Inc.
    Inventor: Seung Hoon Sa
  • Publication number: 20070020896
    Abstract: A semiconductor device has an active region composed of a group III-V nitride semiconductor and ohmic electrodes and a gate electrode each formed on the active region. The active region has an entire surface thereof exposed to a plasma such that a surface potential for electrons therein is lower than in the case where the entire surface is not exposed to the plasma.
    Type: Application
    Filed: September 27, 2006
    Publication date: January 25, 2007
    Applicant: Matsushita Electric Industrial Co., Ltd.
    Inventors: Kaoru Inoue, Yoshito Ikeda, Yutaka Hirose, Katsunori Nishii