Diffusion Of Impurity Material, E.g., Doping Material, Electrode Material, Into Or Out Of A Semiconductor Body, Or Between Semiconductor Regions; Interactions Between Two Or More Impurities; Redistribution Of Impurities (epo) Patents (Class 257/E21.135)
  • Patent number: 11961773
    Abstract: A method of etching into a one or more epitaxial layers of respective semiconductor material(s) in a vertical cavity surface emitting laser (VCSEL) semiconductor structure, wherein the or each semiconductor material is a III-V semiconductor material, a III-N semiconductor material, or a II-VI semiconductor material is disclosed. The method comprises placing a substrate having the semiconductor structure thereon onto a support table in a plasma processing chamber, the semiconductor structure carrying a patterned mask on the surface of the semiconductor structure distal from the support table.
    Type: Grant
    Filed: July 17, 2019
    Date of Patent: April 16, 2024
    Inventors: Ligang Deng, Katie Hore
  • Patent number: 11843045
    Abstract: A chip includes a semiconductor body coupled to a first and a second load terminal. The semiconductor body includes an active region including a plurality of breakthrough cells, each of the breakthrough cells includes: an insulation structure; a drift region; an anode region, the anode region being electrically connected to the first load terminal and disposed in contact with the first load terminal; a first barrier region arranged in contact with each of the anode region and the insulation structure, where the first barrier region of the plurality of breakthrough cells forms a contiguous semiconductor layer; a second barrier region separating each of the anode region and at least a part of the first barrier region from the drift region; and a doped contact region arranged in contact with the second load terminal, where the drift region is positioned between the second barrier region and the doped contact region.
    Type: Grant
    Filed: August 28, 2020
    Date of Patent: December 12, 2023
    Assignee: Infineon Technologies Austria AG
    Inventors: Markus Beninger-Bina, Thomas Basler, Matteo Dainese, Hans-Joachim Schulze
  • Patent number: 11804707
    Abstract: A system-in-package includes a function circuit and a protection circuit that protects the function circuit by preventing an instantaneous transient voltage from being applied to the function circuit. Here, the protection circuit includes a TVS diode and a capacitor. The TVS diode includes an anode that receives a ground voltage and a cathode that is connected to a first external connection terminal. The capacitor includes a first terminal that is connected to a second external connection terminal electrically separated from the first external connection terminal and a second terminal that receives the ground voltage.
    Type: Grant
    Filed: May 14, 2021
    Date of Patent: October 31, 2023
    Assignee: Samsung Display Co., Ltd.
    Inventors: Wijin Nam, Seunghwan Cheong
  • Patent number: 11784279
    Abstract: There are provided a method for producing a photovoltaic element with stabilised efficiency, and a device which may be used to carry out the method, for example in the form of a specially adapted continuous furnace. A silicon substrate to be provided with an emitter layer and electrical contacts is thereby subjected to a stabilisation treatment step. In that step, hydrogen, for example from a hydrogenated silicon nitride layer, is introduced into the silicon substrate, for example within a zone (2) of maximum temperature. The silicon substrate may then purposively be cooled rapidly in a zone (3) in order to avoid hydrogen effusion. The silicon substrate may then purposively be maintained, for example in a zone (4), within a temperature range of from 230° C. to 450° C. for a period of, for example, at least 10 seconds. The previously introduced hydrogen may thereby assume an advantageous bond state.
    Type: Grant
    Filed: October 22, 2020
    Date of Patent: October 10, 2023
    Assignee: UNIVERSITÄT KONSTANZ
    Inventors: Axel Herguth, Svenja Wilking
  • Patent number: 11756791
    Abstract: According to one embodiment, a semiconductor device includes first and second electrodes, first, fourth, and sixth semiconductor regions of a first conductivity type, a junction region, a fifth semiconductor region of a second conductivity type, and a gate electrode. The junction region includes a second semiconductor region of the first conductivity type and a third second semiconductor region of the second conductivity type. The second semiconductor regions and the third semiconductor regions are alternately provided in a second direction perpendicular to a first direction. A concentration of at least one first element selected from the group consisting of a heavy metal element and a proton in the junction region is greater a concentration of the first element in the fourth semiconductor region, or a density of traps in the junction region is greater than that in the first semiconductor region and greater than that in the fourth semiconductor region.
    Type: Grant
    Filed: September 10, 2020
    Date of Patent: September 12, 2023
    Assignees: Kabushiki Kaisha Toshiba, Toshiba Electronic Devices & Storage Corporation
    Inventors: Shingo Sato, Yuhki Fujino, Hiroaki Yamashita
  • Patent number: 11749671
    Abstract: The disclosure provides integrated circuit (IC) structures and methods to form the same. Methods according to the disclosure may be performed on a substrate having a first doping type, the substrate extending between a first end and a second end. A deep well is formed within the substrate, the deep well including a well boundary defined between the deep well and a remainder of the substrate. The well boundary is horizontally distal to a midpoint between the first end and the second end of the substrate. A first active semiconductor region is formed at least partially over the substrate, and an oppositely-doped second active semiconductor region is formed at least partially over the deep well.
    Type: Grant
    Filed: October 9, 2020
    Date of Patent: September 5, 2023
    Assignee: GlobalFoundries U.S. Inc.
    Inventors: Kaustubh Shanbhag, Glenn Workman
  • Patent number: 11728446
    Abstract: Embodiments of the present disclosure provide a solar cell and a solar cell module. The solar cell includes a first region and a second region, and further includes a substrate having a first surface and a second surface; a tunneling layer covering the second surface; a first emitter disposed on part of the tunneling layer in the first region; and a second emitter disposed on part of the tunneling layer in the second region and on the first emitter, a conductivity type of the second emitter being different from a conductivity type of the first emitter. The solar cell further includes a first electrode disposed in the first region and configured to electrically connect with the first emitter by penetrating through the second emitter; and a second electrode disposed in the second region and configured to electrically connect with the second emitter.
    Type: Grant
    Filed: July 30, 2021
    Date of Patent: August 15, 2023
    Assignees: Jinko Green Energy (Shanghai) Management Co., LTD., ZHEJIANG JINKO SOLAR CO., LTD.
    Inventors: Menglei Xu, Jie Yang, Xinyu Zhang, Hao Jin
  • Patent number: 11670693
    Abstract: In a general aspect, a field-effect transistor (FET) can include a semiconductor region, and a trench disposed in the semiconductor region. The FET can also include a trench gate disposed in an upper portion of the trench in an active region of the FET. The FET can further include a conductive runner disposed in a bottom portion of the trench. The conductive runner can be electrically coupled with a drain terminal of the FET. A portion of the conductive runner can be disposed in the active region below the trench gate.
    Type: Grant
    Filed: January 28, 2021
    Date of Patent: June 6, 2023
    Assignee: SEMICONDUCTOR COMPONENTS INDUSTRIES, LLC
    Inventor: Mitsuru Soma
  • Patent number: 11581398
    Abstract: After finishing of the front side CMOS manufacturing process, the silicon wafer is permanently bonded with its front side onto a carrier wafer. The carrier wafer is a high resistivity silicon wafer or a wafer of a dielectric or of a ceramic material. The silicon substrate of the device wafer is thinned from the back side such that the remaining silicon thickness is only a few micrometers. In the area dedicated to a spiral inductor, the substrate material is entirely removed by a masked etching process and the resulting gap is filled with a dielectric material. A spiral inductor coil is formed on the backside of the wafer on top of the dielectric material. The inductor coil is connected to the CMOS circuits on the front side by through-silicon vias.
    Type: Grant
    Filed: September 6, 2019
    Date of Patent: February 14, 2023
    Inventors: Carsten Schmidt, Gerhard Spitzlsperger
  • Patent number: 11482634
    Abstract: Embodiments of the present disclosure provide a photovoltaic cell, a method for manufacturing the photovoltaic cell, and a photovoltaic module. The photovoltaic cell includes a substrate, and an emitter and a first passivation structure that are located on a first surface of the substrate, where the emitter is located between the substrate and the first passivation structure; a first electrode, penetrating through the first passivation structure and being in contact with the emitter; and a first eutectic, located between the first electrode and the emitter, where the first eutectic includes a material of the first electrode and a material of the emitter, and a part of the first electrode penetrates through the first eutectic and is in contact with the emitter.
    Type: Grant
    Filed: May 19, 2021
    Date of Patent: October 25, 2022
    Assignees: ZHEJIANG JINKO SOLAR CO., LTD., JINKO SOLAR CO., LTD.
    Inventors: Bike Zhang, Xinyu Zhang, Jingsheng Jin
  • Patent number: 10276691
    Abstract: Doping techniques for fin-like field effect transistors (FinFETs) are disclosed herein. An exemplary method includes forming a fin structure, forming a doped amorphous layer over a portion of the fin structure, and performing a knock-on implantation process to drive a dopant from the doped amorphous layer into the portion of the fin structure, thereby forming a doped feature. The doped amorphous layer includes a non-crystalline form of a material. In some implementations, the knock-on implantation process crystallizes at least a portion of the doped amorphous layer, such that the portion of the doped amorphous layer becomes a part of the fin structure. In some implementations, the doped amorphous layer includes amorphous silicon, and the knock-on implantation process crystallizes a portion of the doped amorphous silicon layer.
    Type: Grant
    Filed: July 19, 2017
    Date of Patent: April 30, 2019
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Sai-Hooi Yeong, Sheng-Chen Wang, Bo-Yu Lai, Ziwei Fang, Feng-Cheng Yang, Yen-Ming Chen
  • Patent number: 10211336
    Abstract: LDMOS transistor structures and integrated circuits including LDMOS transistor structures are provided. An exemplary integrated circuit including an LDMOS transistor structure includes a substrate including a first region and a second region. The substrate includes a bulk layer and, in the second region, an insulator layer overlying the bulk layer and a semiconductor layer overlying the insulator layer. The integrated circuit further includes a gate structure overlying the semiconductor layer. A channel region is formed in the semiconductor layer under the gate structure. The integrated circuit also includes a well contact region on the bulk layer in the first region, a source region overlying the substrate, and a drain region overlying the substrate. A drift region is located between the drain region and the gate structure.
    Type: Grant
    Filed: October 16, 2017
    Date of Patent: February 19, 2019
    Assignee: GLOBALFOUNDRIES SINGAPORE PTE. LTD.
    Inventors: Ming Zhu, Shi Ya Phyllis Lim, Pinghui Li, Yiang Aun Nga
  • Patent number: 10167362
    Abstract: A method of fabricating an organic field effect transistor (OFET), including forming a source contact, a drain contact, and a gate connection to a channel comprising semiconducting polymers, wherein the gate connection applies a field to the semiconductor polymers across a dielectric layer to modulate conduction along the semiconducting polymers between the source contact and the drain contact; and treating the semiconducting polymers, wherein the treating includes a chemical treatment that controls a carrier density, carrier mobility, threshold voltage, and/or contact resistance of the OFET.
    Type: Grant
    Filed: September 2, 2016
    Date of Patent: January 1, 2019
    Assignee: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Byoung Hoon Lee, Alan J. Heeger
  • Patent number: 10050148
    Abstract: A semiconductor device includes a substrate, at least one semiconductor fin, and at least one epitaxy structure. The semiconductor fin is present on the substrate. The semiconductor fin has at least one recess thereon. The epitaxy structure is present in the recess of the semiconductor fin. A topmost location of the epitaxy structure has an n-type impurity concentration lower than an n-type impurity concentration of a location of the epitaxy structure below the topmost location.
    Type: Grant
    Filed: May 8, 2017
    Date of Patent: August 14, 2018
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chia-Ming Chang, Chi-Wen Liu, Hsin-Chieh Huang, Cheng-Chien Li
  • Patent number: 9865614
    Abstract: According to one embodiment, a semiconductor device includes a stacked body and a columnar portion. The stacked body includes a plurality of electrode layers stacked with an insulator between the electrode layers. The columnar portion includes a semiconductor body extending in the stacked body in a stacking direction of the stacked body, and a charge storage film provided between the semiconductor body and the electrode layers. The columnar portion includes a first portion with a first diameter, and a second portion with a second diameter smaller than the first diameter. The first portion has a higher concentration of an impurity than a concentration of the impurity of the second portion. The impurity contains at least one of boron, arsenic, and phosphorus.
    Type: Grant
    Filed: August 18, 2015
    Date of Patent: January 9, 2018
    Assignee: TOSHIBA MEMORY CORPORATION
    Inventor: Takeshi Kamigaichi
  • Patent number: 9685514
    Abstract: A semiconductor device comprises a semiconductor substrate; a channel layer of at least one III-V semiconductor compound above the semiconductor substrate; a gate electrode above a first portion of the channel layer; a source region and a drain region above a second portion of the channel layer; and a dopant layer comprising at least one dopant contacting the second portion of the channel layer.
    Type: Grant
    Filed: October 29, 2015
    Date of Patent: June 20, 2017
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Richard Kenneth Oxland, Mark van Dal
  • Patent number: 9551562
    Abstract: In a method for determining absolute position of a mobile element in reference to two magneto-sensitive sensors, having a source of a magnetic field fastened to the element, a first sensor signal and a second sensor signal are measured with one magneto-sensitive sensor each. An amplitude ratio of the respective sensor signals and the off-set values about the respective zero point of the sensor signals are determined from the minimum and maximum values of the sensor signals, and from these values, scaled sensor signals are calculated that form a sum signal and a difference signal, which are scaled, with the determination of the minimum and the maximum values occurring by a relative movement of the element over a full range of motion, and an absolute position is calculated via the scaled sum signal and the scaled difference signal.
    Type: Grant
    Filed: September 14, 2011
    Date of Patent: January 24, 2017
    Assignee: IDT EUROPE GmbH
    Inventor: Josef Janisch
  • Patent number: 9496271
    Abstract: A 3D IC based system, including: a first layer including first transistors; a second layer overlying the first layer, the second layer includes a plurality of second transistors, where the second layer includes at least one through second layer via having a diameter of less than 400 nm, and where at least one of the plurality of second transistors forms a two stable state memory cell including a back-bias region.
    Type: Grant
    Filed: October 3, 2014
    Date of Patent: November 15, 2016
    Assignee: MONOLITHIC 3D INC.
    Inventors: Zvi Or-Bach, Yuniarto Widjaja
  • Patent number: 9040400
    Abstract: In connection with various example embodiments, an organic electronic device is provided with an organic material that is susceptible to decreased mobility due to the trapping of electron charge carriers in response to exposure to air. The organic material is doped with an n-type dopant that, when combined with the organic material, effects air stability for the doped organic material (e.g., exhibits a mobility that facilitates stable operation in air, such as may be similar to operation in inert environments). Other embodiments are directed to organic electronic devices n-doped and exhibiting such air stability.
    Type: Grant
    Filed: April 5, 2011
    Date of Patent: May 26, 2015
    Inventors: Peng Wei, Zhenan Bao, Joon Hak Oh
  • Patent number: 9012882
    Abstract: A graphene nanomesh includes a sheet of graphene having a plurality of periodically arranged apertures, wherein the plurality of apertures have a substantially uniform periodicity and substantially uniform neck width. The graphene nanomesh can open up a large band gap in a sheet of graphene to create a semiconducting thin film. The periodicity and neck width of the apertures formed in the graphene nanomesh may be tuned to alter the electrical properties of the graphene nanomesh. The graphene nanomesh is prepared with block copolymer lithography. Graphene nanomesh field-effect transistors (FETs) can support currents nearly 100 times greater than individual graphene nanoribbon devices and the on-off ratio, which is comparable with values achieved in nanoribbon devices, can be tuned by varying the neck width. The graphene nanomesh may also be incorporated into FET-type sensor devices.
    Type: Grant
    Filed: January 28, 2011
    Date of Patent: April 21, 2015
    Assignee: The Regents of the University of California
    Inventors: Xiangfeng Duan, Yu Huang, Jingwei Bai
  • Patent number: 8993426
    Abstract: The invention provides a semiconductor device with a junction termination extension structure on a mesa and a method of fabricating the same. The device comprises: a type-I semiconductor substrate having a first surface and a second surface; a type-I epitaxial layer disposed on the first surface; at least one depression disposed on the type-I epitaxial layer; a mesa-type junction termination extension structure surrounding the at least one depression wherein the mesa-type junction termination extension structure is of type-II; and at least one semiconductor component formed one the depression.
    Type: Grant
    Filed: January 11, 2013
    Date of Patent: March 31, 2015
    Inventor: Chii-Wen Jiang
  • Patent number: 8962381
    Abstract: A method for manufacturing a solar cell from a p-doped or n-doped silicon substrate having a first main surface used as an incident-light side and a second main surface used as a back side includes: depositing a thin layer onto the second main surface; depositing a dielectric, glass-forming paste onto the second main surface and drying it, in order to cover the thin layer; heating and/or sintering the paste on the second main surface at temperatures greater than app. 577° C., to produce an aluminum dopant layer in the second main surface; and removing the glass layer formed during the heating and/or sintering, as well as an aluminum-silicon eutectic layer formed during the heating and/or sintering, from the second main surface.
    Type: Grant
    Filed: February 21, 2011
    Date of Patent: February 24, 2015
    Assignee: Robert Bosch GmbH
    Inventor: Hans-Joachim Krokoszinski
  • Patent number: 8951878
    Abstract: It is an object of the present invention to provide a method for manufacturing an SOI substrate having an SOI layer that can be used in practical applications with high yield even when a flexible substrate such as a glass substrate or a plastic substrate is used. Further, it is another object of the present invention to provide a method for manufacturing a thin semiconductor device using such an SOI substrate with high yield. When a single-crystal semiconductor substrate is bonded to a flexible substrate having an insulating surface and the single-crystal semiconductor substrate is separated to manufacture an SOI substrate, one or both of bonding surfaces are activated, and then the flexible substrate having an insulating surface and the single-crystal semiconductor substrate are attached to each other.
    Type: Grant
    Filed: December 5, 2013
    Date of Patent: February 10, 2015
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Yasuhiro Jinbo, Hironobu Shoji, Hideto Ohnuma, Shunpei Yamazaki
  • Patent number: 8946068
    Abstract: A semiconductor device and a method of fabricating a semiconductor device are disclosed. Embodiments of the invention use a photosensitive self-assembled monolayer to pattern the surface of a substrate into hydrophilic and hydrophobic regions, and an aqueous (or alcohol) solution of a dopant compound is deposited on the substrate surface. The dopant compound only adheres on the hydrophilic regions. After deposition, the substrate is coated with a very thin layer of oxide to cap the compounds, and the substrate is annealed at high temperatures to diffuse the dopant atoms into the silicon and to activate the dopant. In one embodiment, the method comprises providing a semiconductor substrate including an oxide surface, patterning said surface into hydrophobic and hydrophilic regions, depositing a compound including a dopant on the substrate, wherein the dopant adheres to the hydrophilic region, and diffusing the dopant into the oxide surface of the substrate.
    Type: Grant
    Filed: August 15, 2013
    Date of Patent: February 3, 2015
    Assignee: International Business Machines Corporation
    Inventors: Ali Afzali-Ardakani, Devendra Sadana, Lidija Sekaric
  • Patent number: 8928030
    Abstract: An A-NPC circuit is configured so that the intermediate potential of two connected IGBTs is clamped by a bidirectional switch including two RB-IGBTs. Control is applied to the turn-on di/dt of the IGBTs during the reverse recovery of the RB-IGBTs. The carrier life time of an n? drift region in each RB-IGBT constituting the bidirectional switch is comparatively longer than that in a typical NPT structure device. A low life time region is also provided in the interface between the n? drift region and a p collector region, and extends between the n? drift region and the p collector region. Thus, it is possible to provide a low-loss semiconductor device, a method for manufacturing the semiconductor device and a method for controlling the semiconductor device, in which the reverse recovery loss is reduced while the reverse recovery current peak and the jump voltage peak during reverse recovery are suppressed.
    Type: Grant
    Filed: April 15, 2013
    Date of Patent: January 6, 2015
    Assignee: Fuji Electric Co., Ltd.
    Inventor: Hong-fei Lu
  • Patent number: 8921174
    Abstract: Disclosed herein is a method for fabricating a complementary tunneling field effect transistor based on a standard CMOS IC process, which belongs to the field of logic devices and circuits of field effect transistors in ultra large scaled integrated (ULSI) circuits. In the method, an intrinsic channel and body region of a TFET are formed by means of complementary P-well and N-well masks in the standard CMOS IC process to form a well doping, a channel doping and a threshold adjustment by implantation. Further, a bipolar effect in the TFET can be inhibited via a distance between a gate and a drain on a layout so that a complementary TFET is formed. In the method according to the invention, the complementary tunneling field effect transistor (TFET) can be fabricated by virtue of existing processes in the standard CMOS IC process without any additional masks and process steps.
    Type: Grant
    Filed: June 14, 2012
    Date of Patent: December 30, 2014
    Assignee: Peking University
    Inventors: Ru Huang, Qianqian Huang, Zhan Zhan, Yingxin Qiu, Yangyuan Wang
  • Patent number: 8912083
    Abstract: The use of doped silicon nanoparticle inks and other liquid dopant sources can provide suitable dopant sources for driving dopant elements into a crystalline silicon substrate using a thermal process if a suitable cap is provided. Suitable caps include, for example, a capping slab, a cover that may or may not rest on the surface of the substrate and a cover layer. Desirable dopant profiled can be achieved. The doped nanoparticles can be delivered using a silicon ink. The residual silicon ink can be removed after the dopant drive-in or at least partially densified into a silicon material that is incorporated into the product device. The silicon doping is suitable for the introduction of dopants into crystalline silicon for the formation of solar cells.
    Type: Grant
    Filed: May 23, 2011
    Date of Patent: December 16, 2014
    Assignee: NanoGram Corporation
    Inventors: Guojun Liu, Uma Srinivasan, Shivkumar Chiruvolu
  • Patent number: 8907419
    Abstract: A laterally double diffused metal oxide semiconductor device includes a well region having a first conductivity, a first carrier redistribution region having the first conductivity type, wherein the second well region is under the well region, and a highly doped buried layer under the second well region. The highly doped buried layer has the first conductivity type and has a dopant concentration less than that of the well region and less than that of the first carrier redistribution region, and the buried layer is tied to the first well region. In addition, a method for forming the laterally double diffused metal oxide semiconductor device, which may use epitaxial growth, is disclosed.
    Type: Grant
    Filed: September 13, 2012
    Date of Patent: December 9, 2014
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Tahir A. Khan, Vishnu K. Khemka, Ronghua Zhu
  • Patent number: 8906771
    Abstract: Some embodiments include methods of forming isolation structures. A semiconductor base may be provided to have a crystalline semiconductor material projection between a pair of openings. SOD material (such as, for example, polysilazane) may be flowed within said openings to fill the openings. After the openings are filled with the SOD material, one or more dopant species may be implanted into the projection to amorphize the crystalline semiconductor material within an upper portion of said projection. The SOD material may then be annealed at a temperature of at least about 400° C. to form isolation structures. Some embodiments include semiconductor constructions that include a semiconductor material base having a projection between a pair of openings. The projection may have an upper region over a lower region, with the upper region being at least 75% amorphous, and with the lower region being entirely crystalline.
    Type: Grant
    Filed: September 4, 2012
    Date of Patent: December 9, 2014
    Assignee: Micron Technology, Inc.
    Inventors: Vladimir Mikhalev, Jim Fulford, Yongjun Jeff Hu, Gordon A. Haller, Lequn Liu
  • Patent number: 8906774
    Abstract: Compositions and methods for doping silicon substrates by treating the substrate with a diluted dopant solution comprising tetraethylene glycol dimethyl ether (tetraglyme) and a dopant-containing material and subsequently diffusing the dopant into the surface by rapid thermal annealing. Diethyl-1-propylphosphonate and allylboronic acid pinacol ester are preferred dopant-containing materials, and are preferably included in the diluted dopant solution in an amount ranging from about 1% to about 20%, with a dopant amount of 4% or less being more preferred.
    Type: Grant
    Filed: March 8, 2011
    Date of Patent: December 9, 2014
    Assignee: Dynaloy, LLC
    Inventors: Kimberly Dona Pollard, Allison C. Rector
  • Patent number: 8900975
    Abstract: A pair of electrode plates can be provided by directional deposition and patterning of a conductive material on sidewalls of a template structure on a first dielectric layer. An electrode line straddling the center portion is formed. A dielectric spacer and a conformal conductive layer are subsequently formed. Peripheral electrodes laterally spaced from the electrode line are formed by pattering the conformal conductive layer. After deposition of a second dielectric material layer that encapsulates the template structure, the template structure is removed to provide a cavity that passes through the pair of electrode plates, the electrode line, and the peripheral electrodes. A nanoscale sensor thus formed can electrically characterize a nanoscale string by passing the nanoscale string through the cavity while electrical measurements are performed employing the various electrodes.
    Type: Grant
    Filed: January 3, 2013
    Date of Patent: December 2, 2014
    Assignee: International Business Machines Corporation
    Inventors: Josephine B. Chang, Michael A. Guillorn, Eric A. Joseph, Satyavolu S. Papa Rao
  • Patent number: 8900980
    Abstract: MOSFET transistors having localized stressors for improving carrier mobility are provided. Embodiments of the invention comprise a gate electrode formed over a substrate, a carrier channel region in the substrate under the gate electrode, and source/drain regions on either side of the carrier channel region. The source/drain regions include an embedded stressor having a lattice constant different from the substrate. In a preferred embodiment, the substrate is silicon and the embedded stressor is SiGe. Implanting a portion of the source/drain regions with Ge forms the embedded stressor. Implanting carbon into the source/drain regions and annealing the substrate after implanting the carbon suppresses dislocation formation, thereby improving device performance.
    Type: Grant
    Filed: February 24, 2006
    Date of Patent: December 2, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chih-Hao Wang, Shih-Hsieng Huang, Ta-Wei Wang
  • Patent number: 8895420
    Abstract: A semiconductive device is fabricated by forming, within a semiconductive substrate, at least one continuous region formed of a material having a non-uniform composition in a direction substantially perpendicular to the thickness of the substrate.
    Type: Grant
    Filed: September 27, 2013
    Date of Patent: November 25, 2014
    Assignees: STMicroelectronics (Crolles 2) SAS, STMicroelectronics SA
    Inventors: Daniel-Camille Bensahel, Yves Morand
  • Patent number: 8877620
    Abstract: A method for forming ultra-shallow dopant regions in a substrate is provided. One embodiment includes depositing a first dopant layer containing a first dopant in direct contact with the substrate, patterning the first dopant layer, depositing a second dopant layer containing a second dopant in direct contact with the substrate adjacent the patterned first dopant layer, the first and second dopant layers containing an oxide, a nitride, or an oxynitride, where the first and second dopant layers contain an n-type dopant or a p-type dopant with the proviso that the first or second dopant layer do not contain the same dopant, and diffusing the first dopant from the first dopant layer into the substrate to form a first ultra-shallow dopant region in the substrate, and diffusing the second dopant from the second dopant layer into the substrate to form a second ultra-shallow dopant region in the substrate.
    Type: Grant
    Filed: October 29, 2013
    Date of Patent: November 4, 2014
    Assignee: Tokyo Electron Limited
    Inventor: Robert D. Clark
  • Patent number: 8846508
    Abstract: Methods to implant ions into the sidewall of a three dimensional high aspect ratio feature, such as a trench or via, are disclosed. The methods utilize a phenomenon known as knock-in, which causes a first species of ions, already disposed in the fill material, to become implanted in the sidewall when these ions are struck by ions of a second species being implanted into the fill material. In some embodiments, these first species and second species have similar masses to facilitate knock-in. In some embodiments, the entire hole is not completely filled with fill material. Rather, some fill material is deposited, an ion implant is performed to cause knock-in to the sidewall adjacent to the deposited fill material, and the process is repeated until the hole is filled.
    Type: Grant
    Filed: July 15, 2013
    Date of Patent: September 30, 2014
    Assignee: Varian Semiconductor Equipment Associates, Inc.
    Inventors: Jonathan Gerald England, Andrew M. Waite, Simon Ruffell
  • Patent number: 8835290
    Abstract: Compositions and methods for doping silicon substrates by treating the substrate with a diluted dopant solution comprising tetraethylene glycol dimethyl ether (tetraglyme) and a dopant-containing material and subsequently diffusing the dopant into the surface by rapid thermal annealing. Diethyl-1-propylphosphonate and allylboronic acid pinacol ester are preferred dopant-containing materials, and are preferably included in the diluted dopant solution in an amount ranging from about 1% to about 20%, with a dopant amount of 4% or less being more preferred.
    Type: Grant
    Filed: May 2, 2013
    Date of Patent: September 16, 2014
    Assignee: Dynaloy, LLC
    Inventors: Kimberly Dona Pollard, Allison C. Tonk
  • Patent number: 8828776
    Abstract: Multi-zone, solar cell diffusion furnaces having a plurality of radiant element (SiC) or/and high intensity IR lamp heated process zones, including baffle, ramp-up, firing, soaking and cooling zone(s). The transport of solar cell wafers, e.g., silicon, selenium, germanium or gallium-based solar cell wafers, through the furnace is implemented by use of an ultra low-mass, wafer transport system comprising laterally spaced shielded, synchronously driven, metal bands or chains carrying non-rotating alumina tubes suspended on wires between them. The wafers rest on raised circumferential standoffs spaced laterally along the alumina tubes, which reduces contamination. The high intensity IR flux rapidly photo-radiation conditions the wafers so that diffusion occurs >3× faster than conventional high-mass thermal furnaces. Longitudinal side wall heaters comprising coil heaters in Inconel sheaths inserted in carrier tubes are employed to insure even heating of wafer edges adjacent the side walls.
    Type: Grant
    Filed: July 2, 2012
    Date of Patent: September 9, 2014
    Assignee: TP Solar, Inc.
    Inventors: Richard W. Parks, Luis Alejandro Rey Garcia, Peter G. Ragay
  • Patent number: 8815723
    Abstract: A method of forming an image sensor device includes forming a light sensing region at a front surface of a silicon substrate and a patterned metal layer there over. Thereafter, the method also includes performing an ion implantation process to the back surface of the silicon substrate and performing a green laser annealing process to the implanted back surface of the silicon substrate. The green laser annealing process uses an annealing temperature greater than or equal to about 1100° C. for a duration of about 100 to about 400 nsec. After performing the green laser annealing process, a silicon polishing process is performed on the back surface of the silicon substrate.
    Type: Grant
    Filed: December 22, 2011
    Date of Patent: August 26, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Shou Shu Lu, Hsun-Ying Huang, I-Chang Lin, Chia-Chi Hsiao, Yung-Cheng Chang
  • Patent number: 8816448
    Abstract: A semiconductor device including a semiconductor substrate, an interface layer formed on the semiconductor substrate including at least 1×1020 atoms/cm3 of S (Sulfur), a metal-semiconductor compound layer formed on the interface layer, the metal-semiconductor compound layer including at least 1×1020 atoms/cm3 of S in the its whole depth, and a metal electrode formed on the metal-semiconductor compound layer.
    Type: Grant
    Filed: October 30, 2009
    Date of Patent: August 26, 2014
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Yoshifumi Nishi, Atsuhiro Kinoshita
  • Patent number: 8796131
    Abstract: An ion implantation system and method, providing cooling of dopant gas in the dopant gas feed line, to combat heating and decomposition of the dopant gas by arc chamber heat generation, e.g., using boron source materials such as B2F4 or other alternatives to BF3. Various arc chamber thermal management arrangements are described, as well as modification of plasma properties, specific flow arrangements, cleaning processes, power management, eqillibrium shifting, optimization of extraction optics, detection of deposits in flow passages, and source life optimization, to achieve efficient operation of the ion implantation system.
    Type: Grant
    Filed: October 25, 2010
    Date of Patent: August 5, 2014
    Assignee: Advanced Technology Materials, Inc.
    Inventors: Edward E. Jones, Sharad N. Yedave, Ying Tang, Barry Lewis Chambers, Robert Kaim, Joseph D. Sweeney, Oleg Byl, Peng Zou
  • Patent number: 8772141
    Abstract: A method for doping a graphene or nanotube thin-film field-effect transistor device to improve electronic mobility. The method includes selectively applying a dopant to a channel region of a graphene or nanotube thin-film field-effect transistor device to improve electronic mobility of the field-effect transistor device.
    Type: Grant
    Filed: September 26, 2012
    Date of Patent: July 8, 2014
    Assignee: International Business Machines Corporation
    Inventors: Ali Afzali-Ardakani, Bhupesh Chandra, George Stojan Tulevski
  • Patent number: 8772173
    Abstract: A method of manufacturing a semiconductor device includes providing a substrate having a gate structure, a source region, and a drain region formed thereon, and the gate structure includes a gate insulating layer and a gate electrode. The method also includes forming a first stress layer on the substrate, removing the first stress layer, and forming a second stress layer on the substrate.
    Type: Grant
    Filed: May 1, 2012
    Date of Patent: July 8, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Hyun-kwan Yu, Dong-suk Shin, Pan-kwi Park, Ki-eun Kim
  • Patent number: 8772910
    Abstract: A method and an apparatus for doping a graphene or nanotube thin-film field-effect transistor device to improve electronic mobility. The method includes selectively applying a dopant to a channel region of a graphene or nanotube thin-film field-effect transistor device to improve electronic mobility of the field-effect transistor device.
    Type: Grant
    Filed: November 29, 2011
    Date of Patent: July 8, 2014
    Assignee: International Business Machines Corporation
    Inventors: Ali Afzali-Ardakani, Bhupesh Chandra, George Stojan Tulevski
  • Patent number: 8748236
    Abstract: A method for manufacturing a semiconductor device includes irradiating light to an effective region of a semiconductor substrate. A wavelength of the light is a wavelength adapted so that light absorptance of the semiconductor substrate increases if an intensity of the light increases. The light is irradiated so that a focus point of the light is made within the semiconductor substrate in the irradiating.
    Type: Grant
    Filed: November 10, 2010
    Date of Patent: June 10, 2014
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Atsushi Tanida
  • Patent number: 8722481
    Abstract: When forming high-k metal gate electrode structures in a semiconductor device on the basis of a basic transistor design, undue exposure of sensitive materials at end portions of the gate electrode structures of N-channel transistors may be avoided, for instance, prior to and upon incorporating a strain-inducing semiconductor material into the active region of P-channel transistors, thereby contributing to superior production yield for predefined transistor characteristics and performance.
    Type: Grant
    Filed: June 4, 2013
    Date of Patent: May 13, 2014
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Stephan-Detlef Kronholz, Peter Javorka, Maciej Wiatr
  • Publication number: 20140117529
    Abstract: Some embodiments include methods of forming electrically conductive lines. Photoresist features are formed over a substrate, with at least one of the photoresist features having a narrowed region. The photoresist features are trimmed, which punches through the narrowed region to form a gap. Spacers are formed along sidewalls of the photoresist features. Two of the spacers merge within the gap. The photoresist features are removed to leave a pattern comprising the spacers. The pattern is extended into the substrate to form a plurality of recesses within the substrate. Electrically conductive material is formed within the recesses to create the electrically conductive lines. Some embodiments include semiconductor constructions having a plurality of lines over a semiconductor substrate. Two of the lines are adjacent to one another and are substantially parallel to one another except in a region wherein said two of the lines merge into one another.
    Type: Application
    Filed: October 25, 2012
    Publication date: May 1, 2014
    Applicant: MICRON TECHNOLOGY, INC.
    Inventors: Vishal Sipani, Kyle Armstrong, Michael D. Hyatt, Michael Dean Van Patten, David A. Kewley, Ming-Chuan Yang
  • Publication number: 20140117490
    Abstract: A semiconductor device includes a semiconductor-on-insulator (SOI) substrate having a bulk substrate layer, an active semiconductor layer and a buried insulator layer disposed between the bulk substrate layer and the active semiconductor layer. A trench is formed through the SOI substrate to expose the bulk substrate layer. A doped well is formed in an upper region of the bulk substrate layer adjacent trench. The semiconductor device further includes a first doped region different from the doped well that is formed in the trench.
    Type: Application
    Filed: October 26, 2012
    Publication date: May 1, 2014
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Tenko Yamashita, Terence B. Hook, Veeraraghavan S. Basker, Chun-Chen Yeh
  • Patent number: 8703582
    Abstract: An element-group formation substrate (20) having plural semiconductor light emitting elements (21) formed on a substrate front surface (11a) is sequentially irradiated with a laser beam (64) having a first output from a substrate back surface (11b) side in the y direction, and the laser beam (64) is sequentially collected to a part having a first depth D1 from the substrate back surface (11b), thereby forming a first modified region L1. The substrate (20) having the first modified region L1 formed therein is sequentially irradiated with the laser beam (64) having a third output (<the first output) from the substrate back surface 11b side in the y direction, and the laser beam (64) is sequentially collected to a part having a third depth D3 from the substrate back surface (11b) shallower than the first depth D1, thereby forming a third modified region L3.
    Type: Grant
    Filed: June 14, 2011
    Date of Patent: April 22, 2014
    Assignee: Toyoda Gosei Co., Ltd.
    Inventor: Yoshinori Abe
  • Patent number: 8697558
    Abstract: On the top surface of a thin semiconductor wafer, top surface structures forming a semiconductor chip are formed. The top surface of the wafer is affixed to a supporting substrate with a double-sided adhesive tape. Then, from the bottom surface of the thin semiconductor wafer, a trench, which becomes a scribing line, is formed by wet anisotropic etching so that side walls of the trench are exposed. On the side walls of the trench with the crystal face exposed, an isolation layer with a conductivity type different from that of the semiconductor wafer for holding a reverse breakdown voltage is formed simultaneously with a collector region of the bottom surface diffused layer by ion implantation, followed by annealing with laser irradiation. The side walls form a substantially V-shaped or trapezoidal-shaped cross section, with an angle of the side wall relative to the supporting substrate being 30-70°. The double-sided adhesive tape is then removed from the top surface to produce semiconductor chips.
    Type: Grant
    Filed: October 8, 2009
    Date of Patent: April 15, 2014
    Assignee: Fuji Electric Co., Ltd.
    Inventors: Haruo Nakazawa, Kazuo Shimoyama, Manabu Takei
  • Publication number: 20140077268
    Abstract: According to various embodiments, a distributed heating transistor includes: a plurality of active regions where transistor action occurs including a heat source; and at least one inactive region where transistor action does not occur and no heat source is present, wherein adjacent active regions are separated by the at least one inactive region. The distributed heating transistor may be configured as field effect transistors (FETs), and bipolar junction transistors (BJTs). Methods for forming the distributed heating transistors are also provided.
    Type: Application
    Filed: September 19, 2012
    Publication date: March 20, 2014
    Applicant: U.S. Government as represented by the Secretary of the Army
    Inventors: Ali Darwish, Hingloi Alfred Hung