Of Group Iii-v Compound (epo) Patents (Class 257/E21.213)
  • Patent number: 8823146
    Abstract: A semiconductor structure having a silicon substrate having a <111> crystallographic orientation, an insulating layer disposed over a first portion of the silicon substrate, a silicon layer having a <100> orientation disposed over the insulating layer, and a non-nitride column III-V semiconductor layer or column II-VI semiconductor layer having the same <111> crystallographic orientation as the silicon substrate, the non-nitride column III-V semiconductor layer or column II-VI semiconductor layer being in direct contact with a second portion of the silicon substrate. A column III-nitride is disposed on the surface of the third portion of the substrate.
    Type: Grant
    Filed: February 19, 2013
    Date of Patent: September 2, 2014
    Assignee: Raytheon Company
    Inventor: William E. Hoke
  • Patent number: 8058094
    Abstract: A transistor includes; at least two polycrystalline silicon layers disposed substantially parallel to each other, each polycrystalline silicon layer including a channel region and at least two high conductivity regions disposed at opposing sides of the channel region; a gate which corresponds to the channel region of the two polycrystalline silicon layers and which crosses the two polycrystalline silicon layers, and a gate insulating layer interposed between the gate and the two polycrystalline silicon layers, wherein low conductivity regions are disposed adjacent to one edge of the gate and are formed between the channel region and one high conductivity region of each polycrystalline silicon layer.
    Type: Grant
    Filed: February 17, 2010
    Date of Patent: November 15, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Takashi Noguchi, Jong-man Kim, Jang-yeon Kwon, Kyung-bae Park, Ji-sim Jung, Hyuck Lim
  • Patent number: 8048693
    Abstract: The present invention provides methods for relaxing a strained-material layer and structures produced by the methods. Briefly, the methods include depositing a first low-viscosity layer that includes a first compliant material on the strained-material layer, depositing a second low-viscosity layer that includes a second compliant material on the strained-material layer to form a first sandwiched structure and subjecting the first sandwiched structure to a heat treatment such that the reflow of the first and the second low-viscosity layers permits the strained-material layer to at least partly relax.
    Type: Grant
    Filed: December 22, 2008
    Date of Patent: November 1, 2011
    Assignee: S.O.I. Tec Silicon on Insulator Technologies
    Inventors: Fabrice Letertre, Carlos Mazure
  • Patent number: 7948017
    Abstract: A method of forming an imaging array includes providing a single crystal silicon substrate having an internal separation layer, forming a patterned conductive layer proximate a first side of the single crystal silicon substrate, forming an electrically conductive layer on the first side of the single crystal silicon substrate and in communication with the patterned conductive layer, securing the single crystal silicon substrate having the patterned conductive layer and electrically conductive layer formed thereon to a glass substrate with the first side of the single crystal silicon substrate proximate the glass substrate, separating the single crystal silicon substrate at the internal separation layer to create an exposed surface opposite the first side of the single crystal silicon substrate and forming an array comprising a plurality of photosensitive elements and readout elements on the exposed surface.
    Type: Grant
    Filed: June 19, 2009
    Date of Patent: May 24, 2011
    Assignee: Carestream Health, Inc.
    Inventors: Timothy J. Tredwell, Jackson Lai
  • Patent number: 7700954
    Abstract: A transistor includes; at least two polycrystalline silicon layers disposed substantially parallel to each other, each polycrystalline silicon layer including a channel region and at least two high conductivity regions disposed at opposing sides of the channel region; a gate which corresponds to the channel region of the two polycrystalline silicon layers and which crosses the two polycrystalline silicon layers, and a gate insulating layer interposed between the gate and the two polycrystalline silicon layers, wherein low conductivity regions are disposed adjacent to one edge of the gate and are formed between the channel region and one high conductivity region of each polycrystalline silicon layer.
    Type: Grant
    Filed: January 10, 2007
    Date of Patent: April 20, 2010
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Takashi Noguchi, Jong-man Kim, Jang-yeon Kwon, Kyung-bae Park, Ji-sim Jung, Hyuck Lim
  • Publication number: 20100032805
    Abstract: The present invention provides methods for relaxing a strained-material layer and structures produced by the methods. Briefly, the methods include depositing a first low-viscosity layer that includes a first compliant material on the strained-material layer, depositing a second low-viscosity layer that includes a second compliant material on the strained-material layer to form a first sandwiched structure and subjecting the first sandwiched structure to a heat treatment such that the reflow of the first and the second low-viscosity layers permits the strained-material layer to at least partly relax.
    Type: Application
    Filed: December 22, 2008
    Publication date: February 11, 2010
    Inventors: Fabrice LETERTRE, Carlos MAZURE
  • Publication number: 20100025823
    Abstract: The present invention provides methods of protecting a surface of an aluminum nitride substrate. The substrate with the protected surface can be stored for a period of time and easily activated to be in a condition ready for thin film growth or other processing. In certain embodiments, the method of protecting the substrate surface comprises forming a passivating layer on at least a portion of the substrate surface by performing a wet etch, which can comprise the use of one or more organic compounds and one or more acids. The invention also provides aluminum nitride substrates having passivated surfaces.
    Type: Application
    Filed: July 30, 2008
    Publication date: February 4, 2010
    Inventors: Ramon R. Collazo, Zlatko Sitar, Rafael Dalmau
  • Patent number: 7582527
    Abstract: Method for fabricating a semiconductor device, including the steps of providing a first conductive type semiconductor substrate having a cell region and a logic region defined thereon, forming a first insulating film, second conductive type polysilicon, and a second insulating film in succession on the semiconductor substrate, selectively removing the first insulating film, the polysilicon, and the second insulating film, to form a floating gate pattern at the cell region, elevating a temperature initially in a state O2 gas is injected, maintaining a fix temperature, and dropping the temperature in a state N2 gas is injected, to form a gate oxide film on a surface of the semiconductor substrate at the logic region, and forming a gate electrode pattern at each of the cell region and the logic region, whereby preventing a threshold voltage of a semiconductor device from dropping due to infiltration of impurities from doped polysilicon at the cell region to the active channel region.
    Type: Grant
    Filed: July 3, 2007
    Date of Patent: September 1, 2009
    Assignee: Dongbu Electronics Co., Ltd.
    Inventor: Sang Bum Lee