Of Diamond Body (epo) Patents (Class 257/E21.323)
  • Patent number: 8981506
    Abstract: A perpendicular spin-transfer torque magnetic random access memory (STTMRAM) element is configured to store a state when electrical current is applied thereto. The perpendicular STTMRAM element includes a magnetization layer having a first free layer and a second free layer, separated by a non-magnetic separation layer (NMSL). The direction of magnetization of the first and second free layers each is in-plane prior to the application of electrical current and after the application of electrical current, the direction of magnetization of the second free layer becomes substantially titled out-of-plane and the direction of magnetization of the first free layer switches. Upon electrical current being discontinued, the direction of magnetization of the second free layer remains in a direction that is substantially opposite to that of the first free layer.
    Type: Grant
    Filed: June 19, 2013
    Date of Patent: March 17, 2015
    Assignee: Avalanche Technology, Inc.
    Inventors: Yuchen Zhou, Yiming Huai, Jing Zhang, Rajiv Yadav Ranjan, Roger Klas Malmhall
  • Patent number: 8860158
    Abstract: A STTMRAM element includes a magnetization layer made of a first free layer and a second free layer, separated by a non-magnetic separation layer (NMSL), with the first and second free layers each having in-plane magnetizations that act on each other through anti-parallel coupling. The direction of the magnetization of the first and second free layers each is in-plane prior to the application of electrical current to the STTMRAM element and thereafter, the direction of magnetization of the second free layer becomes substantially titled out-of-plane and the direction of magnetization of the first free layer switches. Upon electrical current being discontinued to the STTMRAM element, the direction of magnetization of the second free layer remains in a direction that is substantially opposite to that of the first free layer.
    Type: Grant
    Filed: June 19, 2013
    Date of Patent: October 14, 2014
    Assignee: Avalanche Technology, Inc.
    Inventors: Yuchen Zhou, Yiming Huai, Jing Zhang, Rajiv Yadav Ranjan, Roger Klas Malmhall
  • Patent number: 8519496
    Abstract: A spin-transfer torque magnetic random access memory (STTMRAM) element is configured to store a state when electrical current is applied thereto. The STTMRAM element includes first and second free layers, each of which having an associated direction of magnetization defining the state of the STTMRAM element. Prior to the application of electrical current to the STTMRAM element, the direction of the magnetization of the first and second free layers each is in-plane and after the application of electrical current to the STTMRAM element, the direction of magnetization of the second free layer becomes substantially titled out-of-plane and the direction of magnetization of the first free layer switches. Upon electrical current being discontinued, the direction of magnetization of the second free layer remains in a direction that is substantially opposite to that of the first free layer.
    Type: Grant
    Filed: February 25, 2011
    Date of Patent: August 27, 2013
    Assignee: Avalanche Technology, Inc.
    Inventors: Yuchen Zhou, Yiming Huai, Rajiv Yadav Ranjan, Roger Klas Malmhall
  • Patent number: 8492860
    Abstract: A STTMRAM element includes a magnetization layer made of a first free layer and a second free layer, separated by a non-magnetic separation layer (NMSL), with the first and second free layers each having in-plane magnetizations that act on each other through anti-parallel coupling. The direction of the magnetization of the first and second free layers each is in-plane prior to the application of electrical current to the STTMRAM element and thereafter, the direction of magnetization of the second free layer becomes substantially titled out-of-plane and the direction of magnetization of the first free layer switches. Upon electrical current being discontinued to the STTMRAM element, the direction of magnetization of the second free layer remains in a direction that is substantially opposite to that of the first free layer.
    Type: Grant
    Filed: November 4, 2011
    Date of Patent: July 23, 2013
    Assignee: Avalanche Technology, Inc.
    Inventors: Yuchen Zhou, Yiming Huai, Jing Zhang, Rajiv Yadav Ranjan, Roger Klas Malmhall
  • Patent number: 8338295
    Abstract: A method of fabricating a metal interconnection and a method of fabricating image sensor using the same are provided. The method of fabricating a metal interconnection including forming a interlayer dielectric layer on a substrate, forming an interconnection formation region in the interlayer dielectric layer, performing an ultraviolet (UV) treatment on the substrate after the interconnection formation region is formed and forming a metal interconnection in the interconnection formation region.
    Type: Grant
    Filed: August 10, 2011
    Date of Patent: December 25, 2012
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jeong-Ho Lee, Young-Hoon Park, Sang-Il Jung, Jun-Seok Yang, An-Chul Shin, Min-Young Jung
  • Patent number: 8158455
    Abstract: First and second synthetic diamond regions are doped with boron. The second synthetic diamond region is doped with boron to a greater degree than the first synthetic diamond region, and in physical contact with the first synthetic diamond region. In a further example embodiment, the first and second synthetic diamond regions form a diamond semiconductor, such as a Schottky diode when attached to at least one metallic lead.
    Type: Grant
    Filed: August 24, 2009
    Date of Patent: April 17, 2012
    Assignee: Apollo Diamond, Inc.
    Inventor: Robert C. Linares
  • Publication number: 20110254114
    Abstract: A magnetoresistive effect element includes a first ferromagnetic layer formed above a substrate, a second ferromagnetic layer formed above the first ferromagnetic layer, an insulating layer interposed between the first ferromagnetic layer and the second ferromagnetic layer and formed of a metal oxide, and a first nonmagnetic metal layer interposed between the insulating layer and the second ferromagnetic layer and in contact with a surface of the insulating layer on the side of the second ferromagnetic layer, the first nonmagnetic metal layer containing the same metal element as the metal oxide.
    Type: Application
    Filed: June 29, 2011
    Publication date: October 20, 2011
    Inventors: Makoto Nagamine, Keiji Hosotani, Hisanori Aikawa, Tomomasa Ueda, Sumio Ikegawa
  • Publication number: 20110007560
    Abstract: A magnetic device includes a magnetic reference layer with a fixed magnetisation direction located either in the plane of the layer or perpendicular to the plane of the layer, a magnetic storage layer with a variable magnetisation direction, a non-magnetic spacer separating the reference layer and the storage layer and a magnetic spin polarising layer with a magnetisation perpendicular to that of the reference layer, and located out of the plane of the spin polarising layer if the magnetisation of the reference layer is directed in the plane of the reference layer or in the plane of the spin polarising layer if the magnetisation of the reference layer is directed perpendicular to the plane of the reference layer. The spin transfer coefficient between the reference layer and the storage layer is higher than the spin transfer coefficient between the spin polarising layer and the storage layer.
    Type: Application
    Filed: May 26, 2010
    Publication date: January 13, 2011
    Applicant: COMMISSARIAT A L'ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES
    Inventors: Bernard Dieny, Cristian Papusoi, Ursula Ebels, Dimitri Houssameddine, Liliana Buda-Prejbeanu, Ricardo Sousa
  • Patent number: 7768091
    Abstract: In a conventional ultraviolet sensing device using a diamond semiconductor in a light-receiving unit, an Au-based electrode material is used for both a rectifier electrode and an ohmic electrode. However, the Au-based electrode material has fatal defects, such as poor adhesion to diamond, low mechanical strength, and furthermore poor thermal stability. While avoiding complication of the device structure and exploiting the characteristics of a photoconductive sensing device, by using a carbide compound (TiC, ZrC, HfC, VC, NbC, TaC, CrC, MoC, and WC) of a high melting metal having a high mechanical strength for a rectifier electrode and/or a ohmic electrode, there is provided an extremely heat-stable diamond ultraviolet sensor having a light-receiving sensitivity to ultraviolet light having a wavelength of 260 nm or less.
    Type: Grant
    Filed: November 22, 2005
    Date of Patent: August 3, 2010
    Assignee: National Institute for Materials Science
    Inventors: Yasuo Koide, Meiyong Liao, Antonio Alvarez Jose
  • Patent number: 7557378
    Abstract: A heterostructure having a heterojunction comprising: a diamond layer; and a boron aluminum nitride (B(x)Al(1?x)N) layer disposed in contact with a surface of the diamond layer, where x is between 0 and 1.
    Type: Grant
    Filed: November 8, 2006
    Date of Patent: July 7, 2009
    Assignee: Raytheon Company
    Inventors: Jeffrey R. LaRoche, William E. Hoke, Steven D. Bernstein, Ralph Korenstein