Active Layer, E.g., Base, Is Group Iii-v Compound (epo) Patents (Class 257/E21.386)
  • Patent number: 8933488
    Abstract: In accordance with one or more embodiments, an apparatus and method involves a channel region, barrier layers separated by the channel region and a dielectric on one of the barrier layers. The barrier layers have band gaps that are different than a band gap of the channel region, and confine both electrons and holes in the channel region. A gate electrode applies electric field to the channel region via the dielectric. In various contexts, the apparatus and method are amenable to implementation for both electron-based and hole-based implementations, such as for nmos, pmos, and cmos applications.
    Type: Grant
    Filed: December 1, 2011
    Date of Patent: January 13, 2015
    Assignee: The Board of Trustees of the Leland Stanford Junior Univerity
    Inventors: Aneesh Nainani, Krishna Chandra Saraswat
  • Patent number: 8872308
    Abstract: III-N material grown on a silicon substrate includes a single crystal rare earth oxide layer positioned on a silicon substrate. The rare earth oxide is substantially crystal lattice matched to the surface of the silicon substrate. A first layer of III-N material is positioned on the surface of the rare earth oxide layer. An inter-layer of aluminum nitride (AlN) is positioned on the surface of the first layer of III-N material and an additional layer of III-N material is positioned on the surface of the inter-layer of aluminum nitride. The inter-layer of aluminum nitride and the additional layer of III-N material are repeated n-times to reduce or engineer strain in a final III-N layer. A cap layer of AlN is grown on the final III-N layer and a III-N layer of material with one of an LED structure and an HEMT structure is grown on the AlN cap layer.
    Type: Grant
    Filed: February 20, 2013
    Date of Patent: October 28, 2014
    Assignee: Translucent, Inc.
    Inventors: Erdem Arkun, Michael Lebby, Andrew Clark, Rytis Dargis
  • Patent number: 8697463
    Abstract: A method for manufacturing a light-emitting device includes steps of: providing a light-emitting wafer including an upper surface and a lower surface opposite to the upper surface; setting a plurality of scribing streets on the upper surface of the light-emitting wafer; irradiating a laser beam to form a plurality of cutting regions along the scribing streets, wherein each of the plurality of cutting regions has a sharp end, or the plurality of cutting regions forms a specific pattern in a cross-sectional view; and forming a plurality of light-emitting devices by connecting the plurality of cutting regions and extending the plurality of cutting regions from the respective sharp ends thereof to the lower surface of the light-emitting wafer.
    Type: Grant
    Filed: January 26, 2012
    Date of Patent: April 15, 2014
    Assignee: Epistar Corporation
    Inventors: Chih-Hui Alston Liu, Tsung-Pao Yeh, Chang Yi-Cheng, Liao Chuen-Min
  • Patent number: 8633569
    Abstract: III-N material grown on a silicon substrate includes a single crystal rare earth oxide layer positioned on a silicon substrate. The rare earth oxide is substantially crystal lattice matched to the surface of the silicon substrate. A first layer of III-N material is positioned on the surface of the rare earth oxide layer. An inter-layer of aluminum nitride (AlN) is positioned on the surface of the first layer of III-N material and an additional layer of III-N material is positioned on the surface of the inter-layer of aluminum nitride. The inter-layer of aluminum nitride and the additional layer of III-N material are repeated n-times to reduce or engineer strain in a final III-N layer.
    Type: Grant
    Filed: January 16, 2013
    Date of Patent: January 21, 2014
    Assignee: Translucent, Inc.
    Inventors: Erdem Arkun, Michael Lebby, Andrew Clark, Rytis Dargis
  • Publication number: 20130256680
    Abstract: The present invention discloses a vertical semiconductor device and a manufacturing method thereof. The vertical semiconductor device includes: a substrate having a first surface and a second surface, the substrate including a conductive array formed by multiple conductive plugs through the substrate; a semiconductor layer formed on the first surface, the semiconductor layer having a third surface and a fourth surface, wherein the fourth surface faces the first surface; a first electrode formed on the third surface; and a second electrode formed on the second surface for electrically connecting to the conductive array.
    Type: Application
    Filed: March 30, 2012
    Publication date: October 3, 2013
    Inventors: Chien-Wei Chiu, Tsung-Yi Huang
  • Patent number: 8344418
    Abstract: A group III chalcogenide layer for interfacing a high-k dielectric to a III-V semiconductor surface and methods of forming the same. A III-V QWFET includes a gate stack which comprises a high-K gate dielectric layer disposed on an interfacial layer comprising a group III chalcogenide. In an embodiment, a III-V semiconductor surface comprising a native oxide is sequentially exposed to TMA and H2S provided in an ALD process to remove substantially all the native oxide and form an Al2S3 layer on the semiconductor surface.
    Type: Grant
    Filed: December 23, 2009
    Date of Patent: January 1, 2013
    Assignee: Intel Corporation
    Inventors: Willy Rachmady, Marko Radosavljevic, Gilbert Dewey, Robert S. Chau
  • Patent number: 8017420
    Abstract: Provided is a method of forming optical waveguide. The method includes forming a trench on a semiconductor substrate to define an active portion, and partially oxidizing the active portion. An non-oxidized portion of the active portion is included in a core through which an optical signal passes, and an oxidized portion of the active portion is included in a cladding.
    Type: Grant
    Filed: June 25, 2009
    Date of Patent: September 13, 2011
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: In-Gyoo Kim, Dong-Woo Suh, Gyung-Ock Kim
  • Patent number: 7989238
    Abstract: Provided is a Group III nitride-based compound semiconductor light-emitting device including aluminum regions. The Group III nitride-based compound semiconductor light-emitting device includes a sapphire substrate; aluminum regions which are formed on the substrate; an AlN buffer layer; an Si-doped GaN n-contact layer; an n-cladding layer formed of multiple layer units, each including an undoped In0.1Ga0.9N layer, an undoped GaN layer, and a silicon (Si)-doped GaN layer; an MQW light-emitting layer including alternately stacked eight well layers formed of In0.2Ga0.8N and eight barrier layers formed of GaN and Al0.06Ga0.94N; a p-cladding layer formed of multiple layers including a p-type Al0.3Ga0.7N layer and a p-type In0.08Ga0.92N layer; a p-contact layer having a layered structure including two p-type GaN layers having different magnesium concentrations; and an ITO light-transmitting electrode.
    Type: Grant
    Filed: June 10, 2009
    Date of Patent: August 2, 2011
    Assignee: Toyoda Gosei Co., Ltd.
    Inventor: Koji Okuno
  • Patent number: 7989280
    Abstract: A Group III-V Semiconductor device and method of fabrication is described. A high-k dielectric is interfaced to a confinement region by a chalcogenide region.
    Type: Grant
    Filed: December 18, 2008
    Date of Patent: August 2, 2011
    Assignee: Intel Corporation
    Inventors: Justin K. Brask, Suman Datta, Mark L. Doczy, James M. Blackwell, Matthew V. Metz, Jack T. Kavalieros, Robert S. Chau
  • Patent number: 7687386
    Abstract: A semiconductor structure includes a semiconductor substrate, a semiconductor active region, a semiconductor contact layer, at least one metal migration semiconductor barrier layer, and a metal contact. The metal migration semiconductor barrier layer may be embedded within the semiconductor contact layer. Furthermore, the metal migration semiconductor barrier layer may be located underneath or above and in intimate contact with the semiconductor contact layer. The metal migration semiconductor barrier layer and the semiconductor contact layer form a contact structure that prevents metals from migrating from the metal contact into the semiconductor active layer during long-term exposure to high temperatures.
    Type: Grant
    Filed: February 20, 2007
    Date of Patent: March 30, 2010
    Assignee: The Boeing Company
    Inventors: Hojun Yoon, Richard King, Jerry R. Kukulka, James H. Ermer, Maggy L. Lau
  • Patent number: 7674644
    Abstract: A method for the fabrication of a Group III nitride semiconductor includes the steps of installing a substrate in a reaction vessel, forming a Group III nitride semiconductor on the substrate, causing a solid nitrogen compound to exist in the reaction vessel as a nitrogen source for a Group III nitride semiconductor and supplying a raw material gas as a source for a Group III element into the reaction vessel to fabricate the Group III nitride semiconductor.
    Type: Grant
    Filed: September 12, 2005
    Date of Patent: March 9, 2010
    Assignee: Showa Denko K.K.
    Inventors: Masato Kobayakawa, Hisayuki Miki
  • Patent number: 7224026
    Abstract: Diode devices with superior and pre-settable characteristics and of nanometric dimensions, comprise etched insulative lines (8, 16, 18) in a conductive substrate to define between the lines charge carrier flow paths, formed as elongate channels (20) at least 100 nm long and less than 100 nm wide. The current-voltage characteristic of the diode devices are similar to a conventional diode, but both the threshold voltage (from 0V to a few volts) and the current level (from nA to ?A) can be tuned by orders of magnitude by changing the device geometry. Standard silicon wafers can be used as substrates. A full family of logic gates, such as OR, AND, and NOT, can be constructed based on this device solely by simply etching insulative lines in the substrate.
    Type: Grant
    Filed: April 18, 2002
    Date of Patent: May 29, 2007
    Assignee: The University of Manchester
    Inventors: Amin Song, Pär Omling