Heterojunction Transistor (epo) Patents (Class 257/E21.387)
  • Patent number: 12100930
    Abstract: Integrated circuitry is fabricated from semiconductor layers formed on a substrate, which include at least one n-type layer, an inverted p-type modulation doped quantum well (mod-doped QW) structure, a non-inverted n-type mod-doped QW structure, and at least one p-type layer including a first P+-type layer formed below a second P-type layer. An etch operation exposes the second p-type layer. P-type ions are implanted into the exposed second p-type layer. A gate electrode of a n-channel HFET device is formed in contact with the p-type ion implanted region. Source and drain electrodes of the n-channel HFET device are formed in contact with n-type ion implanted regions formed in contact with the n-type mod-doped QW structure. P-channel HFET devices, complementary BICFET devices, stacked complementary HFET devices and circuits and/or logic gates based thereon, and a variety of optoelectronic devices and optical devices can also be formed as part of the integrated circuitry.
    Type: Grant
    Filed: September 13, 2023
    Date of Patent: September 24, 2024
    Inventor: Geoff W. Taylor
  • Patent number: 12094958
    Abstract: The present disclosure provides a semiconductor structure and a manufacturing method thereof. In the manufacturing method, a first P-type semiconductor layer is provided, and an N-type semiconductor layer and a second P-type semiconductor layer are formed in sequence on the first P-type semiconductor layer. The first P-type semiconductor layer, the N-type semiconductor layer and the second P-type semiconductor layer all include a GaN-based material. When the first P-type semiconductor layer is provided, its upper surface is controlled to be a Ga surface; when the N-type semiconductor layer is formed, its upper surface is controlled to be an N surface; when the second P-type semiconductor layer is formed, its upper surface is controlled to be an N surface.
    Type: Grant
    Filed: December 5, 2019
    Date of Patent: September 17, 2024
    Assignee: ENKRIS SEMICONDUCTOR, INC.
    Inventor: Kai Cheng
  • Patent number: 11799268
    Abstract: Integrated circuitry is fabricated from semiconductor layers formed on a substrate, which include at least one n-type layer, an inverted p-type modulation doped quantum well (mod-doped QW) structure, a non-inverted n-type mod-doped QW structure, and at least one p-type layer including a first P+-type layer formed below a second P-type layer. An etch operation exposes the second p-type layer. P-type ions are implanted into the exposed second p-type layer. A gate electrode of a n-channel HFET device is formed in contact with the p-type ion implanted region. Source and drain electrodes of the n-channel HFET device are formed in contact with n-type ion implanted regions formed in contact with the n-type mod-doped QW structure. P-channel HFET devices, complementary BICFET devices, stacked complementary HFET devices and circuits and/or logic gates based thereon, and a variety of optoelectronic devices and optical devices can also be formed as part of the integrated circuitry.
    Type: Grant
    Filed: August 21, 2021
    Date of Patent: October 24, 2023
    Inventor: Geoff W. Taylor
  • Patent number: 11688790
    Abstract: An HEMT includes a first III-V compound layer. A second III-V compound layer is disposed on the first III-V compound layer. The composition of the first III-V compound layer is different from the composition of the second III-V compound layer. A trench is disposed within the first III-V compound layer and the second III-V compound layer. The trench has a first corner and a second corner. The first corner and the second corner are disposed in the first III-V compound layer. A first dielectric layer contacts a sidewall of the first corner. A second dielectric layer contacts a sidewall of the second corner. The first dielectric layer and the second dielectric layer are outside of the trench. A gate is disposed in the trench. A source electrode and a drain electrode are respectively disposed at two sides of the gate. A gate electrode is disposed directly on the gate.
    Type: Grant
    Filed: January 6, 2021
    Date of Patent: June 27, 2023
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Chih-Wei Chang, Yao-Hsien Chung, Shih-Wei Su, Hao-Hsuan Chang, Da-Jun Lin, Ting-An Chien, Bin-Siang Tsai
  • Patent number: 11631758
    Abstract: A semiconductor device includes a collector layer, a base layer, and an emitter layer that are disposed above a substrate. An emitter mesa layer is disposed on a partial region of the emitter layer. In a plan view, the base electrode is disposed in or on a region which does not overlap the emitter mesa layer. The base electrode allows base current to flow to the base layer. In the plan view, a first edge forming part of edges of the emitter mesa layer extends in a first direction, and a second edge forming part of edges of the base electrode faces the first edge. A gap between the first edge and the second edge in a terminal portion located in an end portion of the emitter mesa layer in the first direction is wider than a gap in an intermediate portion of the emitter mesa layer.
    Type: Grant
    Filed: March 5, 2020
    Date of Patent: April 18, 2023
    Assignee: Murata Manufacturing Co., Ltd.
    Inventors: Yasunari Umemoto, Isao Obu, Kaoru Ideno, Shigeki Koya
  • Patent number: 10468335
    Abstract: Disconnection of a base line is suppressed even when a short-side direction of a collector layer is parallel to crystal orientation [011]. A bipolar transistor includes: a collector layer that has a long-side direction and a short-side direction in a plan view, in which the short-side direction is parallel to crystal orientation [011], a cross-section perpendicular to the short-side direction has an inverted mesa shape, and a cross-section perpendicular to the long-side direction has a forward mesa shape; a base layer that is formed on the collector layer; a base electrode that is formed on the base layer; and a base line that is connected to the base electrode and that is drawn out from an end in the short-side direction of the collector layer to the outside of the collector layer in a plan view.
    Type: Grant
    Filed: January 31, 2019
    Date of Patent: November 5, 2019
    Assignee: MURATA MANUFACTURING CO., LTD.
    Inventor: Kenji Sasaki
  • Patent number: 9431424
    Abstract: Fabricating FEOL metal gate resistor structures and the resulting device are disclosed. Embodiments include providing a Si layer-insulator layer-Si substrate stack; forming STI regions at first through fourth sides of a rectangular active-area of the Si layer, the first side opposing the third, the STI extending into the substrate; recessing the STI below the insulator upper surface; undercutting the active-area, forming channels in the insulator along and under perimeter edges of the active-area; conformally forming a high-k dielectric on all exposed surfaces; forming metal on the high-k dielectric and filling the channels; removing the metal except for the filled channels and a portion over each of the STI at the first and third sides and overlapping the active-area; and forming low-k spacers on exposed opposing sidewalls of the metal portions and exposed vertical surfaces of the high-k dielectric on edges of the active-area and the filled channels.
    Type: Grant
    Filed: October 1, 2015
    Date of Patent: August 30, 2016
    Assignee: GLOBALFOUNDRIES INC.
    Inventor: Xusheng Wu
  • Patent number: 8987075
    Abstract: A semiconductor device includes a substrate, a carrier transit layer disposed above the substrate, a compound semiconductor layer disposed on the carrier transit layer, a source electrode disposed on the compound semiconductor layer, a first groove disposed from the back of the substrate up to the inside of the carrier transit layer while penetrating the substrate, a drain electrode disposed in the inside of the first groove, a gate electrode located between the source electrode and the first groove and disposed on the compound semiconductor layer, and a second groove located diagonally under the source electrode and between the source electrode and the first groove and disposed from the back of the substrate up to the inside of the carrier transit layer while penetrating the substrate.
    Type: Grant
    Filed: June 12, 2013
    Date of Patent: March 24, 2015
    Assignee: Fujitsu Limited
    Inventors: Masato Nishimori, Atsushi Yamada
  • Patent number: 8906758
    Abstract: The present invention may provide an integrated device, which may include a substrate having first and second regions, the first region spaced apart from the second region, a first heterojunction bipolar transistor (HBT) device formed on the first region of the substrate, the first HBT device having a first collector layer formed above the first region of the substrate, the first collector layer having a first collector thickness and a first collector doping level, and a second HBT device formed on the second region of the substrate, the second HBT device having a second collector layer formed above the second region of the substrate, the second collector layer having a second collector thickness and a second collector doping level, the second collector thickness substantially greater than the first collector thickness, the second collector doping level lower than the first collector doping level.
    Type: Grant
    Filed: November 29, 2010
    Date of Patent: December 9, 2014
    Assignee: Teledyne Scientific & Imaging, LLC
    Inventor: Miguel E. Urteaga
  • Patent number: 8829568
    Abstract: An insulating layer, an undoped first GaN layer and an AlGaN layer are laminated in this order on a surface of a semiconductor substrate. A surface barrier layer formed by a two-dimensional electron gas is provided in an interface between the first GaN layer and the AlGaN layer. A recess (first recess) which reaches the first GaN layer but does not pierce the first GaN layer is formed in a surface layer of the AlGaN layer. A first high withstand voltage transistor and a control circuit are formed integrally on the aforementioned semiconductor substrate. The first high withstand voltage transistor is formed in the first recess and on a surface of the AlGaN layer. The control circuit includes an n-channel MOSFET formed in part of the first recess, and a depression type n-channel MOSFET formed on a surface of the AlGaN layer.
    Type: Grant
    Filed: September 4, 2009
    Date of Patent: September 9, 2014
    Assignee: Fuji Electric Co., Ltd.
    Inventor: Katsunori Ueno
  • Patent number: 8828812
    Abstract: A silicon/germanium (SiGe) heterojunction Tunnel Field Effect Transistor (TFET) and a preparation method thereof are provided, in which a source region of a device is manufactured on a silicon germanium (SiGe) or Ge region, and a drain region of the device is manufactured in a Si region, thereby obtaining a high ON-state current while ensuring a low OFF-state current. Local Ge oxidization and concentration technique is used to implement a Silicon Germanium On Insulator (SGOI) or Germanium On Insulator (GOI) with a high Ge content in some area. In the SGOI or GOI with a high Ge content, the Ge content is controllable from 50% to 100%. In addition, the film thickness is controllable from 5 nm to 20 nm, facilitating the implementation of the device process. During the oxidization and concentration process of the SiGe or Ge and Si, a SiGe heterojunction structure with a gradient Ge content is formed between the SiGe or Ge and Si, thereby eliminating defects.
    Type: Grant
    Filed: September 19, 2012
    Date of Patent: September 9, 2014
    Assignee: Shanghai Institute of Microsystem and Information Technology, Chinese Academy
    Inventors: Jiantao Bian, Zhongying Xue, Zengfeng Di, Miao Zhang
  • Patent number: 8815658
    Abstract: The present invention provides a method of forming a transistor. The method includes forming a first layer of a first semiconductor material above an insulation layer. The first semiconductor material is selected to provide high mobility to a first carrier type. The method also includes forming a second layer of a second semiconductor material above the first layer of semiconductor material. The second semiconductor material is selected to provide high mobility to a second carrier type opposite the first carrier type. The method further includes forming a first masking layer adjacent the second layer and etching the second layer through the first masking layer to form at least one feature in the second layer. Each feature in the second layer forms an inverted-T shape with a portion of the second layer.
    Type: Grant
    Filed: August 13, 2012
    Date of Patent: August 26, 2014
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Hemant Adhikari, Rusty Harris
  • Patent number: 8790965
    Abstract: Some exemplary embodiments of high voltage cascoded III-nitride semiconductor package utilizing clips on a package support surface have been disclosed. One exemplary embodiment comprises a III-nitride transistor attached to a package support surface and having an anode of a diode stacked over a source of the III-nitride transistor, a first conductive clip coupled to a gate of the III-nitride transistor and the anode of the diode, and a second conductive clip coupled to a drain of the III-nitride transistor. The conductive clips are connected to the package support surface and expose respective flat portions that are surface mountable. In this manner, reduced package footprint, improved surge current capability, and higher performance may be achieved compared to conventional wire bonded packages. Furthermore, since a low cost printed circuit board (PCB) may be utilized for the package support surface, expensive leadless fabrication processes may be avoided for cost effective manufacturing.
    Type: Grant
    Filed: September 26, 2013
    Date of Patent: July 29, 2014
    Assignee: International Rectifier Corporation
    Inventors: Chuan Cheah, Dae Keun Park
  • Patent number: 8772626
    Abstract: A solar cell may include an electrically conducting substrate, a plurality of nanowhiskers extending from the substrate and a transparent electrode extending over free ends of the nanowhiskers and making electrical contact with them. Each nanowhisker may have a column with a diameter of nanometer dimension. The column may include a first p-doped semiconductor lengthwise segment and a second n-doped semiconductor lengthwise segment. The first and second semiconductor segments may have an interface between them, which forms a p-n junction. The nanowhiskers may be encapsulated in a transparent material.
    Type: Grant
    Filed: December 31, 2007
    Date of Patent: July 8, 2014
    Assignee: QuNano AB
    Inventors: Lars Ivar Samuelson, Bjorn Jonas Ohlsson
  • Patent number: 8507949
    Abstract: A semiconductor device includes a substrate, a carrier transit layer disposed above the substrate, a compound semiconductor layer disposed on the carrier transit layer, a source electrode disposed on the compound semiconductor layer, a first groove disposed from the back of the substrate up to the inside of the carrier transit layer while penetrating the substrate, a drain electrode disposed in the inside of the first groove, a gate electrode located between the source electrode and the first groove and disposed on the compound semiconductor layer, and a second groove located diagonally under the source electrode and between the source electrode and the first groove and disposed from the back of the substrate up to the inside of the carrier transit layer while penetrating the substrate.
    Type: Grant
    Filed: August 1, 2011
    Date of Patent: August 13, 2013
    Assignee: Fujitsu Limited
    Inventors: Masato Nishimori, Atsushi Yamada
  • Patent number: 8476639
    Abstract: There is provided a surface treatment method of a group III nitride semiconductor including: providing a group III nitride semiconductor including a first surface having a group III polarity and a second surface opposing the first surface and having a nitrogen polarity; and irradiating a laser beam onto the second surface to change the nitrogen polarity of the second surface to the group III polarity.
    Type: Grant
    Filed: December 12, 2011
    Date of Patent: July 2, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jong In Yang, Sang Bum Lee, Sang Yeob Song, Si Hyuk Lee, Tae Hyung Kim
  • Patent number: 8377788
    Abstract: A SiGe heterojunction bipolar transistor is fabricated by etching an epitaxially-formed structure to form a mesa that has a collector region, a cap region, and a notched SiGe base region that lies in between. A protective plug is formed in the notch of the SiGe base region so that thick non-conductive regions can be formed on the sides of the collector region and the cap region. Once the non-conductive regions have been formed, the protective plug is removed. An extrinsic base is then formed to lie in the notch and touch the base region, followed by the formation of isolation regions and an emitter region.
    Type: Grant
    Filed: November 15, 2010
    Date of Patent: February 19, 2013
    Assignee: National Semiconductor Corporation
    Inventors: Wibo Van Noort, Jamal Ramdani, Andre Labonte, Donald Robertson Getchell
  • Patent number: 8343824
    Abstract: Gallium nitride material devices and related processes are described. In some embodiments, an N-face of the gallium nitride material region is exposed by removing an underlying region.
    Type: Grant
    Filed: June 20, 2008
    Date of Patent: January 1, 2013
    Assignee: International Rectifier Corporation
    Inventors: Edwin Lanier Piner, Jerry Wayne Johnson, John Claassen Roberts
  • Patent number: 8309990
    Abstract: A III-V compound semiconductor structure comprises epitaxial structures that include an integrated pair of different types of active devices. The semiconductor structure includes a semi-insulating substrate of a compound semiconductor III-V material and a first compound semiconductor III-V epitaxial structure disposed on the substrate. A concentration profile of dopant material in the semiconductor structure decreases substantially smoothly across an interface between the substrate and the first epitaxial structure in a direction from the first epitaxial structure toward the substrate, and continues to decrease substantially smoothly from the interface with increasing depth into the substrate despite the presence of silicon or oxygen contaminant at the interface. The interface is substantially free of a second contaminant that was present, during formation of the first epitaxial structure, in a chamber in which the first epitaxial structure was formed.
    Type: Grant
    Filed: February 15, 2012
    Date of Patent: November 13, 2012
    Assignee: Emcore Corporation
    Inventors: Paul Cooke, Richard W. Hoffman, Jr., Victor Labyuk, Sherry Qianwen Ye
  • Patent number: 8288797
    Abstract: A method of fabricating an integrated circuit on a compound semiconductor III-V wafer including at least two different types of active devices by providing a substrate; growing a first epitaxial structure on the substrate; growing a second epitaxial structure on the first epitaxial structure; and processing the epitaxial structures to form different types of active devices, such as HBTs and FETs.
    Type: Grant
    Filed: December 9, 2010
    Date of Patent: October 16, 2012
    Assignee: Emcore Corporation
    Inventors: Paul Cooke, Richard W. Hoffman, Victor Labyuk, Sherry Qianwen Ye
  • Patent number: 8212288
    Abstract: A compound semiconductor substrate which inhibits the generation of a crack or a warp and is preferable for a normally-off type high breakdown voltage device, arranged that a multilayer buffer layer 2 in which AlxGa1-xN single crystal layers (0.6?X?1.0) 21 containing carbon from 1×1018 atoms/cm3 to 1×1021 atoms/cm3 and AlyGa1-yN single crystal layers (0.1?y?0.5) 22 containing carbon from 1×1017 atoms/cm3 to 1×1021 atoms/cm3 are alternately and repeatedly stacked in order, and a nitride active layer 3 provided with an electron transport layer 31 having a carbon concentration of 5×1017 atoms/cm3 or less and an electron supply layer 32 are deposited on a Si single crystal substrate 1 in order. The carbon concentrations of the AlxGa1-xN single crystal layers 21 and that of the AlGa1-yN single crystal layers 22 respectively decrease from the substrate 1 side towards the above-mentioned active layer 3 side. In this way, the compound semiconductor substrate is produced.
    Type: Grant
    Filed: September 10, 2010
    Date of Patent: July 3, 2012
    Assignee: Covalent Materials Corporation
    Inventors: Jun Komiyama, Kenichi Eriguchi, Hiroshi Oishi, Yoshihisa Abe, Akira Yoshida, Shunichi Suzuki
  • Patent number: 8164104
    Abstract: A light emitting element array including an active layer commonly used for light emitting element regions, carrier injection layers which are electrically isolated from each other and which are provided in the respective light emitting element regions, and a resistive layer which has a resistance higher than that of the carrier injection layers and which is provided between the active layer and the carrier injection layers.
    Type: Grant
    Filed: June 22, 2010
    Date of Patent: April 24, 2012
    Assignee: Canon Kabushiki Kaisha
    Inventor: Tetsuya Takeuchi
  • Publication number: 20120032233
    Abstract: A Silicon-Germanium heterojunction bipolar transistor (SiGe HBT) formed on a silicon substrate, wherein, an active region is isolated by field oxide regions, a collector region is formed in the active region and extends into the bottom of the field oxide regions; pseudo buried layers are formed at the bottom of the field oxide regions. Each of the pseudo buried layers is a lateral distance away from the active region and contacts with a part of the collector region. Deep-hole contacts are formed in the field oxide regions located on top of the pseudo buried layers to pick up the collector region. The present invention can adjust the breakdown voltage of devices through adjusting the lateral distance. A method for manufacturing the SiGe HBT is also disclosed.
    Type: Application
    Filed: August 4, 2011
    Publication date: February 9, 2012
    Inventor: Wensheng Qian
  • Patent number: 7902571
    Abstract: A field effect transistor (FET) with high withstand voltage and high performance is realized by designing a buffer layer structure appropriately to reduce a leakage current to 1×10?9 A or less when a low voltage is applied. An epitaxial wafer for a field effect transistor comprising a buffer layer 2, an active layer, and a contact layer on a semi-insulating substrate 1 from the bottom, and the buffer layer 2 includes a plurality of layers, and a p-type buffer layer composed of p-type AlxGa1-xAs (0.3?x?1) is provided as a bottom layer (undermost layer) 2a. A Nd product of a film thickness of the p-type buffer layer and a p-type carrier concentration of the p-type buffer layer is within a range from 1×1010 to 1×1012/cm2.
    Type: Grant
    Filed: December 14, 2005
    Date of Patent: March 8, 2011
    Assignee: Hitachi Cable, Ltd.
    Inventors: Ryota Isono, Takashi Takeuchi
  • Patent number: 7893463
    Abstract: An integrated pair of HBT and FET transistors shares a common compound semiconductor III-V epitaxial layer. The integrated pair of transistors includes a semi-insulating substrate of a compound semiconductor III-V material, a first epitaxial structure disposed on top of the substrate, a second epitaxial structure on top of the first epitaxial structure, and a third epitaxial structure disposed on top of the second epitaxial structure. The first epitaxial structure forms a portion of the HBT transistor. A concentration profile of a first contaminant, which contributes electrical charge, decreases substantially smoothly across an interface between the semi-insulating substrate and the first epitaxial structure. In some cases, the interface is free of a second contaminant that was present, during formation of the epitaxial structures, in a chamber in which the epitaxial structures were formed.
    Type: Grant
    Filed: May 12, 2010
    Date of Patent: February 22, 2011
    Assignee: Emcore Corporation
    Inventors: Paul Cooke, Richard W. Hoffman, Jr., Victor Labyuk, Sherry Qianwen Ye
  • Patent number: 7843006
    Abstract: A semiconductor component arrangement includes a power transistor and a temperature measurement circuit. The power transistor includes a gate electrode, a source zone, a drain zone and a body zone. The body zone is arranged in a first semiconductor zone of a first conduction type. The temperature measuring circuit comprises a temperature-dependent resistor and an evaluation circuit coupled to the temperature-dependent resistor. The resistor is formed by a portion of said first semiconductor zone.
    Type: Grant
    Filed: February 1, 2007
    Date of Patent: November 30, 2010
    Assignee: Infineon Technologies AG
    Inventors: Rainald Sander, Markus Zundel
  • Patent number: 7821032
    Abstract: An enhancement mode III-nitride power semiconductor device that includes normally-off channels along the sidewalls of a recess and a process for fabricating the same, the device including a first power electrode, a second power electrode, and a gate disposed between the first power electrode and the second power electrode over at least a sidewall of the recess.
    Type: Grant
    Filed: January 26, 2007
    Date of Patent: October 26, 2010
    Assignee: International Rectifier Corporation
    Inventor: Daniel M Kinzer
  • Patent number: 7816162
    Abstract: After a p-type cladding layer, an etching rate reducing layer and a p-type contact layer are formed in order on an n-type substrate, an etching mask is formed. Then, by using the etching mask, the p-type contact layer, the etching rate reducing layer and the p-type cladding layer are partially etched in the region outside the etching mask with an etchant. At this time, the etching rate of the layers by the etchant is slower in the etching rate reducing layer than in the p-type cladding layer and the p-type contact layer. Then, a metal thin film is formed such that the film continuously coats an upper surface and side surfaces of a ridge consisting of the above layers left after the etching step. A normal vector at a surface coated with the thin film has an upward component.
    Type: Grant
    Filed: July 9, 2009
    Date of Patent: October 19, 2010
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Shuichi Hirukawa, Katsuhiko Kishimoto
  • Patent number: 7768021
    Abstract: A light emitting element array including an active layer commonly used for light emitting element regions, carrier injection layers which are electrically isolated from each other and which are provided in the respective light emitting element regions, and a resistive layer which has a resistance higher than that of the carrier injection layers and which is provided between the active layer and the carrier injection layers.
    Type: Grant
    Filed: December 12, 2006
    Date of Patent: August 3, 2010
    Assignee: Canon Kabushiki Kaisha
    Inventor: Tetsuya Takeuchi
  • Patent number: 7750371
    Abstract: Disclosed is an improved semiconductor structure (e.g., a silicon germanium (SiGe) hetero-junction bipolar transistor) having a narrow essentially interstitial-free SIC pedestal with minimal overlap of the extrinsic base. Also, disclosed is a method of forming the transistor which uses laser annealing, as opposed to rapid thermal annealing, of the SIC pedestal to produce both a narrow SIC pedestal and an essentially interstitial-free collector. Thus, the resulting SiGe HBT transistor can be produced with narrower base and collector space-charge regions than can be achieved with conventional technology.
    Type: Grant
    Filed: April 30, 2007
    Date of Patent: July 6, 2010
    Assignee: International Business Machines Corporation
    Inventors: Oleg Gluschenkov, Rajendran Krishnasamy, Kathryn T. Schonenberg
  • Patent number: 7687386
    Abstract: A semiconductor structure includes a semiconductor substrate, a semiconductor active region, a semiconductor contact layer, at least one metal migration semiconductor barrier layer, and a metal contact. The metal migration semiconductor barrier layer may be embedded within the semiconductor contact layer. Furthermore, the metal migration semiconductor barrier layer may be located underneath or above and in intimate contact with the semiconductor contact layer. The metal migration semiconductor barrier layer and the semiconductor contact layer form a contact structure that prevents metals from migrating from the metal contact into the semiconductor active layer during long-term exposure to high temperatures.
    Type: Grant
    Filed: February 20, 2007
    Date of Patent: March 30, 2010
    Assignee: The Boeing Company
    Inventors: Hojun Yoon, Richard King, Jerry R. Kukulka, James H. Ermer, Maggy L. Lau
  • Patent number: 7674644
    Abstract: A method for the fabrication of a Group III nitride semiconductor includes the steps of installing a substrate in a reaction vessel, forming a Group III nitride semiconductor on the substrate, causing a solid nitrogen compound to exist in the reaction vessel as a nitrogen source for a Group III nitride semiconductor and supplying a raw material gas as a source for a Group III element into the reaction vessel to fabricate the Group III nitride semiconductor.
    Type: Grant
    Filed: September 12, 2005
    Date of Patent: March 9, 2010
    Assignee: Showa Denko K.K.
    Inventors: Masato Kobayakawa, Hisayuki Miki
  • Patent number: 7655529
    Abstract: A wafer comprising at least one emitter-up Heterojunction Bipolar Transistor (HBT) and at least one emitter-down HBT on a common InP based semiconductor wafer. Isolation and N-type implants into the device layers differentiate an emitter-down HBT from an emitter-up HBT. The method for preparing a device comprises forming identical layers for all HBTs and performing ion implantation to differentiate an emitter-down HBT from an emitter-up HBT.
    Type: Grant
    Filed: February 7, 2005
    Date of Patent: February 2, 2010
    Assignee: HRL Laboratories, LLC
    Inventors: Mary Chen, Marko Sokolich
  • Patent number: 7601993
    Abstract: The present invention provides a semiconductor device having a recess-structured ohmic electrode, in which the resistance is small and variation in the resistance value caused by manufacturing irregularities is small. In the semiconductor device of the present invention, a two-dimensional electron gas layer is formed on the interface between a channel-forming layer and a Schottky layer by electrons supplied from the Schottky layer. The ohmic electrode comprises a plurality of side faces in ohmic contact with the two-dimensional electron gas layer. At least a part of side faces of the ohmic electrodes are non-parallel to a channel width direction. In a preferred embodiment of the present invention, the side faces have a saw tooth form or a comb tooth form. Since the contact area between the ohmic electrode and the two-dimensional electron gas layer is increased, ohmic resistance is reduced.
    Type: Grant
    Filed: December 11, 2006
    Date of Patent: October 13, 2009
    Assignee: Oki Electric Industry Co., Ltd.
    Inventors: Shinichi Hoshi, Masanori Itoh
  • Patent number: 7557414
    Abstract: In a semiconductor device having a first MIS transistor on a semiconductor substrate, the first MIS transistor includes a p-type semiconductor layer, a first gate insulating film, a first gate electrode, a first sidewall insulating film including at least a first sidewall, an n-type extension diffusion layer, and an n-type impurity diffusion layer. The first sidewall is not formed at the side faces of the first gate electrode on the p-type semiconductor layer. An insulating film having tensile stress is formed on the semiconductor substrate so as to cover the first MIS transistor.
    Type: Grant
    Filed: June 20, 2006
    Date of Patent: July 7, 2009
    Assignee: Panasonic Corporation
    Inventors: Ken Suzuki, Masafumi Tsutsui
  • Patent number: 7518165
    Abstract: A metamorphic high electron mobility transistor having a plurality of high electron mobility transistor layers, a semi-insulating substrate, a ternary metamorphic buffer layer positioned between the semi-insulating substrate and the plurality of high electron mobility transistor layers, the ternary metamorphic buffer layer being Al1-xGaxSb such that x is greater than or equal to 0.2 but less than 0.3, a stabilizing layer positioned between the ternary metamorphic buffer layer and the plurality of high electron mobility transistor layers, the stabilizing layer being Al1-yGaySb such that y is greater than 0.2 but less than or equal to 0.3 and y is greater than x, and a nucleation layer interposed between the semi-insulating substrate and the ternary metamorphic buffer layer.
    Type: Grant
    Filed: September 14, 2006
    Date of Patent: April 14, 2009
    Assignee: Teledyne Licensing, LLC
    Inventors: Joshua I. Bergman, Berinder Brar, Amal Ikhlassi, Gabor Nagy, Gerard J. Sullivan
  • Patent number: 7488663
    Abstract: A method for manufacturing a semiconductor article and a semiconductor article is provided, wherein a base region of a first semiconductor material is applied, a silicide layer is applied above the base region, after the application of the silicide layer, an opening is created in the silicide layer by removing the silicide layer within the area of the opening, and after this, an emitter region is formed within the opening.
    Type: Grant
    Filed: November 4, 2005
    Date of Patent: February 10, 2009
    Assignee: Atmel Germany GmbH
    Inventor: Christoph Bromberger
  • Patent number: 7427776
    Abstract: A thin-film transistor (TFT) is fabricated by providing a substrate, depositing and patterning a metal gate, anodizing the patterned metal gate to form a gate dielectric on the metal gate, depositing and patterning a channel layer comprising a multi-cation oxide over at least a portion of the gate dielectric, and depositing and patterning a conductive source and conductive drain spaced apart from each other and disposed in contact with the channel layer.
    Type: Grant
    Filed: October 7, 2004
    Date of Patent: September 23, 2008
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Randy Hoffman, Peter Mardilovich, Hai Chiang
  • Patent number: 7414298
    Abstract: The invention relates to a process of forming a compact bipolar junction transistor (BJT) that includes forming a self-aligned collector tap adjacent the emitter stack and an isolation structure. A base layer is formed from epitaxial silicon that is disposed in the substrate.
    Type: Grant
    Filed: July 31, 2003
    Date of Patent: August 19, 2008
    Assignee: Intel Corporation
    Inventors: Shahriar Ahmed, Mark Bohr, Stephen Chambers, Richard Green
  • Patent number: 7354820
    Abstract: A method for fabricating an HBT is disclosed, wherein successive emitter, base, collector and sub-collector epitaxial layers are deposited on a substrate, with the substrate being adjacent to the sub-collector layer. The epitaxial layers are etched to provide locations for contact metals and emitter, base and contact metals are deposited on the emitter, base and sub-collector epitaxial layers, respectively. A self-alignment material is deposited on the surface of the substrate around the epitaxial layers and a planarization material is deposited on and covers the top surface of the HBT. The planarization material is then etched so it has a planar surface about the same level as the surface of the self-alignment material and the contact metals protrude from the planar surface. The planar metals are then deposited over the protruding portions of the contact metals.
    Type: Grant
    Filed: September 14, 2005
    Date of Patent: April 8, 2008
    Assignee: Teledyne Licensing, LLC
    Inventors: Richard L. Pierson, Jr., James Chingwei Li, Berinder P. S. Brar, John A. Higgins
  • Publication number: 20080054391
    Abstract: An integrated circuit, and method for manufacturing the integrated circuit, where the integrated circuit can include a phototransistor comprising a base having a SiGe base layer of a predetermined germanium composition and a thickness of more than 65 nm and less than about 90 nm. The integrated circuit can further include a transimpedance amplifier (TIA) receiving an output from the phototransistor. The phototransistor and the TIA can be built on a silicon substrate.
    Type: Application
    Filed: August 10, 2007
    Publication date: March 6, 2008
    Applicant: Cornell Research Foundation, Inc.
    Inventors: Alyssa Apsel, Anand Pappu, Cheng Chen, Tao Yin
  • Patent number: 7303968
    Abstract: A semiconductor device and a method of fabricating a semiconductor device having multiple subcollectors which are formed in a common wafer, in order to provide multiple structures having different characteristic and frequency response are provided. The subcollectors may be provided using different doses or different material implants resulting in devices having different optimum unity current gain cutoff frequency (fT) and breakdown voltage (BVCEO and BVCBO) on a common wafer.
    Type: Grant
    Filed: December 13, 2005
    Date of Patent: December 4, 2007
    Assignee: International Business Machines Corporation
    Inventors: James S. Dunn, Louis D. Lanzerotti, Steven H. Voldman
  • Patent number: 7297589
    Abstract: A method for making a heterojunction bipolar transistor includes the following steps: forming a heterojunction bipolar transistor by depositing, on a substrate, subcollector, collector, base, and emitter regions of semiconductor material; the step of depositing the subcollector region including depositing a material composition transition from a relatively larger bandgap material nearer the substrate to a relatively smaller bandgap material adjacent the collector; and the step of depositing the collector region including depositing a material composition transition from a relatively smaller bandgap material adjacent the subcollector to a relatively larger bandgap material adjacent the base.
    Type: Grant
    Filed: April 8, 2005
    Date of Patent: November 20, 2007
    Assignee: The Board of Trustees of The University of Illinois
    Inventor: Milton Feng
  • Patent number: 7285457
    Abstract: In the method for manufacturing a heterojunction bipolar transistor, a collector contact layer, a collector layer, a base layer, a base protection layer, an emitter layer, an emitter contact layer, and a WSi layer are sequentially formed on a substrate. A resist pattern is then formed on the WSi layer, and the WSi layer is patterned by using the resist pattern as a mask. Thereafter, the emitter contact layer and the emitter layer are sequentially removed by ICP (Inductively Coupled Plasma) dry etching by using the resist pattern as a mask.
    Type: Grant
    Filed: August 21, 2006
    Date of Patent: October 23, 2007
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Hidenori Takeda, Toshiharu Tambo
  • Patent number: 7264987
    Abstract: Provided is a method of fabricating an optoelectronic integrated circuit chip. In particular, a method of fabricating an optoelectronic integrated circuit chip is provided, in which an optical absorption layer of a wave-guide type optical detector is grown to be thicker than a collector layer of a hetero-junction bipolar transistor by using a selective area growth by metal organic chemical vapor deposition (MOCVD) method, and the wave-guide type optical detector and the hetero-junction bipolar transistor are integrated as a single chip on a semi-insulated InP substrate, thereby readily realizing the wave-guide type optical detector improved in quantum efficiency and having the ultra-high speed characteristics.
    Type: Grant
    Filed: December 16, 2004
    Date of Patent: September 4, 2007
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Eun Soo Nam, Ho Young Kim, Myoung Sook Oh, Dong Yun Jung, Seon Eui Hong, Kyoung Ik Cho
  • Patent number: 7256433
    Abstract: A bipolar transistor having enhanced characteristics is fabricated by etching a base mesa, which is formed below an emitter mesa (upper emitter layer) and a base electrode, so as to have jut regions on the edges of its generally rectangular region. A mask film, e.g., insulating film, is formed to cover the rectangular region and jut regions, and the base layer is etched by use of the insulating film as a mask to form a base mesa. Consequently, abnormal etching can be prevented from occurring along the base electrode and emitter mesa on the edges of the area where the base electrode and emitter mesa confront each other, and an increase in resistance between the base layer and the emitter layer can be prevented, whereby the bipolar transistor can have enhanced characteristics.
    Type: Grant
    Filed: April 28, 2004
    Date of Patent: August 14, 2007
    Assignee: Renesas Technology Corp.
    Inventors: Atsushi Kurokawa, Masao Yamane, Yoshinori Imamura
  • Patent number: 7145174
    Abstract: A semiconductor device can include a channel including a zinc-indium oxide film.
    Type: Grant
    Filed: March 12, 2004
    Date of Patent: December 5, 2006
    Assignees: Hewlett-Packard Development Company, LP., Oregon State University
    Inventors: Hai Q. Chiang, Randy L. Hoffman, David Hong, Nicole L. Dehuff, John F. Wager