With Heterojunction Interface Channel Or Gate, E.g., Hfet, Higfet, Sisfet, Hjfet, Hemt (epo) Patents (Class 257/E21.403)
  • Publication number: 20110272740
    Abstract: A field-effect transistor includes a first semiconductor layer formed on a substrate, and a second semiconductor layer. The first semiconductor layer has a containing region provided as an isolation region which contains non-conductive impurities, and a non-containing region which contains no non-conductive impurities. A first region is defined by a vicinity of a portion of the interface between the containing region and the non-containing region, the portion of the interface being below a gate electrode, the vicinity including the portion of the interface and being included in the containing region. The second semiconductor layer includes a second region which is located directly above the first region. The concentration of the non-conductive impurities of the second region is lower than that of the first region.
    Type: Application
    Filed: July 19, 2011
    Publication date: November 10, 2011
    Applicant: PANASONIC CORPORATION
    Inventors: Hidekazu UMEDA, Masahiro HIKITA, Tetsuzo UEDA
  • Publication number: 20110272742
    Abstract: A compound semiconductor device includes a substrate; a compound semiconductor layer formed on the substrate; a first insulating film formed on the compound semiconductor layer; a second insulating film formed on the first insulating film; and a gate electrode, a source electrode, and a drain electrode, each being formed on the compound semiconductor layer, wherein the gate electrode is formed of a first opening filled with a first conductive material via at least a gate insulator, and the first opening is formed in the first insulating film and configured to partially expose the compound semiconductor layer, and wherein the source electrode and the drain electrode are formed of a pair of second openings filled with at least a second conductive material, and the second openings are formed in at least the second insulating film and the first insulating film and configured to partially expose the compound semiconductor layer.
    Type: Application
    Filed: April 19, 2011
    Publication date: November 10, 2011
    Applicant: FUJITSU SEMICONDUCTOR LIMITED
    Inventors: Shinichi AKIYAMA, Kenji Nukui, Mutsumi Katou, Yoshitaka Watanabe, Tetsuya Itou, Yoichi Fujisawa, Toshiya Sato, Tsutomu Hosoda, Yuuichi Satou
  • Publication number: 20110272741
    Abstract: High electron mobility transistors (HEMTs) and methods of manufacturing the same. A HEMT may include a source electrode, a gate electrode, a drain electrode, a channel formation layer including at least a 2-dimensional electron gas (2DEG) channel, a channel supplying layer for forming the 2DEG channel in the channel formation layer, a portion of the channel supplying layer including a first oxygen treated region. The channel supplying layer may include a second oxygen treated region that extends from the first oxygen treated region towards the drain electrode, and the depth and concentration of oxygen of the second oxygen treated region may be less than those of the first oxygen treated region.
    Type: Application
    Filed: March 16, 2011
    Publication date: November 10, 2011
    Applicant: Samsung Electronic Co., Ltd.
    Inventor: In-Jun Hwang
  • Publication number: 20110275183
    Abstract: A III-nitride switch includes a recessed gate contact to produce a nominally off, or an enhancement mode, device. By providing a recessed gate contact, a conduction channel formed at the interface of two III-nitride materials is interrupted when the gate electrode is inactive to prevent current flow in the device. The gate electrode can be a schottky contact or an insulated metal contact. Two gate electrodes can be provided to form a bi-directional switch with nominally off characteristics. The recesses formed with the gate electrode can have sloped sides. The gate electrodes can be formed in a number of geometries in conjunction with current carrying electrodes of the device.
    Type: Application
    Filed: July 21, 2011
    Publication date: November 10, 2011
    Inventor: Robert Beach
  • Publication number: 20110260217
    Abstract: There is provided a semiconductor apparatus capable of achieving both a reverse blocking characteristic and a low on-resistance. The semiconductor apparatus includes a first semiconductor layer including a channel layer, a source electrode formed on the first semiconductor layer, a drain electrode formed at a distance from the source electrode on the first semiconductor layer, and a gate electrode formed between the source electrode and the drain electrode on the first semiconductor layer. The drain electrode includes a first drain region where reverse current between the first semiconductor layer and the first drain region is blocked, and a second drain region formed at a greater distance from the gate electrode than the first drain region, where a resistance between the first semiconductor layer and the second drain region is lower than a resistance between the first semiconductor layer and the first drain region.
    Type: Application
    Filed: December 11, 2009
    Publication date: October 27, 2011
    Inventors: Yasuhiro Okamoto, Yuji Ando, Tatsuo Nakayama, Kazuki Ota, Takashi Inoue, Hironobu Miyamoto, Kazuomi Endo
  • Publication number: 20110260216
    Abstract: Exemplary embodiments provide structures and methods for power devices with integrated clamp structures. The integration of clamp structures can protect the power device, e.g., from electrical overstress (EOS). In one embodiment, active devices can be formed over a substrate, while a clamp structure can be integrated outside the active regions of the power device, for example, under the active regions and/or inside the substrate. Integrating clamp structure outside active regions of power devices can maximize the active area for a given die size and improve robustness of the clamped device since the current will spread in the substrate by this integration.
    Type: Application
    Filed: November 19, 2010
    Publication date: October 27, 2011
    Inventor: Francois Hebert
  • Publication number: 20110260174
    Abstract: Exemplary embodiments provide structures and methods for power devices with integrated clamp structures. The integration of clamp structures can protect the power device, e.g., from electrical overstress (EOS). In one embodiment, active devices can be formed over a substrate, while a clamp structure can be integrated outside the active regions of the power device, for example, under the active regions and/or inside the substrate. Integrating clamp structure outside active regions of power devices can maximize the active area for a given die size and improve robustness of the clamped device since the current will spread in the substrate by this integration.
    Type: Application
    Filed: November 19, 2010
    Publication date: October 27, 2011
    Inventor: Francois Hebert
  • Patent number: 8043906
    Abstract: A III-nitride device includes a recessed electrode to produce a nominally off, or an enhancement mode, device. By providing a recessed electrode, a conduction channel formed at the interface of two III-nitride materials is interrupted when the electrode contact is inactive to prevent current flow in the device. The electrode can be a schottky contact or an insulated metal contact. Two ohmic contacts can be provided to form a rectifier device with nominally off characteristics. The recesses formed with the electrode can have sloped sides. The electrode can be formed in a number of geometries in conjunction with current carrying electrodes of the device. A nominally on device, or pinch resistor, is formed when the electrode is not recessed. A diode is also formed by providing non-recessed ohmic and schottky contacts through an insulator to an AlGaN layer.
    Type: Grant
    Filed: November 21, 2006
    Date of Patent: October 25, 2011
    Assignee: International Rectifier Corporation
    Inventor: Robert Beach
  • Publication number: 20110254055
    Abstract: A field effect transistor includes a channel layer of group-III nitride-based compound semiconductor; an interface layer formed on the channel layer and of AlXInYGa1-X-YN, where 0?X?1, 0?Y?1, and X+Y?1, which is different from material of the channel layer, an electron supplying layer of group-III nitride-based compound semiconductor formed on the interface layer, the electron supplying layer having a recess that reaches the interface layer; a source electrode and a drain electrode formed on the electron supplying layer on respective sides of the recess; an insulating film formed on an inner surface of the recess; and a gate electrode formed on the insulating film.
    Type: Application
    Filed: March 28, 2011
    Publication date: October 20, 2011
    Applicant: FURUKAWA ELECTRIC CO., LTD.
    Inventors: YOSHIHIRO SATO, TAKEHIKO NOMURA
  • Patent number: 8039329
    Abstract: A field effect transistor includes a nitride semiconductor layered structure that is formed on a substrate and includes a capping layer made of a compound represented by a general formula of InxAlyGa1?yN (wherein 0<x?1, 0?y<1 and 0<x+y?1). A non-alloy source electrode and a non-alloy drain electrode are formed on the capping layer so as to be spaced from each other.
    Type: Grant
    Filed: March 12, 2010
    Date of Patent: October 18, 2011
    Assignee: Panasonic Corporation
    Inventors: Satoshi Nakazawa, Tetsuzo Ueda
  • Patent number: 8039352
    Abstract: A method for fabricating a potential barrier for a nitrogen-face (N-face) nitride-based electronic device, comprising using a thickness and polarization induced electric field of a III-nitride interlayer, positioned between a first III-nitride layer and a second III-nitride layer, to shift, e.g., raise or lower, the first III-nitride layer's energy band with respect to the second III-nitride layer's energy band by a pre-determined amount. The first III-nitride layer and second III-nitride layer each have a higher or lower polarization coefficient than the III-nitride interlayer's polarization coefficient.
    Type: Grant
    Filed: May 27, 2008
    Date of Patent: October 18, 2011
    Assignee: The Regents of the University of California
    Inventors: Umesh K. Mishra, Tomas A. Palacios Gutierrez, Man-Hoi Wong
  • Patent number: 8034675
    Abstract: A composite buffer architecture for forming a III-V device layer on a silicon substrate and the method of manufacture is described. Embodiments of the present invention enable III-V InSb device layers with defect densities below 1×108 cm?2 to be formed on silicon substrates. In an embodiment of the present invention, a dual buffer layer is positioned between a III-V device layer and a silicon substrate to glide dislocations and provide electrical isolation. In an embodiment of the present invention, the material of each buffer layer is selected on the basis of lattice constant, band gap, and melting point to prevent many lattice defects from propagating out of the buffer into the III-V device layer. In a specific embodiment, a GaSb/AlSb buffer is utilized to form an InSb-based quantum well transistor on a silicon substrate.
    Type: Grant
    Filed: October 29, 2010
    Date of Patent: October 11, 2011
    Assignee: Intel Corporation
    Inventors: Mantu K. Hudait, Mohamad A. Shaheen, Dmitri Loubychev, Amy W. K. Liu, Joel M. Fastenau
  • Publication number: 20110241020
    Abstract: Embodiments of a high electron mobility transistor with recessed barrier layer, and methods of forming the same, are disclosed. Other embodiments are also be described and claimed.
    Type: Application
    Filed: March 31, 2010
    Publication date: October 6, 2011
    Applicant: TRIQUINT SEMICONDUCTOR, INC.
    Inventor: Paul Saunier
  • Patent number: 8030164
    Abstract: A method for manufacturing a compound semiconductor structure, includes (a) selecting a conductive SiC substrate in accordance with color and resistivity and (b) epitaxially growing a GaN series compound semiconductor layer on the selected conductive SiC substrate. The step (a) preferably selects a conductive SiC substrate whose main color is green, whose conductivity type is n-type and whose resistivity is 0.08 ?cm to 1×105 ?cm, or whose main color is black, whose conductivity type is p-type and whose resistivity is 1×103 ?cm to 1×105 ?cm, or whose main color is blue, whose conductivity type is p-type and whose resistivity is 10 ?cm to 1×105 ?cm. The step (b) preferably includes (b-1) growing an AlInGaN layer having a thickness not thinner than 10 ?m on the conductive SiC substrate by hydride VPE.
    Type: Grant
    Filed: October 9, 2008
    Date of Patent: October 4, 2011
    Assignee: Fujitsu Limited
    Inventors: Toshihide Kikkawa, Kenji Imanishi
  • Patent number: 8030686
    Abstract: A semiconductor device having a source electrode and a drain electrode formed over a semiconductor substrate, a gate electrode formed over the semiconductor substrate and disposed between the source electrode and the drain electrode, a protection film made of an insulating material and formed between the source electrode and the gate electrode and between the drain electrode and the gate electrode, and a gate side opening formed at least in one of a portion of the protection film between the source electrode and the gate electrode and a portion of the protection film between the drain electrode and the gate electrode and disposed away from all of the gate electrode, the source electrode and the drain electrode.
    Type: Grant
    Filed: January 29, 2009
    Date of Patent: October 4, 2011
    Assignee: Fujitsu Limited
    Inventor: Toshihiro Ohki
  • Publication number: 20110233612
    Abstract: There is provided a semiconductor device having a High Electron Mobility Transistor (HEMT) structure allowing for enhanced performance and a method of manufacturing the same. The semiconductor device includes a base substrate; a semiconductor layer provided on the base substrate; a source electrode, a gate electrode and a drain electrode provided on the semiconductor layer to be spaced apart from one another; and an ohmic-contact layer partially provided at an interface between the drain electrode and the semiconductor layer.
    Type: Application
    Filed: October 19, 2010
    Publication date: September 29, 2011
    Applicant: SAMSUNG ELECTRO-MECHANICS., LTD.
    Inventors: Ki Yeol PARK, Woo Chul Jeon, Young Hwan Park, Jung Hee Lee
  • Publication number: 20110233613
    Abstract: There are provided a semiconductor device and a method for manufacturing the same.
    Type: Application
    Filed: December 10, 2010
    Publication date: September 29, 2011
    Applicant: SAMSUNG ELECTRO-MECHANICS CO., LTD.
    Inventors: Woo Chul JEON, Ki Yeol Park, Young Hwan Park, Jung Hee Lee
  • Publication number: 20110233623
    Abstract: There is provided a semiconductor device and a method of manufacturing the same.
    Type: Application
    Filed: December 10, 2010
    Publication date: September 29, 2011
    Applicant: SAMSUNG ELECTRO-MECHANICS CO., LTD.
    Inventors: Ki Yeol PARK, Woo Chul Jeon, Young Hwan Park, Jung Hee Lee
  • Publication number: 20110233520
    Abstract: There is provided a semiconductor device including a base substrate; a semiconductor layer formed on the base substrate and having a mesa protrusion including a receiving groove; a source electrode and a drain electrode disposed to be spaced apart from each other on the semiconductor layer, the source electrode having a source leg and the drain electrode having a drain leg; and a gate electrode insulated from the source electrode and the drain electrode and having a recess part received into the receiving groove. The mesa protrusion has a superlattice structure including at least one trench at an interface between the mesa protrusion and the source electrode and between the mesa protrusion and the drain electrode, respectively, and the source leg and the drain leg are received in the trench.
    Type: Application
    Filed: December 9, 2010
    Publication date: September 29, 2011
    Applicant: SAMSUNG ELECTRO-MECHANICS CO., LTD.
    Inventors: Woo Chul JEON, Ki Yeol Park, Young Hwan Park, Jung Hee Lee
  • Patent number: 8026132
    Abstract: An improved HEMT formed from a GaN material system is disclosed which has reduced gate leakage current relative to known GaN based HEMTs and eliminates the problem of current constrictions resulting from deposition of the gate metal over the step discontinuities formed over the gate mesa. The HEMT device is formed from a GaN material system. One or more GaN based materials are layered and etched to form a gate mesa with step discontinuities defining source and drain regions. In order to reduce the leakage current, the step discontinuities are back-filled with an insulating material, such as silicon nitride (SiN), forming a flat surface relative to the source and drain regions, to enable to the gate metal to lay flat. By back-filling the source and drain regions with an insulating material, leakage currents between the gate and source and the gate and drain are greatly reduced. In addition, current constrictions resulting from the deposition of the gate metal over a step discontinuity are virtually eliminated.
    Type: Grant
    Filed: February 5, 2008
    Date of Patent: September 27, 2011
    Assignee: Northrop Grumman Systems Corporation
    Inventors: Rajinder Randy Sandhu, Michael Edward Barsky, Michael Wojtowicz
  • Publication number: 20110217816
    Abstract: A field effect transistor includes: a nitride semiconductor layer having a channel layer; a gate electrode including a Schottky electrode that contacts the nitride semiconductor layer and includes a gallium doped zinc oxide (GZO) layer annealed in an inactive gas atmosphere; and ohmic electrodes connecting with the channel layer.
    Type: Application
    Filed: May 18, 2011
    Publication date: September 8, 2011
    Applicant: EUDYNA DEVICES INC.
    Inventor: Keita MATSUDA
  • Patent number: 8013346
    Abstract: There is provided a light emitting device in which low power consumption can be realized even in the case of a large screen. The surface of a source signal line or a power supply line in a pixel portion is plated to reduce a resistance of a wiring. The source signal line in the pixel portion is manufactured by a step different from a source signal line in a driver circuit portion. The power supply line in the pixel portion is manufactured by a step different from a power supply line led on a substrate. A terminal is similarly plated to made the resistance reduction. It is desirable that a wiring before plating is made of the same material as a gate electrode and the surface of the wiring is plated to form the source signal line or the power supply line.
    Type: Grant
    Filed: September 8, 2009
    Date of Patent: September 6, 2011
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Jun Koyama, Mai Osada
  • Publication number: 20110212582
    Abstract: A method of manufacturing a High Electron Mobility Transistor (HEMT) may include forming first and second material layers having different lattice constants on a substrate, forming a source, a drain, and a gate on the second material layer, and changing the second material layer between the gate and the drain into a different material layer, or changing a thickness of the second material layer, or forming a p-type semiconductor layer on the second material layer. The change in the second material layer may occur in an entire region of the second material layer between the gate and the drain, or only in a partial region of the second material layer adjacent to the gate. The p-type semiconductor layer may be formed on an entire top surface of the second material layer between the gate and the drain, or only on a partial region of the top surface adjacent to the gate.
    Type: Application
    Filed: January 31, 2011
    Publication date: September 1, 2011
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Ki-ha Hong, U-in Chung, Jai-kwang Shin, Jae-joon Oh, Jong-seob Kim, Hyuk-soon Choi, In-jun Hwang
  • Publication number: 20110210377
    Abstract: A semiconductor device is described. In one embodiment, the device includes a Group-III nitride channel layer and a Group-III nitride barrier layer on the Group-III nitride channel layer, wherein the Group-III nitride barrier layer includes a first portion and a second portion, the first portion having a thickness less than the second portion. A p-doped Group-III nitride gate layer section is arranged at least on the first portion of the Group-III nitride barrier layer and a gate contact formed on the p-doped Group-III nitride gate layer.
    Type: Application
    Filed: February 26, 2010
    Publication date: September 1, 2011
    Applicant: INFINEON TECHNOLOGIES AUSTRIA AG
    Inventors: Oliver Haeberlen, Walter Rieger
  • Publication number: 20110210378
    Abstract: A high electron mobility transistor includes a free-standing supporting base having a III nitride region, a first III nitride barrier layer which is provided on the first III nitride barrier layer, a III nitride channel layer which is provided on the first III nitride barrier layer and forms a first heterojunction with the first III nitride barrier layer, a gate electrode provided on the III nitride channel layer so as to exert an electric field on the first heterojunction, a source electrode on the III nitride channel layer and the first III nitride barrier, and a drain electrode on the III nitride channel layer and the first III nitride barrier. The III nitride channel layer has compressive internal strain, and the piezoelectric field of the III nitride channel layer is oriented in the direction from the supporting base towards the first III nitride barrier layer.
    Type: Application
    Filed: July 29, 2010
    Publication date: September 1, 2011
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Masaki UENO, Takashi KYONO, Yohei ENYA, Takamichi SUMITOMO, Yusuke YOSHIZUMI
  • Publication number: 20110204381
    Abstract: There are provided a semiconductor device that includes a bypass protection unit against surge voltage or the like, achieves good withstand voltage characteristics and low on-resistance (low On-state voltage), has a simple structure, and is used for large-current purpose and a method for producing the semiconductor device. In the present invention, the semiconductor device includes an n+-type GaN substrate 1 having a GaN layer that is in ohmic contact with a supporting substrate, a FET having an n?-type GaN drift layer 2 in a first region R1, and an SBD having an anode electrode in a second region R2, the anode electrode being in Schottky contact with the n?-type GaN drift layer 2. The FET and the SBD are arranged in parallel. A drain electrode D of the FET and a cathode electrode C of the SBD are formed on the back of the n+-type GaN substrate 1.
    Type: Application
    Filed: July 9, 2010
    Publication date: August 25, 2011
    Applicants: SUMITOMO ELECTRIC INDUSTRIES, LTD., SUMITOMO ELECTRIC DEVICE INNOVATIONS, INC.
    Inventors: Masaya Okada, Makoto Kiyama, Seiji Yaegashi, Ken Nakata
  • Patent number: 8004010
    Abstract: In a semiconductor device with a shared contact, a gate electrode is formed via a gate insulating film on a semiconductor substrate and a sidewall insulating film is formed on both side faces of the gate electrode. At least one of the surface parts of the semiconductor substrate adjacent to both sides of the gate electrode is removed beyond the lower part of the sidewall insulating film and to the underside of the gate electrode. Then, the gate insulating film exposed in the remove part is removed. An impurity-doped semiconductor layer is formed in the part where the semiconductor substrate and the gate insulating film have been removed.
    Type: Grant
    Filed: February 21, 2008
    Date of Patent: August 23, 2011
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Hideki Inokuma
  • Patent number: 8003452
    Abstract: A compound semiconductor device includes a carrier transit layer formed over a substrate; a carrier supply layer formed over the carrier transit layer; a first metal film and a second metal film formed over the carrier supply layer; a first Al comprising film formed over the first metal film; a second Al comprising film formed over the second metal film; a first Au comprising film formed over the first metal film and is free of direct contact with the first Al comprising film; a second Au comprising film formed over the second metal film and free of direct contact with the second Al comprising film; and a gate electrode that is located over the carrier supply layer between the first metal film and the second metal film.
    Type: Grant
    Filed: December 16, 2009
    Date of Patent: August 23, 2011
    Assignee: Fujitsu Limited
    Inventor: Toshihiro Ohki
  • Publication number: 20110193096
    Abstract: An n-type GaN layer (3), a GaN layer (7) formed over the n-type GaN layer (3), an n-type AlGaN layer (9) formed over the GaN layer (7), a gate electrode (15) and a source electrode (13) formed over the n-type AlGaN layer (9), a drain electrode (14) formed below the n-type GaN layer (3), and a p-type GaN layer (4) formed between the GaN layer (7) and the drain electrode (14) are provided.
    Type: Application
    Filed: April 21, 2011
    Publication date: August 11, 2011
    Applicant: FUJITSU LIMITED
    Inventor: Tadahiro IMADA
  • Patent number: 7994538
    Abstract: A semiconductor device to which a stress technique is applied and in which a leakage current caused by silicidation can be suppressed. A gate electrode is formed over an element region defined by an isolation region formed in a semiconductor substrate with a gate insulating film between. Extension regions and source/drain regions are formed in the element region on both sides of the gate electrode. In addition, a semiconductor layer which differs from the semiconductor substrate in lattice constant is formed apart from at least part of the isolation region. By doing so, the formation of a spike near the isolation region is suppressed even if a silicide layer is formed. Accordingly, a leakage current caused by such a spike can be suppressed.
    Type: Grant
    Filed: September 5, 2008
    Date of Patent: August 9, 2011
    Assignee: Fujitsu Semiconductor Limited
    Inventor: Young Suk Kim
  • Publication number: 20110186855
    Abstract: An enhancement-mode GaN MOSFET with a low leakage current and an improved reliability is formed by utilizing a SiO2/Si3N4 gate insulation layer on an AlGaN (or InAlGaN) barrier layer. The Si3N4 portion of the SiO2/Si3N4 gate insulation layer significantly reduces the formation of interface states at the junction between the gate insulation layer and the barrier layer, while the SiO2 portion of the SiO2/Si3N4 gate insulation layer significantly reduces the leakage current.
    Type: Application
    Filed: January 30, 2010
    Publication date: August 4, 2011
    Inventor: Jamal Ramdani
  • Publication number: 20110189826
    Abstract: The contact resistance between an Ohmic electrode and an electron transit layer is reduced compared with a case in which the Ohmic electrode is provided to a depth less than the heterointerface. As a result, for an Ohmic electrode provided in a structure comprising an electron transit layer formed of a first semiconductor layer formed on a substrate, an electron supply layer comprising a second semiconductor layer forming a heterojunction with the electron transit layer and having a smaller electron affinity than the first semiconductor layer, and a two-dimensional electron layer induced in the electron transit layer in the vicinity of the heterointerface, the end portion of the Ohmic electrode is positioned in the electron transit layer in penetration into the electron supply layer at a depth equal to or greater than the heterointerface.
    Type: Application
    Filed: April 5, 2011
    Publication date: August 4, 2011
    Applicant: OKI ELECTRIC INDUSTRY CO., LTD.
    Inventors: Juro Mita, Katsuaki Kaifu
  • Patent number: 7989278
    Abstract: The compound semiconductor device comprises an i-GaN buffer layer 12 formed on an SiC substrate 10; an n-AlGaN electron supplying layer 16 formed on the i-GaN buffer layer 12; an n-GaN cap layer 18 formed on the n-AlGaN electron supplying layer 16; a source electrode 20 and a drain electrode 22 formed on the n-GaN cap layer 18; a gate electrode 26 formed on the n-GaN cap layer 18 between the source electrode 20 and the drain electrode 22; a first protection layer 24 formed on the n-GaN cap layer 18 between the source electrode 20 and the drain electrode 22; and a second protection layer 30 buried in an opening 28 formed in the first protection layer 24 between the gate electrode 26 and the drain electrode 22 down to the n-GaN cap layer 18 and formed of an insulation film different from the first protection layer.
    Type: Grant
    Filed: December 31, 2008
    Date of Patent: August 2, 2011
    Assignee: Fujitsu Limited
    Inventor: Toshihide Kikkawa
  • Patent number: 7989816
    Abstract: A semiconductor device is, constituted by: a nitride group semiconductor functional layer which includes a first nitride group semiconductor region, a second nitride group semiconductor region provided on the first nitride group semiconductor region by a hetero junction, and a two-dimensional carrier gas channel near the hetero junction of the first nitride group semiconductor region; a first main electrode and a second main electrode connected to the two-dimensional carrier gas channel by ohmic contact; and a gate electrode disposed between the first main electrode and the second main electrode. The nitride group semiconductor region has different thicknesses between the second main electrode and the gate electrode, and between the first main electrode and the gate electrode.
    Type: Grant
    Filed: May 22, 2009
    Date of Patent: August 2, 2011
    Assignee: Sanken Electric Co., Ltd.
    Inventor: Ken Sato
  • Publication number: 20110183480
    Abstract: The present invention is related to a semiconductor device with group III-V channel and group IV source-drain and a method for manufacturing the same. Particularly, the energy level density and doping concentration of group III-V materials are increased by the heteroepitaxy of group III-V and group IV materials and the structural design of elements. The method comprises: preparing a substrate; depositing a dummy gate material layer on the substrate and defining a dummy gate from the dummy gate material layer by photolithography; performing doping by self-aligned ion implantation using the dummy gate as a mask and performing activation at high temperature, so as to form source-drain; removing the dummy gate; forming a recess in the substrate between the source-drain pair by etching; forming a channel-containing stacked element in the recess by epitaxy; and forming a gate on the channel-containing stacked element.
    Type: Application
    Filed: March 10, 2011
    Publication date: July 28, 2011
    Inventor: Chun-Yen CHANG
  • Publication number: 20110180854
    Abstract: A method includes forming a relaxed layer in a semiconductor device. The method also includes forming a tensile layer over the relaxed layer, where the tensile layer has tensile stress. The method further includes forming a compressive layer over the relaxed layer, where the compressive layer has compressive stress. The compressive layer has a piezoelectric polarization that is approximately equal to or greater than a spontaneous polarization in the relaxed, tensile, and compressive layers. The piezoelectric polarization in the compressive layer could be in an opposite direction than the spontaneous polarization in the compressive layer. The relaxed layer could include gallium nitride, the tensile layer could include aluminum gallium nitride, and the compressive layer could include aluminum indium gallium nitride.
    Type: Application
    Filed: January 27, 2010
    Publication date: July 28, 2011
    Applicant: NATIONAL SEMICONDUCTOR CORPORATION
    Inventor: Jamal Ramdani
  • Patent number: 7985637
    Abstract: After an n-type AlGaN barrier layer (3) is formed over a substrate (1), an n-type GaN contact layer (4) is formed over the n-type AlGaN barrier layer (3). Next, the n-type GaN contact layer (4) is wet-etched with using an etching solution containing an organic alkali agent and an oxidizer while the n-type GaN contact layer (4) is irradiated with an ultraviolet illumination.
    Type: Grant
    Filed: September 9, 2008
    Date of Patent: July 26, 2011
    Assignee: Fujitsu Limited
    Inventor: Naoya Okamoto
  • Patent number: 7977706
    Abstract: Semiconductor structures include a trench formed proximate a substrate including a first semiconductor material. A crystalline material including a second semiconductor material lattice mismatched to the first semiconductor material is formed in the trench. Process embodiments include removing a portion of the dielectric layer to expose a side portion of the crystalline material and defining a gate thereover. Defects are reduced by using an aspect ratio trapping approach.
    Type: Grant
    Filed: August 13, 2010
    Date of Patent: July 12, 2011
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventor: Anthony J. Lochtefeld
  • Publication number: 20110156099
    Abstract: When forming sophisticated high-k metal gate electrode structures, the removal of a dielectric cap material may be accomplished with superior process uniformity by using a silicon dioxide material. In other illustrative embodiments, an enhanced spacer regime may be applied, thereby also providing superior implantation conditions for forming drain and source extension regions and drain and source regions.
    Type: Application
    Filed: October 19, 2010
    Publication date: June 30, 2011
    Inventors: Jan Hoentschel, Sven Beyer, Thilo Scheiper, Uwe Griebenow
  • Publication number: 20110156100
    Abstract: A high electron mobility transistor includes a substrate, a buffer layer, a channel layer, a spacer layer, a schottky layer and a cap layer. The buffer layer is formed on the substrate. The channel layer is formed on the buffer layer, in which the channel layer comprises a superlattice structure formed with a plurality of indium gallium arsenide thin films alternately stacked with a plurality of indium arsenide thin films. The spacer layer is formed on the channel layer. The schottky layer is formed on the spacer layer. The cap layer is formed on the schottky layer.
    Type: Application
    Filed: April 13, 2010
    Publication date: June 30, 2011
    Applicant: NATIONAL CHIAO TUNG UNIVERSITY
    Inventors: Edward Yi Chang, Chien-I Kuo, Heng-Tung Hsu
  • Publication number: 20110156006
    Abstract: In one embodiment, the present invention includes an apparatus having a substrate, a buried oxide layer formed on the substrate, a silicon on insulator (SOI) core formed on the buried oxide layer, a compressive strained quantum well (QW) layer wrapped around the SOI core, and a tensile strained silicon layer wrapped around the QW layer. Other embodiments are described and claimed.
    Type: Application
    Filed: March 11, 2011
    Publication date: June 30, 2011
    Inventors: Chi On Chui, Prashant Majhi, Wilman Tsai, Jack T. Kavalieros
  • Patent number: 7968865
    Abstract: A heterostructure having a heterojunction comprising: a diamond layer; and a boron aluminum nitride (B(x)Al(1-x)N) layer disposed in contact with a surface of the diamond layer, where x is between 0 and 1.
    Type: Grant
    Filed: July 6, 2009
    Date of Patent: June 28, 2011
    Assignee: Raytheon Company
    Inventors: Jeffrey R. LaRoche, William E. Hoke, Steven D. Bernstein, Ralph Korenstein
  • Publication number: 20110147797
    Abstract: A method for fabricating a transistor and the resulting transistor is disclosed. The method generally includes steps (A) to (E). Step (A) may form a high mobility layer. The high mobility layer is generally configured to carry a two-dimensional electron gas. Step (B) may form a planar layer on the high mobility layer. Step (C) may form a barrier layer on the planar layer. Step (D) may form a doped layer on the barrier layer. The doped layer is generally a low bandgap III-V semiconductor. Step (E) may form a gate in contact with the doped layer. The gate may be separated from both a source and a drain by corresponding ungated recess regions. The high mobility layer, the planar layer, the barrier layer, the doped layer, the source, the gate and the drain are generally configured as a pseudomorphic high electron mobility transistor.
    Type: Application
    Filed: December 21, 2009
    Publication date: June 23, 2011
    Inventors: Timothy E. Boles, Andrew K. Freeston, Costas D. Varmazis
  • Publication number: 20110147706
    Abstract: Embodiments of the present disclosure describe techniques and configurations to impart strain to integrated circuit devices such as horizontal field effect transistors. An integrated circuit device includes a semiconductor substrate, a first barrier layer coupled with the semiconductor substrate, a quantum well channel coupled to the first barrier layer, the quantum well channel comprising a first material having a first lattice constant, and a source structure coupled to the quantum well channel, the source structure comprising a second material having a second lattice constant, wherein the second lattice constant is different than the first lattice constant to impart a strain on the quantum well channel. Other embodiments may be described and/or claimed.
    Type: Application
    Filed: December 23, 2009
    Publication date: June 23, 2011
    Inventors: Marko Radosavljevic, Gilbert Dewey, Niloy Mukherjee, Ravi Pillarisetty
  • Publication number: 20110147798
    Abstract: Conductivity improvements in III-V semiconductor devices are described. A first improvement includes a barrier layer that is not coextensively planar with a channel layer. A second improvement includes an anneal of a metal/Si, Ge or SiliconGermanium/III-V stack to form a metal-Silicon, metal-Germanium or metal-SiliconGermanium layer over a Si and/or Germanium doped III-V layer. Then, removing the metal layer and forming a source/drain electrode on the metal-Silicon, metal-Germanium or metal-SiliconGermanium layer. A third improvement includes forming a layer of a Group IV and/or Group VI element over a III-V channel layer, and, annealing to dope the III-V channel layer with Group IV and/or Group VI species. A fourth improvement includes a passivation and/or dipole layer formed over an access region of a III-V device.
    Type: Application
    Filed: December 23, 2009
    Publication date: June 23, 2011
    Inventors: Marko Radosavljevic, Prashant Majhi, Jack T. Kavalieros, Niti Goel, Wilman Tsai, Niloy Mukherjee, Yong Ju Lee, Gilbert Dewey, Willy Rachmady
  • Publication number: 20110147708
    Abstract: Embodiments of the present disclosure describe structures and techniques to increase carrier injection velocity for integrated circuit devices. An integrated circuit device includes a semiconductor substrate, a first barrier film coupled with the semiconductor substrate, a quantum well channel coupled to the first barrier film, the quantum well channel comprising a first material having a first bandgap energy, and a source structure coupled to launch mobile charge carriers into the quantum well channel, the source structure comprising a second material having a second bandgap energy, wherein the second bandgap energy is greater than the first bandgap energy. Other embodiments may be described and/or claimed.
    Type: Application
    Filed: December 21, 2009
    Publication date: June 23, 2011
    Inventors: Marko Radosavljevic, Benjamin Chu-Kung, Gilbert Dewey, Niloy Mukherjee
  • Publication number: 20110140169
    Abstract: In one embodiment, a method for fabricating a III-Nitride transistor on a III-Nitride semiconductor body is disclosed. The method comprises etching dielectric trenches in a field dielectric overlying gate, source, and drain regions of the III-Nitride semiconductor body, and thereafter forming a gate dielectric over the gate, source and drain regions. The method further comprises forming a blanket diffusion barrier over the gate dielectric layer, and then removing respective portions of the blanket diffusion barrier from the source and drain regions. Thereafter, gate dielectric is removed from the source and drain regions to substantially expose the source and drain regions. Then, ohmic contacts are formed by depositing contact metal in the source and drain regions. The method results in highly conductive source/drain contacts that are particularly suitable for power transistors, for example, III-Nitride transistors, such as GaN transistors.
    Type: Application
    Filed: December 10, 2009
    Publication date: June 16, 2011
    Applicant: INTERNATIONAL RECTIFIER CORPORATION
    Inventor: Michael A. Briere
  • Publication number: 20110140174
    Abstract: A compound semiconductor device is comprised of: a compound semiconductor layer including a first active layer and a second active layer forming a hetero junction with the first active layer so as to naturally generate a two-dimensional carrier gas channel in the first active layer along the hetero junction; a first electrode formed on the second active layer; a second electrode in ohmic contact with the first active layer and isolated from the first electrode; and a channel modifier for locally changing a part of the first active layer under the channel modifier into a normally-off state, the channel modifier being formed on the second active layer so as to enclose but be isolated from the first electrode and the second electrode.
    Type: Application
    Filed: December 7, 2010
    Publication date: June 16, 2011
    Applicant: Sanken Electric Co., Ltd.
    Inventor: Nobuo KANEKO
  • Publication number: 20110140087
    Abstract: A quantum well device and a method for manufacturing the same are disclosed. In one aspect, the device includes a quantum well region overlying a substrate, a gate region overlying a portion of the quantum well region, a source and drain region adjacent to the gate region. The quantum well region includes a buffer structure overlying the substrate and including semiconductor material having a first band gap, a channel structure overlying the buffer structure including a semiconductor material having a second band gap, and a barrier layer overlying the channel structure and including an un-doped semiconductor material having a third band gap. The first and third band gap are wider than the second band gap. Each of the source and drain region is self-aligned to the gate region and includes a semiconductor material having a doped region and a fourth band gap wider than the second band gap.
    Type: Application
    Filed: February 24, 2011
    Publication date: June 16, 2011
    Applicants: IMEC, Katholieke Universiteit Leuven
    Inventors: Geert Hellings, Geert Eneman, Marc Meuris
  • Patent number: 7955932
    Abstract: A single electron transistor includes source/drain layers disposed apart on a substrate, at least one nanowire channel connecting the source/drain layers, a plurality of oxide channel areas in the nanowire channel, the oxide channel areas insulating at least one portion of the nanowire channel, a quantum dot in the portion of the nanowire channel insulated by the plurality of oxide channel areas, and a gate electrode surrounding the quantum dot.
    Type: Grant
    Filed: October 3, 2007
    Date of Patent: June 7, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Sung-Dae Suk, Kyoung-Hwan Yeo, Ming Li, Yun-Young Yeoh