With Gate At Side Of Channel (epo) Patents (Class 257/E21.442)
  • Patent number: 8466027
    Abstract: Improved silicide formation and associated devices are disclosed. An exemplary method includes providing a semiconductor material having spaced source and drain regions therein, forming a gate structure interposed between the source and drain regions, performing a gate replacement process on the gate structure to form a metal gate electrode therein, forming a hard mask layer over the metal gate electrode, forming silicide layers on the respective source and drain regions in the semiconductor material, removing the hard mask layer to expose the metal gate electrode, and forming source and drain contacts, each source and drain contact being conductively coupled to a respective one of the silicide layers.
    Type: Grant
    Filed: September 8, 2011
    Date of Patent: June 18, 2013
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Hung-Ming Chen, Chih-Hao Chang, Chih-Hao Yu
  • Patent number: 8460996
    Abstract: An integrated circuit with devices having dielectric layers with different thicknesses. The dielectric layers include a high-k dielectric and some of the dielectric layers include an oxide layer that is formed from an oxidation process. Each device includes a layer including germanium or carbon located underneath the electrode stack of the device. A silicon cap layers is located over the layer including germanium or carbon.
    Type: Grant
    Filed: October 31, 2007
    Date of Patent: June 11, 2013
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Gauri V. Karve, Mark D. Hall, Srikanth B. Samavedam
  • Patent number: 8455321
    Abstract: A method of forming an integrated circuit structure includes forming a first insulation region and a second insulation region in a semiconductor substrate and facing each other; and forming an epitaxial semiconductor region having a reversed T-shape. The epitaxial semiconductor region includes a horizontal plate including a bottom portion between and adjoining the first insulation region and the second insulation region, and a fin over and adjoining the horizontal plate. The bottom of the horizontal plate contacts the semiconductor substrate. The method further includes forming a gate dielectric on a top surface and at least top portions of sidewalls of the fin; and forming a gate electrode over the gate dielectric.
    Type: Grant
    Filed: November 11, 2011
    Date of Patent: June 4, 2013
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Li-Shyue Lai, Jing-Cheng Lin
  • Patent number: 8399938
    Abstract: An FET device includes a plurality of Fin-FET devices. The fins of the Fin-FET devices are composed of a first material. The FET device includes a second material, which is epitaxially merging the fins. The fins are vertically recessed relative to an upper surface of the second material. The FET device furthermore includes a continuous silicide layer formed over the fins and over the second material, and a stress liner covering the device.
    Type: Grant
    Filed: February 25, 2012
    Date of Patent: March 19, 2013
    Assignee: International Business Machines Corporation
    Inventors: Kangguo Cheng, Bruce B. Doris, Ali Khakifirooz, Pranita Kulkarni, Ghavam G. Shahidi
  • Patent number: 8389367
    Abstract: The present application discloses a method for manufacturing a semiconductor device, comprising: forming a local buried isolation dielectric layer in a semiconductor substrate; forming a fin in the semiconductor substrate and on top of the local buried isolation dielectric layer; forming a gate stack structure on a top surface and side surfaces of the fin; forming source/drain structures in portions of the fin which are on opposite sides of the gate stack structure; and performing metallization. A conventional quasi-planar top-down process is utilized in the present invention to achieve a good compatibility with the CMOS planar processes, easy integration, and suppression of short channel effects, which promotes the development of MOSFETs having reduced sizes.
    Type: Grant
    Filed: April 8, 2011
    Date of Patent: March 5, 2013
    Assignee: Institute of Microelectronics, Chinese Academy of Sciences
    Inventors: Huajie Zhou, Qiuxia Xu
  • Patent number: 8362561
    Abstract: A transistor device (10), the transistor device (10) comprising a substrate (11, 14), a fin (3, 3A) aligned along a horizontal direction on the substrate (11, 14), a first source/drain region (4) of a first type of conductivity in the fin (3, 3A), a second source/drain region (5) of a second type of conductivity in the fin (3, 3A), wherein the first type of conductivity differs from the second type of conductivity, a channel region (33) in the fin (3, 3A) between the first source/drain region (4) and the second source/drain region (5), a gate insulator (6) on the channel region (33), and a gate structure (7, 8) on the gate insulator (6), wherein the sequence of the first source/drain region (4), the channel region (33) and the second source/drain region (5) is aligned along the horizontal direction.
    Type: Grant
    Filed: December 10, 2007
    Date of Patent: January 29, 2013
    Assignee: NXP B.V.
    Inventors: Sebastien Nuttinck, Gilberto Curatola
  • Publication number: 20120309149
    Abstract: A non-planar transistor having floating body structures and methods for fabricating the same are disclosed. In certain embodiments, the transistor includes a fin having upper and lower doped regions. The upper doped regions may form a source and drain separated by a shallow trench formed in the fin. During formation of the fin, a hollow region may be formed underneath the shallow trench, isolating the source and drain. An oxide may be formed in the hollow region to form a floating body structure, wherein the source and drain are isolated from each other and the substrate formed below the fin. In some embodiments, independently bias gates may be formed adjacent to walls of the fin. In other embodiments, electrically coupled gates may be formed adjacent to the walls of the fin.
    Type: Application
    Filed: August 13, 2012
    Publication date: December 6, 2012
    Applicant: Micron Technology, Inc
    Inventor: Werner Juengling
  • Patent number: 8263451
    Abstract: A method of forming an integrated circuit structure includes providing a wafer including a substrate and a semiconductor fin at a major surface of the substrate, and performing a deposition step to epitaxially grow an epitaxy layer on a top surface and sidewalls of the semiconductor fin, wherein the epitaxy layer includes a semiconductor material. An etch step is then performed to remove a portion of the epitaxy layer, with a remaining portion of the epitaxy layer remaining on the top surface and the sidewalls of the semiconductor fin.
    Type: Grant
    Filed: February 26, 2010
    Date of Patent: September 11, 2012
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chien-Chang Su, Tsz-Mei Kwok, Hsien-Hsin Lin, Hsueh-Chang Sung, Yi-Fang Pai, Kuan-Yu Chen
  • Patent number: 8247275
    Abstract: Non-planar transistors, such as FINFETs, may be formed on the basis of a globally strained semiconductor material, thereby preserving a high uniaxial strain component in the resulting semiconductor fins. In this manner, a significant performance enhancement may be achieved without adding process complexity when implementing FINFET transistors.
    Type: Grant
    Filed: October 6, 2010
    Date of Patent: August 21, 2012
    Assignee: GlobalFoundries, Inc.
    Inventors: Jan Hoentschel, Sven Beyer, Uwe Griebenow
  • Patent number: 8211759
    Abstract: FinFET end-implanted-semiconductor structures and methods of manufacture are disclosed herein. The method includes forming at least one mandrel on a silicon layer of a substrate comprising an underlying insulator layer. The method further includes etching the silicon layer to form at least one silicon island under the at least one mandrel. The method further includes ion-implanting sidewalls of the at least one silicon island to form doped regions on the sidewalls. The method further includes forming a dielectric layer on the substrate, a top surface of which is planarized to be coplanar with a top surface of the at least one mandrel. The method further includes removing the at least one mandrel to form an opening in the dielectric layer. The method further includes etching the at least one silicon island to form at least one fin island having doped source and drain regions.
    Type: Grant
    Filed: October 21, 2010
    Date of Patent: July 3, 2012
    Assignee: International Business Machines Corporation
    Inventors: Brent A. Anderson, Edward J. Nowak
  • Patent number: 8207038
    Abstract: A method for fabricating an FET device is disclosed. The method includes Fin-FET devices with fins that are composed of a first material, and then merged together by epitaxial deposition of a second material. The fins are vertically recesses using a selective etch. A continuous silicide layer is formed over the increased surface areas of the first material and the second material, leading to smaller resistance. A stress liner overlaying the FET device is afterwards deposited. An FET device is also disclosed, which FET device includes a plurality of Fin-FET devices, the fins of which are composed of a first material. The FET device includes a second material, which is epitaxially merging the fins. The fins are vertically recessed relative to an upper surface of the second material. The FET device furthermore includes a continuous silicide layer formed over the fins and over the second material, and a stress liner covering the device.
    Type: Grant
    Filed: May 24, 2010
    Date of Patent: June 26, 2012
    Assignee: International Business Machines Corporation
    Inventors: Kangguo Cheng, Bruce B. Doris, Ali Khakifirooz, Pranita Kulkarni, Ghavam G. Shahidi
  • Patent number: 8168492
    Abstract: In semiconductor devices, and methods of formation thereof, both planar-type memory devices and vertically oriented thin body devices are formed on a common semiconductor layer. In a memory device, for example, it is desirable to have planar-type transistors in a peripheral region of the device, and vertically oriented thin body transistor devices in a cell region of the device. In this manner, the advantageous characteristics of each type of device can be applied to appropriate functions of the memory device.
    Type: Grant
    Filed: April 5, 2010
    Date of Patent: May 1, 2012
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Sung-Min Kim, Dong-Gun Park, Dong-Won Kim, Min-Sang Kim, Eun-jung Yun
  • Patent number: 8115245
    Abstract: A nonvolatile memory device includes: a substrate; a stacked structure member including a plurality of dielectric films and a plurality of electrode films alternately stacked on the substrate and including a through-hole penetrating through the plurality of the dielectric films and the plurality of the electrode films in a stacking direction of the plurality of the dielectric films and the plurality of the electrode films; a semiconductor pillar provided in the through-hole; and a charge storage layer provided between the semiconductor pillar and each of the plurality of the electrode films. At least one of the dielectric films includes a film generating one of a compressive stress and a tensile stress, and at least one of the electrode films includes a film generating the other of the compressive stress and the tensile stress.
    Type: Grant
    Filed: September 4, 2009
    Date of Patent: February 14, 2012
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Yasuhito Yoshimizu, Fumiki Aiso, Atsushi Fukumoto, Takashi Nakao
  • Patent number: 8080848
    Abstract: According to the present invention, semiconductor device breakdown voltage can be increased by embedding field shaping regions within a drift region of the semiconductor device. A controllable current path extends between two device terminals on the top surface of a planar substrate, and the controllable current path includes the drift region. Each field shaping region includes two or more electrically conductive regions that are electrically insulated from each other, and which are capacitively coupled to each other to form a voltage divider dividing a potential between the first and second terminals. One or more of the electrically conductive regions are isolated from any external electrical contact. Such field shaping regions can provide enhanced electric field uniformity in current-carrying parts of the drift region, thereby increasing device breakdown voltage.
    Type: Grant
    Filed: May 10, 2007
    Date of Patent: December 20, 2011
    Assignee: Fairchild Semiconductor Corporation
    Inventors: Mohamed N. Darwish, Robert Kuo-Chang Yang
  • Patent number: 8076190
    Abstract: A semiconductor device and a method of fabricating a semiconductor device is disclosed, the method comprises including: forming etching an oxide layer to form a pattern of parallel oxide bars on a substrate; forming nitride spacers on side walls of the parallel oxide bars, with gaps remaining between adjacent nitride spacers; forming silicon pillars in the gaps; removing the nitride spacers to form a plurality of fin bodies; forming an isolation region in between each of the fin bodies; and coating the plurality of fin bodies, the nitride spacers, and the isolation regions with a protective film.
    Type: Grant
    Filed: August 4, 2009
    Date of Patent: December 13, 2011
    Assignee: International Business Machines Corporation
    Inventors: Howard H. Chen, Louis C. Hsu, Jack A. Mandelman, Chun-Yung Sung
  • Patent number: 8063427
    Abstract: A non-volatile memory device on a substrate layer (2) comprises source and drain regions (3) and a channel region (4). The source and drain regions (3) and the channel region (4) are arranged in a semiconductor layer (20) on the substrate layer (2). The channel region (4) is fin-shaped and extends longitudinally (X) between the source region and the drain region (3). The channel region (4) comprises two fin portions (4a, 4b) and an intra-fin space (10), the fin portions (4a, 4b) extending in the longitudinal direction (X) and being spaced apart, and the intra-fin space (10) being located in between the fin portions (4a, 4b), and a charge storage area (11, 12; 15, 12) is located in the intra-fin space (10) between the fin portions (4a, 4b).
    Type: Grant
    Filed: September 26, 2006
    Date of Patent: November 22, 2011
    Assignee: NXP B.V.
    Inventor: Pierre Goarin
  • Patent number: 8058690
    Abstract: An apparatus including a first diffusion formed on a substrate, the first diffusion including a pair of channels, each of which separates a source from a drain; a second diffusion formed on the substrate, the second diffusion including a channel that separates a source from a drain; a first gate electrode formed on the substrate, wherein the first gate electrode overlaps one of the pair of channels on the first diffusion to form a pass-gate transistor; and a second gate electrode formed on the substrate, wherein the second gate electrode overlaps one of the pair of channels of the first diffusion to form a pull-down transistor and overlaps the channel of the second diffusion to form a pull-up transistor, and wherein the pass-gate, pull-down and pull-up transistors are of at least two different constructions. Other embodiments are disclosed and claimed.
    Type: Grant
    Filed: January 29, 2009
    Date of Patent: November 15, 2011
    Assignee: Intel Corporation
    Inventor: Peter L. D. Chang
  • Patent number: 8039336
    Abstract: A method includes the steps of: introducing insulation film into a trench to provide a trench isolation; planarizing the trench isolation to expose a passivation film; and removing the passivation film and depositing a second silicon layer on a first silicon layer and the trench isolation; and in the step of depositing the first silicon layer the first silicon layer is an undoped silicon layer and in the step of depositing the second silicon layer the second silicon layer is a doped silicon layer or an undoped silicon layer subsequently having an impurity introduced thereinto or the like and thermally diffused through subsequent thermal hysteresis into the first silicon layer.
    Type: Grant
    Filed: October 29, 2010
    Date of Patent: October 18, 2011
    Assignee: Renesas Electronics Corporation
    Inventors: Yasuki Morino, Yoshihiko Kusakabe, Ryuichi Wakahara
  • Patent number: 8008136
    Abstract: A method may include forming a gate electrode over a fin structure, depositing a first metal layer on a top surface of the gate electrode, performing a first silicide process to convert a portion of the gate electrode into a metal-silicide compound, depositing a second metal layer on a top surface of the metal-silicide compound, and performing a second silicide process to form a fully-silicided gate electrode.
    Type: Grant
    Filed: April 20, 2006
    Date of Patent: August 30, 2011
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Ming-Ren Lin, Witold P. Maszara, Haihong Wang, Bin Yu
  • Patent number: 7989855
    Abstract: This invention relates to a semiconductor device having a beam made of a semiconductor to which strain is introduced by deflection, and a current is permitted to flow in the beam.
    Type: Grant
    Filed: June 3, 2005
    Date of Patent: August 2, 2011
    Assignee: NEC Corporation
    Inventor: Mitsuru Narihiro
  • Patent number: 7960232
    Abstract: By forming MOSFETs on a substrate having pre-existing ridges of semiconductor material (i.e., a “corrugated substrate”), the resolution limitations associated with conventional semiconductor manufacturing processes can be overcome, and high-performance, low-power transistors can be reliably and repeatably produced. Forming a corrugated substrate prior to actual device formation allows the ridges on the corrugated substrate to be created using high precision techniques that are not ordinarily suitable for device production. MOSFETs that subsequently incorporate the high-precision ridges into their channel regions will typically exhibit much more precise and less variable performance than similar MOSFETs formed using optical lithography-based techniques that cannot provide the same degree of patterning accuracy. Additional performance enhancement techniques such as pulse-shaped doping and “wrapped” gates can be used in conjunction with the segmented channel regions to further enhance device performance.
    Type: Grant
    Filed: March 24, 2009
    Date of Patent: June 14, 2011
    Assignee: Synopsys, Inc.
    Inventors: Tsu-Jae King, Victor Moroz
  • Patent number: 7915681
    Abstract: A device includes a first transistor including a fin and a second transistor including a fin, the fin of the first transistor having a lower charge carrier mobility than the fin of the second transistor. In a method, the fin of the first transistor is treated to have a lower charge carrier mobility than the fin of the second transistor.
    Type: Grant
    Filed: June 18, 2007
    Date of Patent: March 29, 2011
    Assignee: Infineon Technologies AG
    Inventors: Jörg Berthold, Christian Pacha, Klaus von Arnim
  • Patent number: 7897464
    Abstract: A method of manufacturing a semiconductor device including a buried insulating film formed in a bottom part of a trench and a buried-type gate electrode formed in the trench, the method including selectively forming an insulating film in the bottom part of the trench, forming a resist having an opening in a part that corresponds to a region where a device isolation insulating film is formed on a surface of a semiconductor substrate after forming the insulating film, and oxidizing the surface of the semiconductor substrate in the opening to form the device isolation insulating film.
    Type: Grant
    Filed: May 4, 2009
    Date of Patent: March 1, 2011
    Assignee: Renesas Electronics Corporation
    Inventor: Junji Umezaki
  • Patent number: 7863122
    Abstract: A finFET structure and a method of fabricating the finFET structure. The method includes: forming a silicon fin on a top surface of a silicon substrate; forming a gate dielectric on opposite sidewalls of the fin; forming a gate electrode over a channel region of the fin, the gate electrode in direct physical contact with the gate dielectric layer on the opposite sidewalls of the fin; forming a first source/drain in the fin on a first side of the channel region and forming a second source/drain in the fin on a second side of the channel region; removing a portion of the substrate from under at least a portion of the first and second source/drains to create a void; and filling the void with a dielectric material. The structure includes a body contact between the silicon body of the finFET and the substrate.
    Type: Grant
    Filed: June 5, 2008
    Date of Patent: January 4, 2011
    Assignee: International Business Machines Corporation
    Inventors: Roger Allen Booth, Jr., William Paul Hovis, Jack Allan Mandelman
  • Patent number: 7855411
    Abstract: The invention provides a memory cell. The memory cell is disposed on a substrate and comprises a plurality of isolation structures defining at least a fin structure in the substrate. Further, the surface of the fin structure is higher than the surface of the isolation structure. The memory cell comprises a doped region, a gate, a charge trapping structure and a source/drain region. The doped region is located in a top of the fin structure and near a surface of the top of the fin structure and the doped region has a first conductive type. The gate is disposed on the substrate and straddled the fin structure. The charge trapping structure is disposed between the gate and the fin structure. The source/drain region with a second conductive type is disposed in the fin structures exposed by the gate and the first conductive type is different from the second conductive type.
    Type: Grant
    Filed: December 17, 2007
    Date of Patent: December 21, 2010
    Assignee: MACRONIX International Co., Ltd.
    Inventors: Tzu-Hsuan Hsu, Hang-Ting Lue
  • Patent number: 7846788
    Abstract: A method includes the steps of: introducing insulation film into a trench to provide a trench isolation; planarizing the trench isolation to expose a passivation film; and removing the passivation film and depositing a second silicon layer on a first silicon layer and the trench isolation; and in the step of depositing the first silicon layer the first silicon layer is an undoped silicon layer and in the step of depositing the second silicon layer the second silicon layer is a doped silicon layer or an undoped silicon layer subsequently having an impurity introduced thereinto or the like and thermally diffused through subsequent thermal hysteresis into the first silicon layer.
    Type: Grant
    Filed: December 21, 2009
    Date of Patent: December 7, 2010
    Assignee: Renesas Electronics Corporation
    Inventors: Yasuki Morino, Yoshihiko Kusakabe, Ryuichi Wakahara
  • Patent number: 7847342
    Abstract: A non-volatile semiconductor storage device has a plurality of memory strings with a plurality of electrically rewritable memory cells connected in series. Each of the memory strings includes: a first columnar semiconductor layer extending in a direction perpendicular to a substrate and having a first hollow extending downward from its upper end; a first insulation layer formed in contact with the outer wall of the first columnar semiconductor layer; a second insulation layer formed on the inner wall of the first columnar semiconductor layer so as to leave the first hollow; and a plurality of first conductive layers formed to sandwich the first insulation layer with the first columnar semiconductor layer and functioning as control electrodes of the memory cells.
    Type: Grant
    Filed: November 28, 2008
    Date of Patent: December 7, 2010
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Yoshiaki Fukuzumi, Ryota Katsumata, Masaru Kidoh, Masaru Kito, Hiroyasu Tanaka, Hideaki Aochi, Yasuyuki Matsuoka
  • Patent number: 7829447
    Abstract: Forming structures such as fins in a semiconductor layer according to a pattern formed by oxidizing a sidewall of a layer of oxidizable material. In one embodiment, source/drain pattern structures and a fin pattern structures are patterned in the oxidizable layer. The fin pattern structure is then masked from an oxidation process that grows oxide on the sidewalls of the channel pattern structure and the top surface of the source/drain pattern structures. The remaining oxidizable material of the channel pattern structure is subsequently removed leaving a hole between two portions of the oxide layer. These two portions are used in one embodiment as a mask for patterning the semiconductor layer to form two fins. This patterning also leaves the source/drain structures connected to the fins.
    Type: Grant
    Filed: May 19, 2006
    Date of Patent: November 9, 2010
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Leo Mathew, Rode R. Mora, Tab A. Stephens, Tien Ying Luo
  • Patent number: 7829932
    Abstract: Example embodiments relate to a semiconductor device including a fin-type channel region and a method of fabricating the same. The semiconductor device includes a semiconductor substrate, a semiconductor pillar and a contact plug. The semiconductor substrate includes at least one pair of fins used (or functioning) as an active region. The semiconductor pillar may be interposed between portions of the fins to connect the fins. The contact plug may be disposed (or formed) on the semiconductor pillar and electrically connected to top surfaces of the fins.
    Type: Grant
    Filed: October 31, 2007
    Date of Patent: November 9, 2010
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Seung-hwan Song, Suk-pil Kim, Yoon-dong Park, Won-joo Kim, June-mo Koo, Kyoung-Iae Cho, Jae-woong Hyun, Sung-jae Byun
  • Patent number: 7781290
    Abstract: A complementary metal-oxide semiconductor (CMOS) device includes an NMOS thin body channel including a silicon epitaxial layer. An NMOS insulating layer is formed on a surface of the NMOS thin body channel and surrounds the NMOS thin body channel. An NMOS metal gate is formed on the NMOS insulating layer. The CMOS device further includes a p-channel metal-oxide semiconductor (PMOS) transistor including a PMOS thin body channel including a silicon epitaxial layer. A PMOS insulating layer is formed on a surface of and surrounds the PMOS thin body channel. A PMOS metal gate is formed on the PMOS insulating layer. The NMOS insulating layer includes a silicon oxide layer and the PMOS insulating layer includes an electron-trapping layer, the NMOS insulating layer includes a hole trapping dielectric layer and the PMOS insulating layer includes a silicon oxide layer, or the NMOS insulating layer includes a hole-trapping dielectric layer and the PMOS insulating layer includes an electron-trapping dielectric layer.
    Type: Grant
    Filed: April 23, 2008
    Date of Patent: August 24, 2010
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Sung-young Lee, Sung-min Kim, Sung-dae Suk, Eun-jung Yun
  • Publication number: 20100176450
    Abstract: A semiconductor structure is described. The structure includes a semiconductor substrate having a conductive gate abutting a gate insulator for controlling conduction of a channel region; and a source region and a drain region associated with the conductive gate, where the source region includes a first material and the drain region includes a second material, and where the conductive gate is self-aligned to the first material and the second material. In one embodiment, the first material includes Si and the second material includes SiGe. A method of forming a semiconductor structure is also described.
    Type: Application
    Filed: January 9, 2009
    Publication date: July 15, 2010
    Applicant: International Business Machines Corporation
    Inventors: Haining S. Yang, Kangguo Cheng, Robert Wong
  • Publication number: 20100173462
    Abstract: A method of fabricating a nanotube field-effect transistor having unipolar characteristics and a small inverse sub-threshold slope includes forming a local gate electrode beneath the nanotube between drain and source electrodes of the transistor and doping portions of the nanotube. In a further embodiment, the method includes forming at least one trench in the gate dielectric (e.g., a back gate dielectric) and back gate adjacent to the local gate electrode. Another aspect of the invention is a nanotube field-effect transistor fabricated using such a method.
    Type: Application
    Filed: March 19, 2010
    Publication date: July 8, 2010
    Applicant: International Business Machines Corporation
    Inventors: Joerg Appenzeller, Phaedon Avouris, Yu-Ming Lin
  • Patent number: 7736969
    Abstract: DRAM cell arrays having a cell area of about 4F2 comprise an array of vertical transistors with buried bit lines and vertical double gate electrodes. The buried bit lines comprise a silicide material and are provided below a surface of the substrate. The word lines are optionally formed of a silicide material and form the gate electrode of the vertical transistors. The vertical transistor may comprise sequentially formed doped polysilicon layers or doped epitaxial layers. At least one of the buried bit lines is orthogonal to at least one of the vertical gate electrodes of the vertical transistors.
    Type: Grant
    Filed: October 25, 2005
    Date of Patent: June 15, 2010
    Assignee: Micron Technology, Inc.
    Inventors: Todd R. Abbott, Homer M. Manning
  • Patent number: 7737506
    Abstract: An objective is to provide a method of manufacturing a semiconductor device, and a semiconductor device manufactured by using the manufacturing method, in which a laser crystallization method is used that is capable of preventing the formation of grain boundaries in TFT channel formation regions, and is capable of preventing conspicuous drops in TFT mobility, reduction in the ON current, and increases in the OFF current, all due to grain boundaries. Depressions and projections with stripe shape or rectangular shape are formed. Continuous wave laser light is then irradiated to a semiconductor film formed on an insulating film along the depressions and projections with stripe shape of the insulating film, or along a longitudinal axis direction or a transverse axis direction of the rectangular shape. Note that although it is most preferable to use continuous wave laser light at this point, pulse wave laser light may also be used.
    Type: Grant
    Filed: August 31, 2006
    Date of Patent: June 15, 2010
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Atsuo Isobe, Shunpei Yamazaki, Chiho Kokubo, Koichiro Tanaka, Akihisa Shimomura, Tatsuya Arao, Hidekazu Miyairi, Mai Akiba
  • Patent number: 7719059
    Abstract: A fin field effect transistor arrangement comprises a substrate and a first fin field effect transistor on and/or in the substrate. The first fin field effect transistor includes a fin in which a channel region is formed between a first source/drain region and a second source/drain region and above which a gate region is formed. A second fin field effect transistor is provided on and/or in the substrate including a fin in which a channel region is formed between a first source/drain region and a second source/drain region and above which a gate region is formed. The second fin field effect transistor is arranged laterally alongside the first fin field effect transistor, wherein a height of the fin of the first fin field effect transistor is greater than a height of the fin of the second fin field effect transistor.
    Type: Grant
    Filed: October 27, 2006
    Date of Patent: May 18, 2010
    Assignee: Infineon Technologies AG
    Inventors: Franz Hofmann, Erhard Landgraf, Richard Johannes Luyken
  • Patent number: 7714380
    Abstract: A semiconductor device includes a pair of first source/drain regions disposed on a silicon substrate. A first silicon epitaxial layer pattern defines a gate forming region that exposes the silicon substrate between the pair of first source/drain regions. A first gate insulation layer is disposed on the silicon substrate in the gate forming region. A second gate insulation layer is disposed on a sidewall of the first silicon epitaxial layer pattern. A second silicon epitaxial layer pattern is disposed in the gate forming region and on the first silicon epitaxial layer pattern. A pair of second source/drain regions is disposed on the second silicon epitaxial layer pattern. A third gate insulation layer exposes the second silicon epitaxial layer pattern in the gate forming region and covers the pair of second source/drain regions. A gate is disposed on the second silicon epitaxial layer pattern in the gate forming region.
    Type: Grant
    Filed: November 13, 2007
    Date of Patent: May 11, 2010
    Assignee: Dongbu Electronics Co., Ltd.
    Inventor: Tae-Hong Lim
  • Patent number: 7652308
    Abstract: Semiconductor devices having a gate-all-around (GAA) structure capable of higher operating performance may be provided. A semiconductor device may include a semiconductor substrate, at least one gate electrode, and at least one gate insulating layer. The semiconductor substrate may have a body, at least one supporting post protruding from the body, and at least one pair of fins separated from the body, wherein both ends of each fin of the at least one pair of fins are connected to and supported by the at least one supporting post. The at least one gate electrode may enclose a portion of at least one fin of the at least one pair of fins of the semiconductor substrate, and may be insulated from the semiconductor substrate. The at least one gate insulating layer may be interposed between the at least one gate electrode and the at least one pair of fins of the semiconductor substrate.
    Type: Grant
    Filed: January 17, 2007
    Date of Patent: January 26, 2010
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Yoon-Dong Park, Suk-Pil Kim
  • Patent number: 7646055
    Abstract: A method includes the steps of: introducing insulation film into a trench to provide a trench isolation; planarizing the trench isolation to expose a passivation film; and removing the passivation film and depositing a second silicon layer on a first silicon layer and the trench isolation; and in the step of depositing the first silicon layer the first silicon layer is an undoped silicon layer and in the step of depositing the second silicon layer the second silicon layer is a doped silicon layer or an undoped silicon layer subsequently having an impurity introduced thereinto or the like and thermally diffused through subsequent thermal hysteresis into the first silicon layer.
    Type: Grant
    Filed: July 22, 2008
    Date of Patent: January 12, 2010
    Assignee: Renesas Technology Corp.
    Inventors: Yasuki Morino, Yoshihiko Kusakabe, Ryuichi Wakahara
  • Patent number: 7642589
    Abstract: A field effect transistor includes a vertical fin-shaped semiconductor active region having an upper surface and a pair of opposing sidewalls on a substrate, and an insulated gate electrode on the upper surface and opposing sidewalls of the fin-shaped active region. The insulated gate electrode includes a capping gate insulation layer having a thickness sufficient to preclude formation of an inversion-layer channel along the upper surface of the fin-shaped active region when the transistor is disposed in a forward on-state mode of operation. Related fabrication methods are also discussed.
    Type: Grant
    Filed: May 15, 2006
    Date of Patent: January 5, 2010
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Yong-Hoon Son, Si-Young Choi, Byeong-Chan Lee, Deok-Hyung Lee, In-Soo Jung
  • Patent number: 7638398
    Abstract: A semiconductor device includes an active region defining at least four surfaces, the four surfaces including first, second, third, and fourth surfaces, a gate insulation layer formed around the four surfaces of the active region, and a gate electrode formed around the gate insulation layer and the four surfaces of the active region.
    Type: Grant
    Filed: December 28, 2006
    Date of Patent: December 29, 2009
    Assignee: Hynix Semiconductor Inc.
    Inventor: Jun-Hee Cho
  • Patent number: 7635632
    Abstract: A method for forming a gate electrode for a multiple gate transistor provides a doped, planarized gate electrode material which may be patterned using conventional methods to produce a gate electrode that straddles the active area of the multiple gate transistor and has a constant transistor gate length. The method includes forming a layer of gate electrode material having a non-planar top surface, over a semiconductor fin. The method further includes planarizing and doping the gate electrode material, without doping the source/drain active areas, then patterning the gate electrode material. Planarization of the gate electrode material may take place prior to the introduction and activation of dopant impurities or it may follow the introduction arid activation of dopant impurities. After the gate electrode is patterned, dopant impurities are selectively introduced to the semiconductor fin to form source/drain regions.
    Type: Grant
    Filed: January 3, 2007
    Date of Patent: December 22, 2009
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Yee-Chia Yeo, Hao-Yu Chen, Fu-Liang Yang, Chenming Hu
  • Patent number: 7629220
    Abstract: A non-planar semiconductor device (10) starts with a silicon fin (42). A source of germanium (e.g. 24, 26, 28, 30, 32) is provided to the fin (42). Some embodiments may use deposition to provide germanium; some embodiments may use ion implantation (30) to provide germanium; other methods may also be used to provide germanium. The fin (42) is then oxidized to form a silicon germanium channel region in the fin (36). In some embodiments, the entire fin (42) is transformed from silicon to silicon germanium. One or more fins (36) may be used to form a non-planar semiconductor device, such as, for example, a FINFET, MIGFET, Tri-gate transistor, or multi-gate transistor.
    Type: Grant
    Filed: June 30, 2006
    Date of Patent: December 8, 2009
    Assignee: Freescale Semiconductor, Inc.
    Inventor: Marius Orlowski
  • Patent number: 7592670
    Abstract: A semiconductor device includes a P-channel metal-oxide semiconductor (PMOS) transistor and an N-channel metal-oxide semiconductor (NMOS) transistor formed in three or more fin active regions in a vertical stack structure, an input metal line contacting gates of the PMOS transistor and NMOS transistor, a power supply voltage metal line contacting four channel active regions of the PMOS transistor, a contact metal line contacting two channel active regions of the NMOS transistor, and an output metal line contacting four channel active regions of the PMOS transistor and the NMOS transistor.
    Type: Grant
    Filed: September 28, 2006
    Date of Patent: September 22, 2009
    Assignee: MagnaChip Semiconductor, Ltd.
    Inventor: Dong-Sun Kim
  • Patent number: 7550333
    Abstract: A nonplanar semiconductor device having a semiconductor body formed on an insulating layer of a substrate. The semiconductor body has a top surface opposite a bottom surface formed on the insulating layer and a pair of laterally opposite sidewalls wherein the distance between the laterally opposite sidewalls at the top surface is greater than at the bottom surface. A gate dielectric layer is formed on the top surface of the semiconductor body and on the sidewalls of the semiconductor body. A gate electrode is formed on the gate dielectric layer on the top surface and sidewalls of the semiconductor body. A pair of source/drain regions are formed in the semiconductor body on opposite sides of the gate electrode.
    Type: Grant
    Filed: May 23, 2006
    Date of Patent: June 23, 2009
    Assignee: Intel Corporation
    Inventors: Uday Shah, Brian Doyle, Justin K. Brask, Robert S. Chau, Thomas A. Letson
  • Publication number: 20090146206
    Abstract: A non-volatile semiconductor storage device has a plurality of memory strings with a plurality of electrically rewritable memory cells connected in series. Each of the memory strings includes: a first columnar semiconductor layer extending in a direction perpendicular to a substrate and having a first hollow extending downward from its upper end; a first insulation layer formed in contact with the outer wall of the first columnar semiconductor layer; a second insulation layer formed on the inner wall of the first columnar semiconductor layer so as to leave the first hollow; and a plurality of first conductive layers formed to sandwich the first insulation layer with the first columnar semiconductor layer and functioning as control electrodes of the memory cells.
    Type: Application
    Filed: November 28, 2008
    Publication date: June 11, 2009
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Yoshiaki Fukuzumi, Ryota Katsumata, Masaru Kidoh, Masaru Kito, Hiroyasu Tanaka, Hideaki Aochi, Yasuyuki Matsuoka
  • Patent number: 7537985
    Abstract: A double-gated fin-type field effect transistor (FinFET) structure has electrically isolated gates. In a method for manufacturing the FinFET structure, a fin, having a gate dielectric on each sidewall corresponding to the central channel region, is formed over a buried oxide (BOX) layer on a substrate. Independent first and second gate conductors on either sidewall of the fin are formed and include symmetric multiple layers of conductive material. An insulator is formed above the fin by either oxidizing conductive material deposited on the fin or by removing conductive material deposited on the fin and filling in the resulting space with an insulating material. An insulating layer is deposited over the gate conductors and the insulator. A first gate contact opening is etched in the insulating layer above the first gate. A second gate contact opening is etched in the BOX layer below the second gate.
    Type: Grant
    Filed: July 31, 2007
    Date of Patent: May 26, 2009
    Assignee: International Business Machines Corporation
    Inventors: Brent A. Anderson, Edward J. Nowak
  • Patent number: 7521301
    Abstract: Integrated circuit field effect transistors include an integrated circuit substrate and a fin that projects away from the integrated circuit substrate, extends along the integrated circuit substrate, and includes a top that is remote from the integrated circuit substrate. A channel region is provided in the fin that is doped a conductivity type and has a higher doping concentration of the conductivity type adjacent the top than remote from the top. A source region and a drain region are provided in the fin on opposite sides of the channel region, and an insulated gate electrode extends across the fin adjacent the channel region. Related fabrication methods also are described.
    Type: Grant
    Filed: September 11, 2006
    Date of Patent: April 21, 2009
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Deok-Hyung Lee, Byeong-Chan Lee, Si-Young Choi, Taek-Jung Kim, Yong-Hoon Son, In-Soo Jung
  • Patent number: 7521323
    Abstract: The present invention discloses a method of forming a double gate field effect transistor device, and such a device formed with the method. One starts with a semiconductor-on-insulator substrate, and forms a first gate, source, drain and extensions, and prepares the second gate. Then the substrate is bonded to a second carrier, exposing a second side of the semiconductor layer. Next, an annealing step is performed as a diffusionless annealing, which has the advantage that the semiconductor layer not only has a substantially even thickness, but also has a substantially flat surface. This ensures the best possible annealing action of said annealing step. Very sharp abruptness of the extensions is achieved, with very high activation of the dopants.
    Type: Grant
    Filed: August 12, 2004
    Date of Patent: April 21, 2009
    Assignee: NXP B.V.
    Inventors: Radu Catalin Surdeanu, Youri Ponomarev
  • Patent number: 7517764
    Abstract: A finFET structure and a method of fabricating the finFET structure. The method includes: forming a silicon fin on a top surface of a silicon substrate; forming a gate dielectric on opposite sidewalls of the fin; forming a gate electrode over a channel region of the fin, the gate electrode in direct physical contact with the gate dielectric layer on the opposite sidewalls of the fin; forming a first source/drain in the fin on a first side of the channel region and forming a second source/drain in the fin on a second side of the channel region; removing a portion of the substrate from under at least a portion of the first and second source/drains to create a void; and filling the void with a dielectric material. The structure includes a body contact between the silicon body of the finFET and the substrate.
    Type: Grant
    Filed: June 29, 2006
    Date of Patent: April 14, 2009
    Assignee: International Business Machines Corporation
    Inventors: Roger Allen Booth, Jr., William Paul Hovis, Jack Allan Mandelman
  • Patent number: 7512017
    Abstract: An apparatus including a first diffusion formed on a substrate, the first diffusion including a pair of channels, each of which separates a source from a drain; a second diffusion formed on the substrate, the second diffusion including a channel that separates a source from a drain; a first gate electrode formed on the substrate, wherein the first gate electrode overlaps one of the pair of channels on the first diffusion to form a pass-gate transistor; and a second gate electrode formed on the substrate, wherein the second gate electrode overlaps one of the pair of channels of the first diffusion to form a pull-down transistor and overlaps the channel of the second diffusion to form a pull-up transistor, and wherein the pass-gate, pull-down and pull-up transistors are of at least two different constructions. Other embodiments are disclosed and claimed.
    Type: Grant
    Filed: December 21, 2005
    Date of Patent: March 31, 2009
    Assignee: Intel Corporation
    Inventor: Peter L. D. Chang