Process Wherein Final Gate Is Made Before Formation, E.g., Activation Anneal, Of Source And Drain Regions In Active Layer (epo) Patents (Class 257/E21.454)
  • Patent number: 9373624
    Abstract: A method for manufacturing a semiconductor device including a plurality of fin field-effect transistor (FinFET) devices, comprises forming a plurality of fins on a substrate, wherein a first portion of the fins corresponds to p-type field-effect transistors, and a second portion of the fins corresponds to n-type field-effect transistors, forming a plurality of gate electrodes on the plurality of the fins, growing a p-type doped epitaxial region at each of a plurality of source/drain regions between predetermined gate electrodes of the p-type field-effect transistors, and growing an n-type doped epitaxial region at one or more areas between gate electrodes of respective adjacent p-type field-effect transistors to create one or more p-n junctions electrically isolating the adjacent p-type field-effect transistors from each other.
    Type: Grant
    Filed: June 11, 2015
    Date of Patent: June 21, 2016
    Assignee: International Business Machines Corporation
    Inventors: Karthik Balakrishnan, Kangguo Cheng, Pouya Hashemi, Alexander Reznicek
  • Patent number: 9263545
    Abstract: A method of manufacturing a semiconductor device includes forming a semiconductor body including a compound semiconductor material on a substrate, the compound semiconductor material having a channel region, forming a source region extending to the compound semiconductor material, forming a drain region extending to the compound semiconductor material and spaced apart from the source region by the channel region, and forming an insulating region buried in the semiconductor body below the channel region between the compound semiconductor material and the substrate in an active region of the semiconductor device such that the channel region is uninterrupted by the insulating region. The active region includes the source, the drain and the channel region. The insulating region is discontinuous over a length of the channel region between the source region and the drain region.
    Type: Grant
    Filed: June 4, 2015
    Date of Patent: February 16, 2016
    Assignee: Infineon Technologies Austria AG
    Inventors: Clemens Ostermaier, Gerhard Prechtl, Oliver Haeberlen
  • Patent number: 8854614
    Abstract: A method of thermally treating a wafer includes loading a wafer into a process chamber having one or more regions of uniform temperature gradient and one or more regions of non-uniform temperature gradient. A defect is detected in the wafer. The wafer is aligned to position the defect within one of the one or more regions of uniform temperature gradient. A rapid thermal process is performed on the wafer in the process chamber while the defect is positioned within one of the one or more regions of uniform temperature gradient.
    Type: Grant
    Filed: December 14, 2012
    Date of Patent: October 7, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jong-Hoon Kang, Taegon Kim, Hanmei Choi, Eunyoung Jo, Gonsu Kang, Sungho Kang, Sungho Heo
  • Patent number: 8652891
    Abstract: The present invention discloses a semiconductor device, comprising a plurality of fins located on a substrate and extending along a first direction; a plurality of gate stack structures extending along a second direction and across each of the fins; a plurality of stress layers located in the fins on both sides of the gate stack structures and having a plurality of source and drain regions therein; a plurality of channel regions located between the plurality of source and drain regions along a first direction; characterized in that the plurality of gate stack structures enclose the plurality of channel regions. In accordance with the semiconductor device and the method of manufacturing the same of the present invention, an all-around nanowire metal multi-gate is formed in self-alignment by punching through and etching the fins at which the channel regions are located using a combination of the hard mask and the dummy gate, thus the device performance is enhanced.
    Type: Grant
    Filed: August 27, 2012
    Date of Patent: February 18, 2014
    Assignee: The Institute of Microelectronics Chinese Academy of Science
    Inventors: Huaxiang Yin, Changliang Qin, Qiuxia Xu, Dapeng Chen
  • Patent number: 8481379
    Abstract: An embodiment of the present invention discloses a method for manufacturing a FinFET, when a fin is formed, a dummy gate across the fin is formed on the fin, a source/drain opening is formed in both the cover layer and the first dielectric layer at both sides of the dummy gate, the source/drain opening is at both sides of the fin covered by the dummy gate and is an opening region surrounded by the cover layer and the first dielectric layer around it. In the formation of a source/drain region in the source/drain opening, stress is generated due to lattice mismatching, and applied to the channel due to the limitation by the source/drain opening in the first dielectric layer, thereby increasing the carrier mobility of the device, and improving the performance of the device.
    Type: Grant
    Filed: August 10, 2011
    Date of Patent: July 9, 2013
    Assignee: Institute of Microelectronics, Chinese Academy of Sciences
    Inventors: Qingqing Liang, Huilong Zhu, Huicai Zhong
  • Publication number: 20120305987
    Abstract: A transistor includes a trench formed in a semiconductor body, the trench having sidewalls and a bottom. The transistor further includes a first semiconductor material disposed in the trench adjacent the sidewalls and a second semiconductor material disposed in the trench and spaced apart from the sidewalls by the first semiconductor material. The second semiconductor material has a different band gap than the first semiconductor material. The transistor also includes a gate material disposed in the trench and spaced apart from the first semiconductor material by the second semiconductor material. The gate material provides a gate of the transistor. Source and drain regions are arranged in the trench with a channel interposed between the source and drain regions in the first or second semiconductor material so that the channel has a lateral current flow direction along the sidewalls of the trench.
    Type: Application
    Filed: June 3, 2011
    Publication date: December 6, 2012
    Applicant: INFINEON TECHNOLOGIES AUSTRIA AG
    Inventors: Franz Hirler, Andreas Peter Meiser
  • Patent number: 8183558
    Abstract: A compound semiconductor device includes a compound semiconductor substrate; epitaxially grown layers formed over the compound semiconductor substrate and including a channel layer and a resistance lowering cap layer above the channel layer; source and drain electrodes in ohmic contact with the channel layer; recess formed by removing the cap layer between the source and drain electrodes; a first insulating film formed on an upper surface of the cap layer and having side edges at positions retracted from edges, or at same positions as the edges of the cap layer in a direction of departing from the recess; a second insulating film having gate electrode opening and formed covering a semiconductor surface in the recess and the first insulating film; and a gate electrode formed on the recess via the gate electrode opening.
    Type: Grant
    Filed: February 8, 2011
    Date of Patent: May 22, 2012
    Assignee: Fujitsu Limited
    Inventors: Kozo Makiyama, Tsuyoshi Takahashi
  • Patent number: 8124530
    Abstract: Disclosed herein is a rapid annealing method in a mixed structure composed of a heat treatment-requiring material, dielectric layer and conductive layer, comprising that during rapid annealing on a predetermined part of the heat treatment-requiring material, by instantaneously generated intense heat due to Joule heating by application of an electric field to the conductive layer, the potential difference between the heat treatment-requiring material and the conductive layer is set lower than the dielectric break-down voltage of the dielectric layer, thereby preventing generation of arc by dielectric breakdown of the dielectric layer during the annealing.
    Type: Grant
    Filed: January 10, 2007
    Date of Patent: February 28, 2012
    Assignee: Ensiltech Corporation
    Inventors: Jae-Sang Ro, Won-Eui Hong
  • Patent number: 8084306
    Abstract: A semiconductor device includes a body region having a source region, a drain region, a channel region interposed between the source region and the drain region, and a body region extension extending from an end of the channel region. A gate pattern is formed on the channel region and the body region, and a body contact connects the gate pattern to the body region. A sidewall of the body region extension is self-aligned to a sidewall of the gate pattern. Methods of forming semiconductor devices having a self-aligned body and a body contact are also disclosed.
    Type: Grant
    Filed: March 24, 2009
    Date of Patent: December 27, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jae-Hun Jeong, Hoon Lim, Soon-Moon Jung, Hoo-Sung Cho
  • Patent number: 7998848
    Abstract: The laser beam with a wavelength having a higher energy than the band gap energy of the material forming the carrier moving layer is irradiated to activate the impurities contained in the constituent layer of the field effect transistor in the method of producing the field effect transistor. The method of the invention does not apply the heating of the substrate or the sample stage to raise the temperature of the semiconductor layer using the thermal conductivity so as to activate the impurities. Thus, the implanted impurities can be activated without deteriorating the performance of the device and reliability.
    Type: Grant
    Filed: March 26, 2009
    Date of Patent: August 16, 2011
    Assignee: Furukawa Electric Co., Ltd.
    Inventors: Yuki Niiyama, Seikoh Yoshida, Masatoshi Ikeda, legal representative, Hiroshi Kambayashi, Takehiko Nomura
  • Patent number: 7795119
    Abstract: A structure and a method for mitigation of the damage arising in the source/drain region of a MOSFET is presented. A substrate is provided having a gate structure comprising a gate oxide layer and a gate electrode layer, and a source and drain region into which impurity ions have been implanted. A PAI process generates an amorphous layer within the source and drain region. A metal is deposited and is reacted to create a silicide within the amorphous layer, without exacerbating existing defects. Conductivity of the source and drain region is then recovered by flash annealing the substrate.
    Type: Grant
    Filed: July 17, 2007
    Date of Patent: September 14, 2010
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chia Ping Lo, Jerry Lai, Chii-Ming Wu, Mei-Yun Wang, Da-Wen Lin
  • Patent number: 7790587
    Abstract: Methods and associated structures of forming a microelectronic device are described. Those methods may include creating an amorphous region in source/drain regions of a substrate by ion implantation with an electrically neutral dopant, annealing with a first anneal that removes defects without completely re-crystallizing the amophous region, ion implantation of electrically active dopant to a depth shallower than the remaining amorphous region, followed by a second anneal.
    Type: Grant
    Filed: November 7, 2006
    Date of Patent: September 7, 2010
    Assignee: Intel Corporation
    Inventors: Jack Hwang, Sridhar Govindaraju, Seok-Hee Lee, Patrick H. Keys, Chad D. Lindfors
  • Patent number: 7785970
    Abstract: Source and drain regions are formed in a first-type semiconductor device. Then, a high tensile stress capping layer is formed over the source and drain regions. A thermal process is then performed to re-crystallize the source and drain regions and to introduce tensile strain into the source and drain regions of the first-type semiconductor device. Afterwards, source and drain regions are formed in a second-type semiconductor device. Then, a high compressive stress capping layer is formed over the source and drain regions of the second-type semiconductor device. A thermal process is performed to re-crystallize the source and drain regions and to introduce compressive strain into the source and drain regions of the second-type semiconductor device.
    Type: Grant
    Filed: August 20, 2007
    Date of Patent: August 31, 2010
    Assignee: Texas Instruments Incorporated
    Inventors: Frank Scott Johnson, Shaofeng Yu
  • Patent number: 7629275
    Abstract: A method of forming an integrated circuit is provided. The method includes performing a multiple-time flash anneal process to a wafer, wherein the multiple-time flash anneal process comprises preheating the wafer to a first preheat temperature; performing a first flash on the wafer with a first flash energy; preheating the wafer to a second preheat temperature; and performing a second flash on the wafer with a second flash energy.
    Type: Grant
    Filed: January 25, 2007
    Date of Patent: December 8, 2009
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Jennifer Chen, Chi-Chun Chen, Hun-Jan Tao
  • Patent number: 7622374
    Abstract: Methods of fabricating an integrated circuit, in particular a dynamic random access memory are described. After forming memory cells on a semiconductor substrate a mirror layer is provided, said mirror layer covering the memory cells. Then logic devices are formed adjoining to said memory cells covered by said mirror layer, said forming of said logic devices including activating the dopants in dopant regions by means of a radiation annealing, said radiation being reflected by said mirror layer. After at least partly removing the mirror layer; a wiring of the memory cells and of the logic devices is formed.
    Type: Grant
    Filed: December 29, 2005
    Date of Patent: November 24, 2009
    Assignee: Infineon Technologies AG
    Inventors: Matthias Goldbach, Jürgen Holz
  • Patent number: 7598147
    Abstract: A method of forming crystalline Si:C in source and drain regions is provided. After formation of shallow trench isolation and gate electrodes of field effect transistors, gate spacers are formed on gate electrodes. Preamorphization implantation is performed in the source and drain regions, followed by carbon implantation. The upper portion of the source and drain regions comprises an amorphous mixture of silicon, germanium, and/or carbon. An anti-reflective layer is deposited to enhance the absorption of a laser beam into the silicon substrate. The laser beam is scanned over the silicon substrate including the upper source and drain region with the amorphous mixture. The energy of the laser beam is controlled so that the temperature of the semiconductor substrate is above the melting temperature of the amorphous mixture but below the glass transition temperature of silicon oxide so that structural integrity of the semiconductor structure is preserved.
    Type: Grant
    Filed: September 24, 2007
    Date of Patent: October 6, 2009
    Assignee: International Business Machines Corporation
    Inventors: Yaocheng Liu, Qiqing C. Ouyang, Kathryn T. Schonenberg, Chun-Yung Sung
  • Patent number: 7498225
    Abstract: A method for forming fin structures for a semiconductor device that includes a substrate and a dielectric layer formed on the substrate is provided. The method includes etching the dielectric layer to form a first structure, depositing an amorphous silicon layer over the first structure, and etching the amorphous silicon layer to form second and third fin structures adjacent first and second side surfaces of the first structure. The second and third fin structures may include amorphous silicon material. The method further includes depositing a metal layer on upper surfaces of the second and third fin structures, performing a metal-induced crystallization operation to convert the amorphous silicon material of the second and third fin structures to a crystalline silicon material, and removing the first structure.
    Type: Grant
    Filed: July 5, 2006
    Date of Patent: March 3, 2009
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Haihong Wang, Shibly S. Ahmed, Ming-Ren Lin, Bin Yu
  • Patent number: 7422947
    Abstract: A semiconductor device manufacturing method comprises depositing a semiconductor layer and mask material in order over a semiconductor substrate on an insulating film; patterning the semiconductor layer and mask material to form a semiconductor layer in a predetermined region; removing a surface portion of the insulating film by a predetermined depth by performing etching by using the mask material as a mask; forming gate insulating films on at least a pair of opposing side surfaces of the semiconductor layer; depositing silicon on the insulating film, gate insulating films, and mask material; patterning the silicon into a gate pattern to form, on the gate insulating films, a silicon film having the gate pattern on predetermined regions of the pair of opposing side surfaces of the semiconductor layer; ion-implanting a predetermined impurity into the semiconductor layer by using the silicon film as a mask, thereby forming a source region and drain region in two end portions of the semiconductor layer where the
    Type: Grant
    Filed: September 13, 2006
    Date of Patent: September 9, 2008
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Tomohiro Saito
  • Patent number: 7338826
    Abstract: This invention pertains to an electronic device and to a method for making it. The device is a heterojunction transistor, particularly a high electron mobility transistor, characterized by presence of a 2 DEG channel. Transistors of this invention contain an AlGaN barrier and a GaN buffer, with the channel disposed, when present, at the interface of the barrier and the buffer. Surface treated with ammonia plasma resembles untreated surface. The method pertains to treatment of the device with ammonia plasma prior to passivation to extend reliability of the device beyond a period of time on the order of 300 hours of operation, the device typically being a 2 DEG AlGaN/GaN high electron mobility transistor with essentially no gate lag and with essentially no rf power output degradation.
    Type: Grant
    Filed: December 9, 2005
    Date of Patent: March 4, 2008
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Jeffrey A. Mittereder, Andrew P. Edwards, Steven C. Binari
  • Publication number: 20070269968
    Abstract: Methods of forming semiconductor devices are provided by forming a semiconductor layer on a semiconductor substrate. A mask is formed on the semiconductor layer. Ions having a first conductivity type are implanted into the semiconductor layer according to the mask to form implanted regions on the semiconductor layer. Metal layers are formed on the implanted regions according to the mask. The implanted regions and the metal layers are annealed in a single step to respectively activate the implanted ions in the implanted regions and provide ohmic contacts on the implanted regions. Related devices are also provided.
    Type: Application
    Filed: May 16, 2006
    Publication date: November 22, 2007
    Inventors: Adam William Saxler, Scott Sheppard