Formed Through Semiconductor Substrate (epo) Patents (Class 257/E21.597)
  • Patent number: 8742574
    Abstract: Semiconductor devices are described that have a through-substrate via formed therein. In one or more implementations, the semiconductor devices include a top wafer and a bottom wafer bonded together with a patterned adhesive material. The top wafer and the bottom wafer include one or more integrated circuits formed therein. The integrated circuits are connected to one or more conductive layers deployed over the surfaces of the top and bottom wafers. A via is formed through the top wafer and the patterned adhesive material so that an electrical interconnection can be formed between the integrated circuits formed in the top wafer and the integrated circuits formed in the bottom wafer. The via includes a conductive material that furnishes the electrical interconnection between the top and bottom wafers.
    Type: Grant
    Filed: August 9, 2011
    Date of Patent: June 3, 2014
    Assignee: Maxim Integrated Products, Inc.
    Inventors: Arkadii V. Samoilov, Tyler Parent, Xuejun Ying
  • Patent number: 8741667
    Abstract: A method for fabricating a through wire interconnect for a semiconductor substrate having a substrate contact includes the steps of: forming a via through the semiconductor substrate from a first side to a second side thereof; placing a wire in the via having a first end with a bonded connection to the substrate contact and a second end proximate to the second side; forming a first contact on the wire proximate to the first side; forming a second contact on the second end of the wire; and forming a polymer layer on the first side at least partially encapsulating the wire while leaving the first contact exposed.
    Type: Grant
    Filed: October 10, 2013
    Date of Patent: June 3, 2014
    Assignee: Micron Technology, Inc.
    Inventors: David R Hembree, Alan G. Wood
  • Patent number: 8741762
    Abstract: A method for preparing a die for packaging is disclosed. A die having first and second major surfaces is provided. Vias and a mask layer are formed on the first major surface of the die. The mask includes mask openings that expose the vias. The mask openings are filled with a conductive material. The method includes reflowing to at least partially fill the vias and contact openings to form via contacts in the vias and surface contacts in the mask openings.
    Type: Grant
    Filed: October 21, 2013
    Date of Patent: June 3, 2014
    Assignee: United Test and Assembly Center Ltd.
    Inventors: Hao Liu, Yi Sheng Anthony Sun, Ravi Kanth Kolan, Chin Hock Toh
  • Patent number: 8735262
    Abstract: According to an embodiment, a method of forming a semiconductor device includes: providing a wafer having a semiconductor substrate with a first side a second side opposite the first side, and a dielectric region arranged on the first side; mounting the wafer with the first side on a carrier system; etching a deep vertical trench from the second side through the semiconductor substrate to the dielectric region, thereby insulating a mesa region from the remaining semiconductor substrate; and filling the deep vertical trench with a dielectric material.
    Type: Grant
    Filed: October 24, 2011
    Date of Patent: May 27, 2014
    Assignee: Infineon Technologies AG
    Inventors: Hermann Gruber, Thomas Gross, Andreas Peter Meiser, Markus Zundel
  • Patent number: 8735287
    Abstract: A microelectronic unit can include a semiconductor element having a front surface, a microelectronic semiconductor device adjacent to the front surface, contacts at the front surface and a rear surface remote from the front surface. The semiconductor element can have through holes extending from the rear surface through the semiconductor element and through the contacts. A dielectric layer can line the through holes. A conductive layer may overlie the dielectric layer within the through holes. The conductive layer can conductively interconnect the contacts with unit contacts.
    Type: Grant
    Filed: June 5, 2012
    Date of Patent: May 27, 2014
    Assignee: Invensas Corp.
    Inventors: Belgacem Haba, Giles Humpston, Moti Margalit
  • Patent number: 8736028
    Abstract: The present invention relates to methods for forming through-wafer interconnects in semiconductor substrates and the resulting structures. In one embodiment, a method for forming a through-wafer interconnect includes providing a substrate having a pad on a surface thereof, depositing a passivation layer over the pad and the surface of the substrate, and forming an aperture through the passivation layer and the pad using a substantially continuous process. An insulative layer is deposited in the aperture followed by a conductive layer and a conductive fill. In another embodiment of the invention, a semiconductor device is formed including a first interconnect structure that extends through a conductive pad and is electrically coupled with the conductive pad while a second interconnect structure is formed through another conductive pad while being electrically isolated therefrom. Semiconductor devices and assemblies produced with the methods are also disclosed.
    Type: Grant
    Filed: March 22, 2013
    Date of Patent: May 27, 2014
    Assignee: Micron Technology, Inc.
    Inventor: Mark E. Tuttle
  • Patent number: 8728931
    Abstract: A method for forming an interconnect structure includes forming a recess in a dielectric layer of a substrate. An adhesion barrier layer is formed to line the recess. A first stress level is present across a first interface between the adhesion barrier layer and the dielectric layer. A stress-reducing barrier layer is formed over the adhesion barrier layer. The stress-reducing barrier layer reduces the first stress level to provide a second stress level, less than the first stress level, across a second interface between the adhesion barrier layer, the stress-reducing barrier layer, and the dielectric layer. The recess is filled with a fill layer.
    Type: Grant
    Filed: July 20, 2012
    Date of Patent: May 20, 2014
    Assignee: GLOBALFOUNDRIES, Inc.
    Inventors: Vivian W. Ryan, Xunyuan Zhang, Paul R. Besser
  • Patent number: 8729674
    Abstract: A semiconductor device is disclosed allowing detection of a connection state of a Through Silicon Via (TSV) at a wafer level. The semiconductor device includes a first line formed over a Through Silicon Via (TSV), a second line formed over the first line, and a first power line and a second power line formed over the same layer as the second line. Therefore, the semiconductor device can screen not only a chip-to-chip connection state after packaging completion, but also a connection state between the TSV and the chip at a wafer level, so that unnecessary costs and time encountered in packaging of a defective chip are reduced.
    Type: Grant
    Filed: November 19, 2012
    Date of Patent: May 20, 2014
    Assignee: SK Hynix Inc.
    Inventor: Take Kyun Woo
  • Patent number: 8723309
    Abstract: A method of manufacture of an integrated circuit packaging system includes: providing a bottom integrated circuit having bottom through silicon vias with a bottom via pitch; mounting outer interconnects over the bottom integrated circuit; and mounting a top integrated circuit between the outer interconnects, the top integrated circuit having top through silicon vias with a top via pitch less than the bottom via pitch.
    Type: Grant
    Filed: June 14, 2012
    Date of Patent: May 13, 2014
    Assignee: STATS ChipPAC Ltd.
    Inventors: HanGil Shin, YeongIm Park, HeeJo Chi
  • Patent number: 8716128
    Abstract: A method of forming a through-silicon-via (TSV) opening includes forming a TSV opening through a substrate. A recast of a material of the substrate on sidewalls of the TSV opening is removed with a first chemical. The sidewalls of the TSV opening are cleaned with a second chemical by substantially removing a residue of the first chemical.
    Type: Grant
    Filed: April 14, 2011
    Date of Patent: May 6, 2014
    Assignee: TSMC Solid State Lighting Ltd.
    Inventors: Chyi Shyuan Chern, Hsin-Hsien Wu, Chun-Lin Chang, Hsing-Kuo Hsia, Hung-Yi Kuo
  • Patent number: 8710670
    Abstract: A method of manufacture of an integrated circuit packaging system includes: providing a wafer substrate having an active side containing a contact; forming a through silicon via extending through the wafer substrate electrically connected to the contact having a via width; forming a first coupling feature extending from a top side of the through silicon via; and forming a second coupling feature on the side of the through silicon via opposite the first coupling feature.
    Type: Grant
    Filed: December 14, 2011
    Date of Patent: April 29, 2014
    Assignee: STATS ChipPAC Ltd.
    Inventors: MinJung Kim, DaeSik Choi, Wonll Kwon
  • Patent number: 8704358
    Abstract: A method for forming an integrated circuit including the steps of: a) forming openings in a front surface of a first semiconductor wafer, the depth of the openings being smaller than 10 ?m, and filling them with a conductive material; b) forming doped areas of components in active areas of the front surface, forming interconnection levels on the front surface and leveling the surface supporting the interconnection levels; c) covering with an insulating layer a front surface of a second semiconductor wafer, and leveling the surface coated with an insulator; d) applying the front surface of the second wafer coated with insulator on the front surface of the first wafer supporting interconnection levels, to obtain a bonding between the two wafers; e) forming vias from the rear surface of the second wafer, to reach the interconnection levels of the first wafer; and f) thinning the first wafer to reach the openings filled with conductive material.
    Type: Grant
    Filed: November 28, 2012
    Date of Patent: April 22, 2014
    Assignee: STMicroelectronics S.A.
    Inventors: Pierre Bar, Sylvain Joblot, Nicolas Hotellier
  • Patent number: 8703609
    Abstract: A method of fabricating a semiconductor device including providing a substrate having a front surface and a back surface. A masking element is formed on the front surface of the substrate. The masking element includes a first layer having a first opening and a second layer having a second opening of a greater width than the first opening. The second opening is a tapered opening. The method further includes etching a tapered profile via extending from the front surface to the back surface of the substrate using the formed masking element.
    Type: Grant
    Filed: July 1, 2011
    Date of Patent: April 22, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chen-Cheng Kuo, Chen Chen-Shien, Kai-Ming Ching, Chih-Hua Chen
  • Patent number: 8704375
    Abstract: Through substrate via barrier structures and methods are disclosed. In one embodiment, a semiconductor device includes a first substrate including an active device region disposed within isolation regions. A through substrate via is disposed adjacent to the active device region and within the first substrate. A buffer layer is disposed around at least a portion of the through substrate via, wherein the buffer layer is disposed between the isolation regions and the through substrate via.
    Type: Grant
    Filed: November 5, 2009
    Date of Patent: April 22, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Max Liu, Chao-Shun Hsu, Ya-Wen Tseng, Wen-Chih Chiou, Weng-Jin Wu
  • Patent number: 8691690
    Abstract: Disclosed are embodiments of a contact formation technique that incorporates a preventative etch step to reduce interlayer dielectric material flaking (e.g., borophosphosilicate glass (BPSG) flaking) and, thereby to reduce surface defects. Specifically, contact openings, which extend through a dielectric layer to semiconductor devices in and/or on a center portion of a substrate, can be filled with a conductor layer deposited by chemical vapor deposition (CVD). Chemical mechanical polishing (CMP) of the conductor layer can be performed to complete the contact structures. However, before the CMP process is performed (e.g., either before the contact openings are ever formed or before the contact openings are filled), a preventative etch process can be performed to remove any dielectric material from above the edge portion of the substrate. Removing the dielectric material from above the edge portion of the substrate prior to CMP reduces the occurrence of surface defects caused by dielectric material flaking.
    Type: Grant
    Filed: September 13, 2010
    Date of Patent: April 8, 2014
    Assignee: International Business Machines Corporation
    Inventors: Yoba Amoah, Brian M. Czabaj, Thomas J. Dunbar, Jeffrey P. Gambino, Molly J. Leitch, Polina A. Razina
  • Patent number: 8686565
    Abstract: An assembly and method of making same are provided. The assembly can be formed by stacking a first semiconductor element atop a second semiconductor element and forming an electrically conductive element extending through openings of the semiconductor elements. The openings may be staged. The conductive element can conform to contours of the interior surfaces of the openings and can electrically connect conductive pads of the semiconductor elements. A dielectric region can be provided at least substantially filling the openings of the semiconductor elements, and the electrically conductive element can extend through an opening formed in the dielectric region.
    Type: Grant
    Filed: September 16, 2010
    Date of Patent: April 1, 2014
    Assignee: Tessera, Inc.
    Inventors: Vage Oganesian, Belgacem Haba, Ilyas Mohammed, Craig Mitchell, Piyush Savalia
  • Patent number: 8686568
    Abstract: The package substrate includes a core, a plurality of first circuit segments, and a plurality of conductive pillars. Each of the first circuit segments has a patterned metal layer disposed on the core, a barrier layer disposed on the patterned metal layer, and an upper metal pattern disposed on the barrier layer. The conductive pillars penetrate the core, the patterned metal layer, and the barrier layer, and contact the upper metal pattern. The conductive pillars are formed from a material that can be selectively removed without affecting the barrier layer.
    Type: Grant
    Filed: September 27, 2012
    Date of Patent: April 1, 2014
    Assignee: Advanced Semiconductor Engineering, Inc.
    Inventors: Sheng-Ming Wang, Hsiang-Ming Feng, Yen-Hua Kuo
  • Patent number: 8680654
    Abstract: Interconnect structures for stacked dies, including penetrating structures for through-silicon vias, and associated systems and methods are disclosed. A system in accordance with a particular embodiment includes a first semiconductor substrate having a first substrate material, and a penetrating structure carried by the first semiconductor substrate. The system further includes a second semiconductor substrate having a second substrate material with a preformed recess. The penetrating structure of the first semiconductor substrate is received in the recess of the second semiconductor substrate and is mechanically engaged with the recess and secured to the second semiconductor substrate.
    Type: Grant
    Filed: April 26, 2013
    Date of Patent: March 25, 2014
    Assignee: Micron Technology, Inc.
    Inventors: Owen R. Fay, Warren M. Farnworth, David R. Hembree
  • Patent number: 8679887
    Abstract: A method for manufacturing a micro-electro-mechanical device, which has supporting parts and operative parts, includes providing a first semiconductor wafer, having a first layer of semiconductor material and a second layer of semiconductor material arranged on top of the first layer, forming first supporting parts and first operative parts of the device in the second layer, forming temporary anchors in the first layer, and bonding the first wafer to a second wafer, with the second layer facing the second wafer. After bonding the first wafer and the second wafer together, second supporting parts and second operative parts of said device are formed in the first layer. The temporary anchors are removed from the first layer to free the operative parts formed therein.
    Type: Grant
    Filed: April 26, 2012
    Date of Patent: March 25, 2014
    Assignee: STMicroelectronics S.r.l.
    Inventors: Simone Sassolini, Mauro Marchi, Marco Del Sarto, Lorenzo Baldo
  • Patent number: 8673767
    Abstract: A semiconductor device includes: a semiconductor substrate including a first face and a second face on a side opposite to the first face; an external connection terminal formed on the first face of the semiconductor substrate; a first electrode formed on the first face of the semiconductor substrate and electrically connected to the external connection terminal; an electronic element formed on or above the second face of the semiconductor substrate; a second electrode electrically connected to the electronic element and having a top face and a rear face; a groove portion formed on the second face of the semiconductor substrate and having a bottom face including at least part of the rear face of the second electrode; and a conductive portion formed in the groove portion and electrically connected to the rear face of the second electrode.
    Type: Grant
    Filed: September 21, 2012
    Date of Patent: March 18, 2014
    Assignee: Seiko Epson Corporation
    Inventors: Haruki Ito, Nobuaki Hashimoto
  • Patent number: 8674514
    Abstract: A wiring board includes a ceramic substrate including a plurality of stacked ceramic layers, an internal wiring, and an electrode, the internal wiring being electrically connected to the electrode, the electrode being exposed from a first surface of the ceramic substrate; and a silicon substrate including a wiring layer, the wiring layer including a wiring pattern and a via-fill, the wiring pattern being formed on a main surface of the silicon substrate, an end of the via-fill being electrically connected to the wiring pattern, another end of the via-fill being exposed from a rear surface of the silicon substrate positioned opposite to the main surface, wherein the rear surface of the silicon substrate is anodically bonded to the first surface of the ceramic substrate; and the via-fill of the silicon substrate is directly connected to the electrode of the ceramic substrate.
    Type: Grant
    Filed: November 5, 2010
    Date of Patent: March 18, 2014
    Assignee: Shinko Electric Industries Co., Ltd.
    Inventor: Tadashi Arai
  • Patent number: 8669179
    Abstract: A through-wafer interconnect for imager, memory and other integrated circuit applications is disclosed, thereby eliminating the need for wire bonding, making devices incorporating such interconnects stackable and enabling wafer level packaging for imager devices. Further, a smaller and more reliable die package is achieved and circuit parasitics (e.g., L and R) are reduced due to the reduced signal path lengths.
    Type: Grant
    Filed: July 11, 2013
    Date of Patent: March 11, 2014
    Assignee: Micron Technology, Inc.
    Inventors: Salman Akram, Charles M. Watkins, William M. Hiatt, David R. Hembree, James M. Wark, Warren M. Farnworth, Mark E. Tuttle, Sidney B. Rigg, Steven D. Oliver, Kyle K. Kirby, Alan G. Wood, Lu Velicky
  • Publication number: 20140061936
    Abstract: Roughly described, an integrated circuit device has a conductor extending entirely through the substrate, connected on one end to the substrate topside surface and on the other end to the substrate backside surface. In various embodiments the conductor is insulated from all RDL conductors on the backside of the substrate, and/or is insulated from all conductors and device features on any below-adjacent chip in a 3D integrated circuit structure. Methods of fabrication are also described.
    Type: Application
    Filed: August 31, 2012
    Publication date: March 6, 2014
    Inventors: Victor Moroz, Jamil Kawa
  • Patent number: 8664772
    Abstract: An interface substrate is disclosed which includes an interposer having through-semiconductor vias. An upper and a lower organic substrate are further built around the interposer. The disclosed interface substrate enables the continued use of low cost and widely deployed organic substrates for semiconductor packages while providing several advantages. The separation of the organic substrate into upper and lower substrates enables the cost effective matching of fabrication equipment. By providing an opening in one of the organic substrates, one or more semiconductor dies may be attached to exposed interconnect pads coupled to through-semiconductor vias of the interposer, enabling the use of flip chips with high-density microbump arrays and the accommodation of dies with varied bump pitches. By providing the opening specifically in the upper organic substrate, a package-on-package structure with optimized height may also be provided.
    Type: Grant
    Filed: October 11, 2013
    Date of Patent: March 4, 2014
    Assignee: Broadcom Corporation
    Inventors: Rezaur Rahman Khan, Sam Ziqun Zhao
  • Patent number: 8664768
    Abstract: A structure includes a substrate having a plurality of balls, a semiconductor chip, and an interposer electrically connecting the substrate and the semiconductor chip. The interposer includes a first side, a second side opposite the first side, at least one first exclusion zone extending through the interposer above each ball of the plurality of balls, at least one active through via extending from the first side of the interposer to the second side of the interposer, wherein the at least one active through via is formed outside the at least one first exclusion zone and wherein no active through vias are formed within the at least one first exclusion zone, and at least one dummy through via extending from the first side of the interposer to the second side of the interposer, wherein the at least one dummy through via is formed within the at least one first exclusion zone.
    Type: Grant
    Filed: May 3, 2012
    Date of Patent: March 4, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Shih-Wei Liang, Kai-Chiang Wu, Ming-Kai Liu, Chia-Chun Miao, Chun-Lin Lu
  • Patent number: 8658534
    Abstract: In an insulation layer of an SOI substrate, a connection pad is arranged. A contact hole opening above the connection pad is provided on side walls and on the connection pad with a metallization that is contacted on top side with a top metal.
    Type: Grant
    Filed: June 25, 2009
    Date of Patent: February 25, 2014
    Assignee: AMS AG
    Inventors: Franz Schrank, Günther Koppitsch, Michael Beutl, Sara Carniello, Jochen Kraft
  • Patent number: 8648472
    Abstract: In a method for fabricating a semiconductor device, first, a first metal interconnect is formed in an interconnect formation region, and a second metal interconnect is formed in a seal ring region. Subsequently, by chemical mechanical polishing or etching, the upper portions of the first metal interconnect and the second metal interconnect are recessed to form recesses. A second insulating film filling the recesses is then formed above a substrate, and the upper portion of the second insulating film is planarized. Next, a hole and a trench are formed to extend halfway through the second insulating film, and ashing and polymer removal are performed. Subsequently to this, the hole and the trench are allowed to reach the first metal interconnect and the second metal interconnect.
    Type: Grant
    Filed: November 12, 2012
    Date of Patent: February 11, 2014
    Assignee: Panasonic Corporation
    Inventor: Shusuke Isono
  • Patent number: 8633572
    Abstract: It is described a low ohmic Through Wafer Interconnection (TWI) for electronic chips formed on a semiconductor substrate (600). The TWI comprises a first connection extending between a front surface and a back surface of the substrate (600). The first connection (610) comprises a through hole filled with a low ohmic material having a specific resistivity lower than poly silicon. The TWI further comprises a second connection (615) also extending between the front surface and the back surface. The second connection (615) is spatially separated from the first connection (610) by at least a portion of the semiconductor substrate (600). The front surface is provided with a integrated circuit arrangement (620) wherein the first connection (610) is electrically coupled to at least one node of the integrated circuit arrangement (620) without penetrating the integrated circuit arrangement (620). During processing the TWI the through hole may be filled first with a non-metallic material, e.g. poly silicon.
    Type: Grant
    Filed: March 16, 2007
    Date of Patent: January 21, 2014
    Assignee: Koninklijke Philips N.V.
    Inventors: Gereon Vogtmeier, Roger Steadman, Ralf Dorscheid, Jeroen Jonkers
  • Patent number: 8633107
    Abstract: A substrate (1) of semiconductor material is provided with a contact pad (7). An opening (9) is formed through the semiconductor material from an upper surface to the contact pad, the opening forming an edge (18) at or near the upper surface. A dielectric layer (10) is applied on the semiconductor material in the opening. A metallization (11) is applied, which contacts the contact pad and is separated from the substrate by the dielectric layer. A top-metal (12) is applied, which contacts the metallization at or near the edge. A protection layer (13) is applied, which covers the top-metal and/or the metallization at least at or near the edge, and a passivation (15) is applied.
    Type: Grant
    Filed: September 28, 2010
    Date of Patent: January 21, 2014
    Assignee: AMS AG
    Inventors: Jochen Kraft, Jordi Teva
  • Patent number: 8629542
    Abstract: A Three-Dimensional Structure (3DS) Memory allows for physical separation of the memory circuits and the control logic circuit onto different layers such that each layer may be separately optimized. One control logic circuit suffices for several memory circuits, reducing cost. Fabrication of 3DS memory involves thinning of the memory circuit to less than 50 ?m in thickness and bonding the circuit to a circuit stack while still in wafer substrate form. Fine-grain high density inter-layer vertical bus connections are used. The 3DS memory manufacturing method enables several performance and physical size efficiencies, and is implemented with established semiconductor processing techniques.
    Type: Grant
    Filed: March 17, 2009
    Date of Patent: January 14, 2014
    Inventor: Glenn J. Leedy
  • Patent number: 8623762
    Abstract: An opening (9) is made in the substrate (1) over a terminal pad (7). A dielectric layer (10), a metallization (11), a compensation layer (13) and a passivation layer (15) are deposited so that the passivation layer is separated from the metallization by the compensation layer at least within the opening. A material that is suitable for reducing a mechanical stress between the metallization and the passivation layer is chosen for the compensation layer.
    Type: Grant
    Filed: November 18, 2009
    Date of Patent: January 7, 2014
    Assignee: AMS AG
    Inventors: Jochen Kraft, Franz Schrank
  • Patent number: 8623751
    Abstract: A through-hole electrode substrate related to an embodiment of the present invention is arranged with a semiconductor substrate having a plurality of through-holes, an insulating layer formed with an insulating material on the inner walls of the plurality of through-holes and on at least one surface of the semiconductor substrate, a plurality of through-hole electrodes formed with a metal material inside the through-hole, and a plurality of gas discharge parts formed to contact with each of the plurality of through-hole electrodes which is exposed on at least one surface of the semiconductor substrate, the plurality of gas discharge parts externally discharges gas which is discharged from the inside of the plurality of through-hole electrodes.
    Type: Grant
    Filed: May 8, 2012
    Date of Patent: January 7, 2014
    Assignee: Dai Nippon Printing Co., Ltd.
    Inventors: Koichi Nakayama, Yoichi Hitomi, Takamasa Takano
  • Patent number: 8618651
    Abstract: An interposer having decaps formed in blind-vias, a packaged semiconductor structure having decaps formed in blind-vias, and methods for forming the same are provided. In one embodiment, an interposer is provided that includes an interconnect layer disposed on a substrate. A plurality of through-vias are formed through the substrate in an isolated region of the substrate. At least one of the plurality of conductive vias are electrically coupled to at least one of a plurality of top wires formed in the interconnect layer. A plurality of blind-vias are formed through the substrate in a dense region of the substrate during a common etching step with the through-vias. At least one blind-via includes (a) a dielectric material lining the blind-vias, and (b) a conductive material filling the lined blind-vias and forming a decoupling capacitor.
    Type: Grant
    Filed: November 1, 2012
    Date of Patent: December 31, 2013
    Assignee: Nvidia Corporation
    Inventor: Abraham F. Yee
  • Patent number: 8617989
    Abstract: Methods of forming a dielectric liner layer on a semiconductor substrate are described. The method may include flowing a phosphorus-containing precursor with a silicon-containing precursor and an oxygen-containing precursor over the substrate to deposit a dielectric material. The dielectric material may be deposited along a field region and within at least one via on the substrate having a depth of at least 1 ?m. The method may also include forming a liner layer within the via with the dielectric material. The liner may include a silicon oxide doped with phosphorus, and the thickness of the liner layer at an upper portion of the via sidewall may be less than about 5 times the thickness of the liner layer at a lower portion of the via sidewall.
    Type: Grant
    Filed: April 19, 2012
    Date of Patent: December 31, 2013
    Assignee: Applied Materials, Inc.
    Inventors: Kedar Sapre, Manuel Hernandez, Lei Luo
  • Patent number: 8617925
    Abstract: Methods of forming bonded semiconductor structures include forming through wafer interconnects through a layer of material of a first substrate structure, bonding one or more semiconductor structures over the layer of material, and electrically coupling the semiconductor structures with the through wafer interconnects. A second substrate structure may be bonded over the processed semiconductor structures on a side thereof opposite the first substrate structure. A portion of the first substrate structure then may be removed, leaving the layer of material with the through wafer interconnects therein attached to the processed semiconductor structures. At least one through wafer interconnects then may be electrically coupled to a conductive feature of another structure, after which the second substrate structure may be removed. Bonded semiconductor structures are formed using such methods.
    Type: Grant
    Filed: August 9, 2011
    Date of Patent: December 31, 2013
    Assignee: Soitec
    Inventors: Mariam Sadaka, Bich-Yen Nguyen
  • Publication number: 20130341799
    Abstract: A method of fabricating a through silicon via (TSV) structure is provided, in which, a first dielectric layer is formed on the substrate, the first dielectric layer is patterned to have at least one first opening, a via hole is formed in the first dielectric layer and the substrate, a second dielectric layer is conformally formed on the first dielectric layer, the second dielectric layer has at least one second opening corresponding to the at least one first opening, and the second dielectric layer covers a sidewall of the via hole. A conductive material layer is formed to fill the via hole and the second opening. The conductive material layer is planarized to form a TSV within the via hole. A TSV structure is also provided, in which, the second dielectric layer is disposed within the first opening and on the sidewall of the via hole.
    Type: Application
    Filed: June 21, 2012
    Publication date: December 26, 2013
    Inventors: Hsin-Yu Chen, Home-Been Cheng, Yu-Han Tsai, Ching-Li Yang
  • Patent number: 8614145
    Abstract: A method is provided for establishing through substrate vias (TSVs) within a substrate. The method includes: forming at least one recess in a front-side of a wafer; filling, at least partially, the at least one recess with a sacrificial material from the front-side of the wafer; thinning the wafer from a back-side to reveal the at least one recess at least partially filled with the sacrificial material; removing from the back-side of the wafer the sacrificial material from the at least one recess; and filling the at least one recess from the back-side of the wafer with a conductive material to provide the at least one through substrate via.
    Type: Grant
    Filed: December 14, 2011
    Date of Patent: December 24, 2013
    Assignee: Sematech, Inc.
    Inventor: Klaus Hummler
  • Patent number: 8610259
    Abstract: A microelectronic unit includes a semiconductor element consisting essentially of semiconductor material and having a front surface, a rear surface, a plurality of active semiconductor devices adjacent the front surface, a plurality of conductive pads exposed at the front surface, and an opening extending through the semiconductor element. At least one of the conductive pads can at least partially overlie the opening and can be electrically connected with at least one of the active semiconductor devices. The microelectronic unit can also include a first conductive element exposed at the rear surface for connection with an external component, the first conductive element extending through the opening and electrically connected with the at least one conductive pad, and a second conductive element extending through the opening and insulated from the first conductive element. The at least one conductive pad can overlie a peripheral edge of the second conductive element.
    Type: Grant
    Filed: September 17, 2010
    Date of Patent: December 17, 2013
    Assignee: Tessera, Inc.
    Inventors: Vage Oganesian, Belgacem Haba, Ilyas Mohammed, Craig Mitchell, Piyush Savalia
  • Patent number: 8609538
    Abstract: An electronic device having a conductive substrate via extending between a conductor on a rear face and a conductor over a front face of the substrate includes a multi-layered etch-stop beneath the front surface conductor. The etch-stop permits use of a single etchant to penetrate both the substrate and any overlying semiconductor and/or dielectric without attacking the overlying front surface conductor. This is especially important when the semiconductor and dielectric are so thin as to preclude changing etchants when these regions are reached during etching. The etch-stop is preferably a stack of N?2 pairs of sub-layers, where a first sub-layer comprises stress relieving and/or adhesion promoting material (e.g., Ti), and the second sub-layer comprises etch resistant material (e.g., Ni). In a further embodiment, where the device includes field effect transistors having feedback sensitive control gates, the etch-stop material is advantageously used to form gate shields.
    Type: Grant
    Filed: February 11, 2013
    Date of Patent: December 17, 2013
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Darrell G. Hill, Bruce M. Green
  • Patent number: 8592311
    Abstract: A semiconductor wafer contains a substrate having a plurality of active devices formed thereon. An analog circuit is formed on the substrate. The analog circuit can be an inductor, metal-insulator-metal capacitor, or resistor. The inductor is made with copper. A through substrate via (TSV) is formed in the substrate. A conductive material is deposited in the TSV in electrical contact with the analog circuit. An under bump metallization layer is formed on a backside of the substrate in electrical contact with the TSV. A solder material is deposited on the UBM layer. The solder material is reflowed to form a solder bump. A wire bond is formed on a top surface of the substrate. A redistribution layer is formed between the TSV and UBM. The analog circuit electrically connects through the TSV to the solder bump on the back side of the substrate.
    Type: Grant
    Filed: September 13, 2012
    Date of Patent: November 26, 2013
    Assignee: STATS ChipPAC, Ltd.
    Inventors: Yaojian Lin, Haijing Cao, Qing Zhang, Kang Chen, Jianmin Fang
  • Patent number: 8592981
    Abstract: The invention relates to a layered micro-electronic and/or micro-mechanic structure, comprising at least three alternating electrically conductive layers with insulating layers between the conductive layers. There is also provided a via in a first outer layer, said via comprising an insulated conductive connection made of wafer native material through the layer, an electrically conductive plug extending through the other layers and into said via in the first outer layer in order to provide conductivity through the layers, and an insulating enclosure surrounding said conductive plug in at least one selected layer of said other layers for insulating said plug from the material in said selected layer. It also relates to micro-electronic and/or micro-mechanic device comprising a movable member provided above a cavity such that it is movable in at least one direction. The device has a layered structure according to the invention. Methods of making such a layered MEMS structure is also provided.
    Type: Grant
    Filed: December 23, 2009
    Date of Patent: November 26, 2013
    Assignee: Silex Microsystems AB
    Inventors: Thorbjörn Ebefors, Edvard Kälvesten, Peter Ågren, Niklas Svedin
  • Patent number: 8586983
    Abstract: A semiconductor chip includes a semiconductor chip body having a first surface on which pad parts are formed and an opposing second surface. Through-electrodes may be connected to the pad parts and formed to pass through the semiconductor chip body. Determination units may be connected to the through-electrodes and may be enabled to determine whether the pad parts and the through-electrodes are electrically connected with each other.
    Type: Grant
    Filed: December 29, 2010
    Date of Patent: November 19, 2013
    Inventor: Kwon Whan Han
  • Patent number: 8586465
    Abstract: A method for preparing a die for packaging is disclosed. A die having first and second major surfaces is provided. Vias and a mask layer are formed on the first major surface of the die. The mask includes mask openings that expose the vias. The mask openings are filled with a conductive material. The method includes reflowing to at least partially fill the vias and contact openings to form via contacts in the vias and surface contacts in the mask openings.
    Type: Grant
    Filed: June 5, 2008
    Date of Patent: November 19, 2013
    Assignee: United Test and Assembly Center Ltd
    Inventors: Hao Liu, Yi Sheng Anthony Sun, Ravi Kanth Kolan, Chin Hock Toh
  • Patent number: 8575725
    Abstract: A semiconductor component includes a semiconductor substrate having a top surface. An opening extends from the top surface into the semiconductor substrate. The opening includes an interior surface. A first dielectric liner having a first compressive stress is disposed on the interior surface of the opening. A second dielectric liner having a tensile stress is disposed on the first dielectric liner. A third dielectric liner having a second compressive stress disposed on the second dielectric liner. A metal barrier layer is disposed on the third dielectric liner. A conductive material is disposed on the metal barrier layer and fills the opening.
    Type: Grant
    Filed: March 13, 2013
    Date of Patent: November 5, 2013
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chen-Hua Yu, Cheng-Hung Chang, Ebin Liao, Chia-Lin Yu, Hsiang-Yi Wang, Chun Hua Chang, Li-Hsien Huang, Darryl Kuo, Tsang-Jiuh Wu, Wen-Chih Chiou
  • Publication number: 20130277854
    Abstract: A method of forming an integrated circuit device includes providing a substrate including an active device, forming a through silicon via into the substrate, forming a device contact to the active device, forming a conductive layer over the through silicon via and the device contact, and forming a connecting via structure for electrically connecting the conductive layer with the through silicon via. An integrated circuit device includes a through silicon via formed into a substrate silicon material, a conductive layer formed over the through silicon via, and a connecting via structure formed between the conductive layer and the through silicon via for electrically connecting the conductive layer with the through silicon via. The connecting via structure comprises a first series of via bars intersected with a second series of via bars.
    Type: Application
    Filed: April 23, 2012
    Publication date: October 24, 2013
    Applicant: GLOBALFOUNDRIES INC.
    Inventors: Chun Yu Wong, Ramakanth Alapati, Teck Jung Tang
  • Patent number: 8563403
    Abstract: A method includes forming a first integrated circuit (IC) device having a first substrate, an alignment via defined in the first substrate, a first wiring layer over the alignment via, and a first bonding layer over the first wiring layer; forming a second IC device having a second substrate, a second wiring layer over the second substrate, and a second bonding layer over the second wiring layer; bonding the first bonding layer of first IC device to the second bonding layer of second IC device; thinning a backside of the first IC device so as to expose the alignment via; and using the exposed alignment via to form a deep, through substrate via (TSV) that passes through the first IC device, through a bonding interface between the first IC device and second IC device, and landing on the second wiring layer of the second IC device.
    Type: Grant
    Filed: June 27, 2012
    Date of Patent: October 22, 2013
    Assignee: International Business Machines Corporation
    Inventors: Mukta G. Farooq, Spyridon Skordas, Richard P. Volant, Kevin R. Winstel
  • Patent number: 8557700
    Abstract: A low resistance metal is charged into holes formed in a semiconductor substrate to thereby form through electrodes. Post electrodes of a wiring-added post electrode component connected together by a support portion thereof are simultaneously fixed to and electrically connected to connection regions formed on an LSI chip. On the front face side, after resin sealing, the support portion is separated so as to expose front face wiring traces. On the back face side, the semiconductor substrate is grounded so as to expose tip ends of the through electrodes. The front face wiring traces exposed to the front face side and the tip ends of the through electrodes exposed to the back face side are used as wiring for external connection.
    Type: Grant
    Filed: May 7, 2009
    Date of Patent: October 15, 2013
    Assignee: Invensas Corporation
    Inventor: Masamichi Ishihara
  • Patent number: 8552548
    Abstract: To form a semiconductor device, a through electrode is formed in a semiconductor die, and a dielectric layer is then formed to cover the through electrode. The dielectric layer has an opening by being partially etched to allow the through electrode to protrude to the outside, or has a thickness thinner overall so as to allow the through electrode to protrude to the outside. Subsequently, a conductive pad is formed on the through electrode protruding to the outside through the dielectric layer by using an electroless plating method.
    Type: Grant
    Filed: November 29, 2011
    Date of Patent: October 8, 2013
    Assignee: Amkor Technology, Inc.
    Inventors: Won Chul Do, Yong Jae Ko
  • Publication number: 20130256841
    Abstract: The present disclosure relates to providing via plugs in vias of a semiconductor material. The via plugs may be formed of a polymer, such as a polyimide, that can withstand subsequent soldering and operating temperatures. The via plugs effectively fill the vias to prevent the vias from being filled substantially with solder during a subsequent soldering processes.
    Type: Application
    Filed: March 27, 2012
    Publication date: October 3, 2013
    Applicant: CREE, INC.
    Inventors: Van Mieczkowski, Helmut Hagleitner, William T. Pulz
  • Publication number: 20130256680
    Abstract: The present invention discloses a vertical semiconductor device and a manufacturing method thereof. The vertical semiconductor device includes: a substrate having a first surface and a second surface, the substrate including a conductive array formed by multiple conductive plugs through the substrate; a semiconductor layer formed on the first surface, the semiconductor layer having a third surface and a fourth surface, wherein the fourth surface faces the first surface; a first electrode formed on the third surface; and a second electrode formed on the second surface for electrically connecting to the conductive array.
    Type: Application
    Filed: March 30, 2012
    Publication date: October 3, 2013
    Inventors: Chien-Wei Chiu, Tsung-Yi Huang