Bump Or Ball Contacts (epo) Patents (Class 257/E23.021)
  • Patent number: 8754535
    Abstract: A semiconductor device (1,21) includes a solid state device (2,22), a semiconductor chip (3) that has a functional surface (3a) on which a functional element (4) is formed and that is bonded on a surface of the solid state device with the functional surface thereof facing the surface of the solid state device and while maintaining a predetermined distance between the functional surface thereof and the surface of the solid state device, an insulating film (6) that is provided on the surface (2a, 22a) of the solid state device facing the semiconductor chip and that has an opening (6a) greater in size than the semiconductor chip when the surface of the solid state device facing the semiconductor chip is vertically viewed down in plane, and a sealing layer (7) that seals a space between the solid state device and the semiconductor chip.
    Type: Grant
    Filed: March 1, 2013
    Date of Patent: June 17, 2014
    Assignee: Rohm Co., Ltd.
    Inventors: Kazumasa Tanida, Osamu Miyata
  • Patent number: 8754525
    Abstract: A semiconductor construct includes a semiconductor substrate and connection pads provided on the semiconductor substrate. Some of the connection pads are connected to a common wiring and at least one of the remaining of the connection pads are connected to a wiring. The construct also includes a first columnar electrode provided to be connected to the common wiring and a second columnar electrode provided to be connected to a connection pad portion of the wiring.
    Type: Grant
    Filed: August 6, 2013
    Date of Patent: June 17, 2014
    Assignee: Tera Probe, Inc.
    Inventors: Shinji Wakisaka, Takeshi Wakabayashi
  • Patent number: 8742602
    Abstract: A die assembly includes a die mounted to a support, in which the support has interconnect pedestals formed at bond pads, and the die has interconnect terminals projecting beyond a die edge into corresponding pedestals. Also, a support has interconnect pedestals. Also, a method for electrically interconnecting a die to a support includes providing a support having interconnect pedestals formed at bond pads on the die mount surface of the support, providing a die having interconnect terminals projecting beyond a die edge, positioning the die in relation to the support such that the terminals are aligned with the corresponding pedestals, and moving the die and the support toward one another so that the terminals contact the respective pedestals.
    Type: Grant
    Filed: March 12, 2008
    Date of Patent: June 3, 2014
    Assignee: Invensas Corporation
    Inventors: Terrence Caskey, Lawrence Douglas Andrews, Jr., Scott McGrath, Simon J. S. McElrea, Yong Du, Mark Scott
  • Patent number: 8742578
    Abstract: An integrated circuit (IC) chip including solder structures for connection to a package substrate, an IC chip package, and a method of forming the same are disclosed. In an embodiment, an IC chip is provided comprising a wafer having a plurality of solder structures disposed above the wafer. A ball limiting metallurgy (BLM) layer is disposed between each of the plurality of solder structures and the wafer. At least one of the plurality of solder structures has a first diameter and a first height, and at least one other solder structure has a second diameter and a second height. The differing heights and volumes of solder structures facilitate solder volume compensation for chip join improvement on the IC chip side rather than the package side.
    Type: Grant
    Filed: July 19, 2012
    Date of Patent: June 3, 2014
    Assignee: International Business Machines Corporation
    Inventors: Charles L. Arvin, Eric D. Perfecto, Wolfgang Sauter, Jennifer D. Schuler
  • Patent number: 8735275
    Abstract: After a plurality of pads (2) are formed on an insulation film (1), a passivation film (3) is formed on the entire surface thereof, and opening parts (3a) which exposes all the pads (2) are formed in the passivation film (3). Next, another passivation film is formed on the entire surface and, for each of the pads (2), an opening part is formed in this passivation film to expose the central portion of the pad (2). According to the above method, the probing test can be performed with the opening parts (3a) formed in the passivation film (3). Performing the probing test in such a state increases the probability that the probe contacts the pad (2) since the entire surface of the pad (2) is exposed, thereby providing the test with a higher accuracy. Thus, the pad can be miniaturized and/or the pitch can be narrowed without requiring a higher accuracy of the probe.
    Type: Grant
    Filed: May 7, 2010
    Date of Patent: May 27, 2014
    Assignee: Fujitsu Semiconductor Limited
    Inventor: Nobuo Satake
  • Patent number: 8735277
    Abstract: The invention relates to an ultrathin semiconductor circuit having contact bumps and to a corresponding production method. The semiconductor circuit includes a bump supporting layer having a supporting layer thickness and having a supporting layer opening for uncovering a contact layer element being formed on the surface of a semiconductor circuit. An electrode layer is situated on the surface of the contact layer element within the opening of the bump supporting layer, on which electrode layer is formed a bump metallization for realizing the contact bump. On account of the bump supporting layer, a thickness of the semiconductor circuit can be thinned to well below 300 micrometers, with the wafer reliably being prevented from breaking. Furthermore, the moisture barrier properties of the semiconductor circuit are thereby improved.
    Type: Grant
    Filed: September 8, 2010
    Date of Patent: May 27, 2014
    Assignee: Infineon Technologies AG
    Inventors: Dirk Mueller, Manfred Schneegans, Sokratis Sgouridis
  • Patent number: 8736062
    Abstract: A method of making contact pad sidewall spacer and pad sidewall spacers are disclosed. An embodiment includes forming a plurality of contact pads on a substrate, each contact pad having sidewalls, forming a first photoresist over the substrate, and removing the first photoresist from the substrate thereby forming sidewall spacers along the sidewalls of the plurality of the contact pads.
    Type: Grant
    Filed: August 16, 2012
    Date of Patent: May 27, 2014
    Assignee: Infineon Technologies AG
    Inventor: Johann Gatterbauer
  • Publication number: 20140124919
    Abstract: The present invention relates to a semiconductor device and semiconductor process. The semiconductor device includes a substrate, a circuit layer, a plurality of under bump metallurgies (UBMs), a redistribution layer and a plurality of interconnection metals. The substrate has an active surface and a inactive surface. The circuit layer and the under bump metallurgies (UBMs) are disposed adjacent to the active surface. The redistribution layer is disposed adjacent to the inactive surface. The interconnection metals electrically connect the circuit layer and redistribution layer.
    Type: Application
    Filed: November 7, 2012
    Publication date: May 8, 2014
    Applicant: ADVANCED SEMICONDUCTOR ENGINEERING, INC.
    Inventors: Che-Hau Huang, Ying-Te Ou
  • Patent number: 8716860
    Abstract: A tin (Sn)-based solder ball and a semiconductor package including the same are provided. The tin-based solder ball includes about 0.2 to 4 wt. % silver (Ag), about 0.1 to 1 wt. % copper (Cu), about 0.001 to 0.3 wt. % aluminum (Al), about 0.001% to 0.1 wt. % germanium (Ge), and balance of tin and unavoidable impurities. The tin-based solder ball has a high oxidation resistance.
    Type: Grant
    Filed: December 13, 2012
    Date of Patent: May 6, 2014
    Assignee: MK Electron Co., Ltd.
    Inventors: Young Woo Lee, Im Bok Lee, Sung Jae Hong, Jeong Tak Moon
  • Patent number: 8716859
    Abstract: A flip chip package structure is proposed in which a redistribution layer (RDL) is disposed on a surface of both a semiconductor chip and one or more lateral extensions of the semiconductor chip surface. The lateral extensions may be made using, e.g., a reconstituted wafer to implement a fanout region lateral to one or more sides of the semiconductor chip. One or more electrical connectors such as solder bumps or copper cylinders may be applied to the RDL, and an interposer such as a PCB interposer may be connected to the electrical connectors. In this way, a relatively tight semiconductor pad pitch may be accommodated and translated to an appropriate circuit board pitch without necessarily requiring a silicon or glass interposer.
    Type: Grant
    Filed: January 10, 2012
    Date of Patent: May 6, 2014
    Assignee: Intel Mobile Communications GmbH
    Inventors: Thorsten Meyer, Gerald Ofner, Bernd Waidhas
  • Publication number: 20140117534
    Abstract: A structure comprises a first passivation layer formed over a substrate, a second passivation layer formed over the first passivation layer, wherein the second passivation layer includes a first opening with a first dimension, a bond pad embedded in the first passivation layer and the second passivation layer, a protection layer formed on the second passivation layer comprising a second opening with a second dimension, wherein the second dimension is greater than the first dimension and a connector formed on the bond pad.
    Type: Application
    Filed: October 30, 2012
    Publication date: May 1, 2014
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventor: Taiwan Semiconductor Manufacturing Company. Ltd.
  • Publication number: 20140117533
    Abstract: Semiconductor devices, methods of manufacture thereof, and packaged semiconductor devices are disclosed. In one embodiment, a method of manufacturing a semiconductor device includes forming a plurality of contact pads over a substrate, and forming an insulating material over the plurality of contact pads and the substrate. The insulating material is patterned to form an opening over each of the plurality of contact pads, and the plurality of contact pads is cleaned. The method includes forming an under-ball metallization (UBM) structure over the plurality of contact pads and portions of the insulating material. Cleaning the plurality of contact pads recesses a top surface of each of the plurality of contact pads.
    Type: Application
    Filed: October 25, 2012
    Publication date: May 1, 2014
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventor: Taiwan Semiconductor Manufacturing Company, Ltd.
  • Publication number: 20140117532
    Abstract: The disclosure is directed to a device and method for manufacture thereof. The device includes a first workpiece bonded to a second workpiece by a bump interconnection structure. The bump interconnection structure allows for optimized packaging assembly yield and bond integrity.
    Type: Application
    Filed: October 25, 2012
    Publication date: May 1, 2014
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chita Chuang, Yao-Chun Chuang, Yu-Chen Hsu, Ming Hung Tseng, Chen-Shien Chen
  • Patent number: 8710656
    Abstract: An integrated circuit (IC) chip is disclosed including a plurality of metal vertical interconnect accesses (vias) in a back end of line (BEOL) layer, a redistribution layer (RDL) on the BEOL layer, the BEOL layer having a plurality of bond pads, each bond pad connected to at least one corresponding metal via through the RDL; and a solder bump connected to each bond pad, wherein each solder bump is laterally offset from the corresponding metal via connected to the bond pad towards a center of the IC chip by an offset distance, wherein the offset distance is non-uniform across the IC chip. In one embodiment, the offset distance for each solder bump is proportionate to a distance between the center of the IC chip and the center of the corresponding solder bump pad structure for that solder bump.
    Type: Grant
    Filed: July 20, 2012
    Date of Patent: April 29, 2014
    Assignee: International Business Machines Corporation
    Inventors: Timothy H. Daubenspeck, Brian M. Erwin, Jeffrey P. Gambino, Wolfgang Sauter, George J. Scott
  • Patent number: 8710657
    Abstract: Semiconductor packages connecting a semiconductor chip to an external device by bumps are provided. The semiconductor packages may include a connection pad on a semiconductor chip, a connecting bump on and configured to be electrically connected to the connection pad and a supporting bump on the semiconductor chip and configured to be electrically isolated from the connection pad. The connection bump may include a first pillar and a first solder ball and the supporting bump may include a second pillar and a second solder ball. The semiconductor packages may further include a solder channel in the second pillar configured to allow a portion of the second solder ball to extend into the solder channel along a predetermined direction.
    Type: Grant
    Filed: September 23, 2011
    Date of Patent: April 29, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jeong-woo Park, Moon-gi Cho, Ui-hyoung Lee, Sun-hee Park
  • Patent number: 8710655
    Abstract: A die package may include a package substrate; an interposer; and/or at least one first die connected between the package substrate and the interposer. The die package may further include at least one second die mounted on the interposer and/or a processor. A system may include a system board and/or a die package mounted on the system board. The die package may include a package substrate; an interposer; and/or at least one first die connected between the package substrate and the interposer. The system may further include at least one second die mounted on the interposer and/or a processor. The processor may control data processing operations of the at least one first die and/or the at least one second die.
    Type: Grant
    Filed: July 11, 2012
    Date of Patent: April 29, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Hyun-Joong Kim, Jang Seok Choi, Chul-Hwan Choo
  • Patent number: 8709935
    Abstract: A semiconductor device has a substrate and first conductive pads formed over the substrate. An interconnect surface area of the first conductive pads is expanded by forming a plurality of recesses into the first conductive pads. The recesses can be an arrangement of concentric rings, arrangement of circular recesses, or arrangement of parallel linear trenches. Alternatively, the interconnect surface area of the first conductive pads is expanded by forming a second conductive pad over the first conductive pad. A semiconductor die has a plurality of interconnect structures formed over a surface of the semiconductor die. The semiconductor die is mounted to the substrate with the interconnect structures contacting the expanded interconnect surface area of the first conductive pads to increase bonding strength of the interconnect structure to the first conductive pads. A mold underfill material is deposited between the semiconductor die and substrate.
    Type: Grant
    Filed: February 15, 2013
    Date of Patent: April 29, 2014
    Assignee: STATS ChipPAC, Ltd.
    Inventors: DaeSik Choi, OhHan Kim, SungWon Cho
  • Publication number: 20140110835
    Abstract: In accordance with an embodiment of the present invention, a semiconductor package includes a semiconductor chip and a bump. The semiconductor chip has a contact pad on a major surface. The bump is disposed on the contact pad of the semiconductor chip. A solder layer is disposed on sidewalls of the bump.
    Type: Application
    Filed: October 18, 2012
    Publication date: April 24, 2014
    Applicant: INFINEON TECHNOLOGIES AG
    Inventors: Meng Tong Ong, Thiam Huat Lim, Kok Chai Goh
  • Patent number: 8703599
    Abstract: Microelectronic devices having intermediate contacts, and associated methods of packaging microelectronic devices with intermediate contacts, are disclosed herein. A packaged microelectronic device configured in accordance with one embodiment of the invention includes a microelectronic die attached to an interconnecting substrate. The microelectronic die includes an integrated circuit electrically coupled to a plurality of terminals. Each of the terminals is electrically coupled to a corresponding first contact on the die with an individual wire-bond. Each of the first contacts on the die is electrically coupled to a corresponding second contact on the interconnecting substrate by a conductive coupler such as a solder ball.
    Type: Grant
    Filed: November 27, 2012
    Date of Patent: April 22, 2014
    Assignee: Micron Technology, Inc.
    Inventor: Setho Sing Fee
  • Patent number: 8704350
    Abstract: The present invention relates to a stacked wafer level package and a method of manufacturing the same. The stacked wafer level package in accordance with the present invention can improve a misalignment problem generated in a stacking process by performing a semiconductor chip mounting process, a rearrangement wiring layer forming process, the stacking process and so on after previously bonding internal connection means for interconnection between stacked electronic components to a conductive layer for forming a rearrangement wiring layer, thereby improving reliability and yield and reducing manufacturing cost.
    Type: Grant
    Filed: July 13, 2009
    Date of Patent: April 22, 2014
    Assignee: Samsung Electro-Mechanics Co., Ltd.
    Inventors: Seung Wook Park, Young Do Kweon, Jin Gu Kim, Ju Pyo Hong, Hee Kon Lee, Hyung Jin Jeon, Jing Li Yuan, Jong Yun Lee
  • Patent number: 8698187
    Abstract: A light emitting device comprises a case having a space therein, the space defined by an inner bottom surface and an inner side surface of the case, a lead frame housed in the space, and having a bending portion bent along the inner side surface of the case, and a light emitting element electrically connected to the lead frame, wherein a rear surface of the bending portion is embedded in the case and a front surface of the bending portion is exposed from the inner side surface of the case so as to oppose the light emitting element, and wherein a projecting portion projected from the inner bottom surface and inclined to the inner side surface of the case is formed on the inner side surface of the case.
    Type: Grant
    Filed: September 28, 2011
    Date of Patent: April 15, 2014
    Assignee: Toyoda Gosei Co., Ltd.
    Inventors: Hideki Kokubu, Kosei Fukui, Toshimasa Hayashi
  • Patent number: 8697566
    Abstract: A manufacturing method of a bump structure is provided. A substrate having at least one pad and a passivation layer is provided. The passivation layer has at least one first opening exposing the pad. An insulating layer is formed on the passivation layer. The insulating layer has at least one second opening located above the first opening. A metal layer is formed on the insulating layer. The metal layer electrically connects the pad through the first and second openings. A first bump is formed in the first and second openings. A second bump is formed on the first bump and a portion of the metal layer. The metal layer not covered by the second bump is partially removed by using the second bump as a mask, so as to form at least one UBM layer. The first bump is completely covered by the UBM layer and the second bump.
    Type: Grant
    Filed: September 5, 2011
    Date of Patent: April 15, 2014
    Assignee: ChipMOS Technologies Inc.
    Inventor: Chung-Pang Chi
  • Patent number: 8698308
    Abstract: The mechanisms for forming bump structures enable forming bump structures between a chip and a substrate eliminating or reducing the risk of solder shorting, flux residue and voids in underfill. A lower limit can be established for a ? ratio, defined by dividing the total height of copper posts in a bonded bump structure divided by the standoff of the bonded bump structure, to avoid shorting. A lower limit may also be established for standoff the chip package to avoid flux residue and underfill void formation. Further, aspect ratio of a copper post bump has a lower limit to avoid insufficient standoff and a higher limit due to manufacturing process limitation. By following proper bump design and process guidelines, yield and reliability of chip packages may be increases.
    Type: Grant
    Filed: January 31, 2012
    Date of Patent: April 15, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Jing-Cheng Lin, Cheng-Lin Huang
  • Patent number: 8691610
    Abstract: A method of manufacturing a semiconductor device including at least one of the following steps: (1) Forming a plurality of lower electrodes over a substrate. (2) Forming a first stop film over the lower electrodes. (3) Forming a filling layer over the first stop film. (4) Forming a second stop film over the filling layer. (5) Forming a first interlayer insulating layer over the second stop film. (6) Forming a plurality of upper electrodes over the first interlayer insulating layer. (7) Forming a second interlayer insulating layer over the upper electrodes. (8) Etching the second interlayer insulating layer and the first interlayer insulating layer to form a cavity. (9) Forming a contact ball in the cavity.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: April 8, 2014
    Assignee: Dongbu HiTek Co., Ltd.
    Inventors: Seong Hun Jeong, Ki Jun Yun, Oh Jin Jung
  • Patent number: 8686574
    Abstract: A semiconductor device includes a wiring board that has a conductive pattern formed on at least one principal surface, and an IC chip that is mounted on the wiring board. The IC chip includes a plurality of electrodes to make conductor connection with the wiring board. The conductive pattern includes a lead line pattern and a heat dissipation pattern. The lead line pattern is connected with at least one of the plurality of electrodes through a conductor. The heat dissipation pattern is physically spaced from the IC chip and the lead line pattern and has a larger surface area than the lead line pattern. Further, the lead line pattern and the heat dissipation pattern are placed opposite to each other with a gap therebetween, and their opposite parts respectively have interdigitated shapes and are arranged with the respective interdigitated shapes engaging with each other with the gap therebetween.
    Type: Grant
    Filed: February 8, 2013
    Date of Patent: April 1, 2014
    Assignee: Renesas Electronics Corporation
    Inventor: Hidenori Egawa
  • Publication number: 20140084453
    Abstract: Structures and methods for forming good electrical connections between an integrated circuit (IC) chip and a chip carrier of a flip chip package include forming one of: a tensile layer on a front side of the IC chip, which faces a tops surface of the chip carrier, and a compressive layer on the backside of the IC chip. Addition of one of: a tensile layer to the front side of the IC chip and a compressive layer the backside of the IC chip, may reduce or modulate warpage of the IC chip and enhance wetting of opposing solder surfaces of solder bumps on the IC chip and solder formed on flip chip (FC) attaches of a chip carrier during making of the flip chip package.
    Type: Application
    Filed: September 25, 2012
    Publication date: March 27, 2014
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventor: International Business Machines Corporation
  • Patent number: 8674506
    Abstract: Structures and methods to reduce maximum current density in a solder ball are disclosed. A method includes forming a contact pad in a last wiring level and forming a plurality of wires of the contact pad extending from side edges of the contact pad to respective ones of a plurality of vias. Each one of the plurality of wires has substantially the same electrical resistance.
    Type: Grant
    Filed: April 30, 2013
    Date of Patent: March 18, 2014
    Assignee: International Business Machines Corporation
    Inventors: Raschid J. Bezama, Timothy H. Daubenspeck, Gary LaFontant, Ian D. Melville, Ekta Misra, George J. Scott, Krystyna W. Semkow, Timothy D. Sullivan, Robin A. Susko, Thomas A. Wassick, Xiaojin Wei, Steven L. Wright
  • Patent number: 8674501
    Abstract: A semiconductor integrated circuit device includes plural circuit units each having plural logic circuits; and plural power terminals supplying power source from outside to the semiconductor integrated circuit device, in which the plural circuit units each having plural logic circuits have common packaging design with each other, and lengths in a vertical direction and a lateral direction of the circuit units each having plural logic circuits are equal to an even multiple of a distance between the power terminals adjacent to each other.
    Type: Grant
    Filed: March 9, 2010
    Date of Patent: March 18, 2014
    Assignee: Fujitsu Limited
    Inventor: Yasuhide Sosogi
  • Patent number: 8674507
    Abstract: A chip structure comprising a substrate, a plurality of wire bonding pads and a plurality of solder pads is provided. Gold bumps or gold pads can be formed on the wire bonding pads while solder bumps can be formed on the solder pads concurrently. Alternatively, both wire bonding pads and solder pads can be formed of the same metal stack.
    Type: Grant
    Filed: May 27, 2004
    Date of Patent: March 18, 2014
    Assignee: Megit Acquisition Corp.
    Inventors: Chien-Kang Chou, Chiu-Ming Chou, Li-Ren Lin, Chu-Fu Lin
  • Publication number: 20140070402
    Abstract: A structure comprises a plurality of connectors formed on a top surface of a first semiconductor die, a second semiconductor die formed on the first semiconductor die and coupled to the first semiconductor die through the plurality of connectors and a first dummy conductive plane formed between an edge of the first semiconductor die and the plurality of connectors, wherein an edge of the first dummy conductive plane and a first distance to neutral point (DNP) direction form a first angle, and wherein the first angle is less than or equal to 45 degrees.
    Type: Application
    Filed: September 12, 2012
    Publication date: March 13, 2014
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Yao-Chun Chuang, Yu-Chen Hsu, Hao-Juin Liu, Chita Chuang, Chen-Cheng Kuo, Chen-Shien Chen
  • Patent number: 8670638
    Abstract: Methods and apparatus are disclosed for wirelessly communicating among integrated circuits and/or functional modules within the integrated circuits. A semiconductor device fabrication operation uses a predetermined sequence of photographic and/or chemical processing steps to form one or more functional modules onto a semiconductor substrate. The functional modules are coupled to an integrated waveguide that is formed onto the semiconductor substrate and/or attached thereto to form an integrated circuit. The functional modules communicate with each other as well as to other integrated circuits using a multiple access transmission scheme via the integrated waveguide. One or more integrated circuits may be coupled to an integrated circuit carrier to form Multichip Module. The Multichip Module may be coupled to a semiconductor package to form a packaged integrated circuit.
    Type: Grant
    Filed: September 29, 2011
    Date of Patent: March 11, 2014
    Assignee: Broadcom Corporation
    Inventors: Ahmadreza Rofougaran, Arya Reza Behzad, Sam Ziqun Zhao, Jesus Alfonso Castaneda, Michael Boers
  • Patent number: 8664760
    Abstract: A device includes a top dielectric layer having a top surface. A metal pillar has a portion over the top surface of the top dielectric layer. A non-wetting layer is formed on a sidewall of the metal pillar, wherein the non-wetting layer is not wettable to the molten solder. A solder region is disposed over and electrically coupled to the metal pillar.
    Type: Grant
    Filed: January 4, 2012
    Date of Patent: March 4, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chen-Hua Yu, Shin-Puu Jeng, Shang-Yun Hou, Cheng-Chieh Hsieh, Kuo-Ching Hsu, Ying-Ching Shih, Po-Hao Tsai, Chin-Fu Kao, Cheng-Lin Huang, Jing-Cheng Lin
  • Patent number: 8659123
    Abstract: A die includes a substrate, a metal pad over the substrate, and a passivation layer that has a portion over the metal pad. A dummy pattern is disposed adjacent to the metal pad. The dummy pattern is level with, and is formed of a same material as, the metal pad. The dummy pattern forms at least a partial ring surrounding at least a third of the metal pad.
    Type: Grant
    Filed: September 28, 2011
    Date of Patent: February 25, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yao-Chun Chuang, Chita Chuang, Chen-Cheng Kuo, Chen-Shien Chen
  • Patent number: 8659152
    Abstract: A semiconductor device includes a semiconductor substrate having a first surface, a through silicon via (TSV) that is formed so that at least a part thereof penetrates through the semiconductor substrate, and an insulation ring. The insulation ring is formed so as to penetrate through the semiconductor substrate and so as to surround the TSV. The insulation ring includes a tapered portion and a vertical portion. The tapered portion has a sectional area which is gradually decreased from the first surface toward a thickness direction of the semiconductor substrate. The vertical portion has a constant sectional area smaller than the tapered portion.
    Type: Grant
    Filed: September 7, 2011
    Date of Patent: February 25, 2014
    Inventor: Osamu Fujita
  • Publication number: 20140048926
    Abstract: A semiconductor package includes a passivation layer overlying a semiconductor substrate, a bump overlying the passivation layer, and a molding compound layer overlying the passivation layer and covering a lower portion of the bump. A sidewall of the passivation layer is covered by the molding compound layer.
    Type: Application
    Filed: August 14, 2012
    Publication date: February 20, 2014
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Tsung-Ding WANG, Jung Wei CHENG, Bo-I LEE
  • Patent number: 8653662
    Abstract: A structure and method for monitoring interlevel dielectric stress damage. The structure includes a monitor solder bump and normal solder bumps; a set of stacked interlevel dielectric layers between the substrate and the monitor solder bump and the normal solder bumps, one or more ultra-low K dielectric layers comprising an ultra-low K material having a dielectric constant of 2.4 or less; a monitor structure in a region directly under the monitor solder bump in the ultra-low K dielectric layers and wherein the conductor density in at least one ultra-low K dielectric layer in the region directly under the monitor solder bumps is less than a specified minimum density and the conductor density in corresponding regions of the ultra-low K dielectric layers directly under normal solder bumps is greater than the specified minimum density.
    Type: Grant
    Filed: May 2, 2012
    Date of Patent: February 18, 2014
    Assignee: International Business Machines Corporation
    Inventors: Luke D. LaCroix, Mark Lamorey, Janak G. Patel, Peter Slota, Jr., David B. Stone
  • Patent number: 8653640
    Abstract: A semiconductor package apparatus includes a first semiconductor package including a first semiconductor chip, a first substrate, a first terminal, and a first signal transfer medium, and a second semiconductor package including a second semiconductor chip, a second substrate, a second terminal, and a second signal transfer medium. At least one package connecting solder ball is located between the first terminal and the second terminal. A first solder ball guide member is positioned around the first terminal of the first substrate and includes a first guide surface for guiding a shape of the package connecting solder ball.
    Type: Grant
    Filed: April 5, 2012
    Date of Patent: February 18, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Tae-hun Kim, Dae-young Choi, Yang-hoon Ahn, Sun-hye Lee
  • Patent number: 8653658
    Abstract: The mechanisms for forming bump structures reduce variation of standoffs between chips and package substrates. By planarizing the solder layer on bump structures on chips and/or substrates after plating, the heights of bump structures are controlled to minimize variation due to within die and within wafer locations, pattern density, die size, and process variation. As a result, the standoffs between chips and substrates are controlled to be more uniform. Consequently, underfill quality is improved.
    Type: Grant
    Filed: November 30, 2011
    Date of Patent: February 18, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Jing-Cheng Lin, Po-Hao Tsai
  • Patent number: 8653644
    Abstract: A chip-sized, wafer level packaged device including a portion of a semiconductor wafer including a device, at least one packaging layer containing silicon and formed over the device, a first ball grid array formed over a surface of the at least one packaging layer and being electrically connected to the device and a second ball grid array formed over a surface of the portion of the semiconductor wafer and being electrically connected to the device.
    Type: Grant
    Filed: February 28, 2012
    Date of Patent: February 18, 2014
    Assignee: Tessera, Inc.
    Inventors: Andrey Grinman, David Ovrutsky, Charles Rosenstein, Vage Oganesian
  • Publication number: 20140035126
    Abstract: A semiconductor manufacturing method includes providing a substrate having a metallic layer that includes a first metal layer and a second metal layer, the first metal layer comprises plural base areas and plural first outer lateral areas, the second metal layer comprises plural second base areas and plural second outer lateral areas; forming a first photoresist layer; forming plural bearing portions; removing the first photoresist layer; forming a second photoresist layer; forming plural connection portions, each connection portion comprises a first connection layer and a second connection layer; removing the second photoresist layer to reveal the connection portions and the bearing portions; removing the first outer lateral areas; reflowing the second connection layers to form plural composite bumps; removing the second outer lateral areas to make the first base areas and the second base areas form plural under bump metallurgy layers.
    Type: Application
    Filed: July 31, 2012
    Publication date: February 6, 2014
    Applicant: CHIPBOND TECHNOLOGY CORPORATION
    Inventors: Chih-Ming Kuo, Lung-Hua Ho, Kung-An Lin, Sheng-Hiu Chen
  • Patent number: 8643179
    Abstract: Provided are a bump structure includes a first bump and a second bump, a semiconductor package including the same, and a method of manufacturing the same. The bump structure includes: first bump provided on a connection pad of a substrate, the first bump including a plurality of nano-wires extending from the connection pad and a body connecting end portions of the plurality of nano-wires; and a second bump provided on the body of the first bump.
    Type: Grant
    Filed: September 22, 2011
    Date of Patent: February 4, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Yun-Hyeok Im, Jong-Yeon Kim, Tae-Je Cho, Un-Byoung Kang
  • Patent number: 8642462
    Abstract: Methods and designs for increasing interconnect areas for interconnect bumps are disclosed. An interconnect bump may be formed on a substrate such that the interconnect bump extends beyond a contact pad onto a substrate. An interconnect bump may be formed on a larger contact pad, the bump having a large diameter.
    Type: Grant
    Filed: April 9, 2008
    Date of Patent: February 4, 2014
    Assignee: Micorn Technology, Inc.
    Inventors: Terry Lee Sterrett, Richard J. Harries
  • Patent number: 8643181
    Abstract: A method of manufacture of an integrated circuit packaging system includes: forming a rounded interconnect on a package carrier having an integrated circuit attached thereto, the rounded interconnect having an actual center; forming an encapsulation over the package carrier covering the rounded interconnect; removing a portion of the encapsulation over the rounded interconnect with an ablation tool; calculating an estimated center of the rounded interconnect; aligning the ablation tool over the estimated center; and exposing a surface area of the rounded interconnect with the ablation tool.
    Type: Grant
    Filed: March 24, 2010
    Date of Patent: February 4, 2014
    Assignee: STATS ChipPAC Ltd.
    Inventors: JoHyun Bae, SeongHun Mun, SeungYun Ahn
  • Patent number: 8643180
    Abstract: A semiconductor device of the present invention includes a semiconductor chip; an internal pad for electrical connection formed on a surface of the semiconductor chip; a stress relaxation layer formed on the semiconductor chip and having an opening for exposing the internal pad; an under-bump layer formed so as to cover a face exposed in the opening on the internal pad, an inner face of the opening and a circumference of the opening on the stress relaxation layer; a solder terminal for electrical connection with outside formed on the under-bump layer; and a protective layer formed on the stress relaxation layer, encompassing a periphery of the under-bump layer and covering a side face of the under-bump layer.
    Type: Grant
    Filed: December 26, 2007
    Date of Patent: February 4, 2014
    Assignee: Rohm Co., Ltd.
    Inventors: Hiroyuki Shinkai, Hiroshi Okumura
  • Publication number: 20140027900
    Abstract: A bump structure for electrically coupling semiconductor components is provided. The bump structure includes a first bump on a first semiconductor component and a second bump on a second semiconductor component. The first bump has a first non-flat portion (e.g., a convex projection) and the second bump has a second non-flat portion (e.g., a concave recess). The bump structure also includes a solder joint formed between the first and second non-flat portions to electrically couple the semiconductor components.
    Type: Application
    Filed: July 25, 2012
    Publication date: January 30, 2014
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Tzu-Wei Chiu, Tzu-Yu Wang, Shang-Yun Hou, Shin-Puu Jeng, Hsien-Wei Chen, Hung-An Teng, Wei-Cheng Wu
  • Publication number: 20140021606
    Abstract: A solder structure for joining an IC chip to a package substrate, and method of forming the same are disclosed. In an embodiment, a structure is formed which includes a wafer having a plurality of solder structures disposed above the wafer. A ball limiting metallurgy (BLM) layer disposed beneath each of the solder structures, above the wafer. At least one of the plurality of solder structures has a first composition, and at least another of the plurality of solder structures has a second composition.
    Type: Application
    Filed: July 19, 2012
    Publication date: January 23, 2014
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Charles L. Arvin, Wolfgang Sauter, Jennifer D. Schuler
  • Publication number: 20140021601
    Abstract: A semiconductor manufacturing method includes providing a carrier; forming a first photoresist layer; forming plural core portions; removing the first photoresist layer; forming a second photoresist layer; forming a plurality of connection portions, each of the plurality of connection portions includes a first connection layer and a second connection layer and connects to each of the core portions to form a hybrid bump, wherein each of the first connection layers comprises a base portion, a projecting portion and an accommodating space, each base portion comprises an upper surface, each projecting portion is protruded to the upper surface and located on top of each core portion, each accommodating space is located outside each projecting portion, the second connection layers cover the projecting portions and the upper surfaces, and the accommodating spaces are filled by the second connection layers; removing the second photoresist layer to reveal the hybrid bumps.
    Type: Application
    Filed: October 4, 2012
    Publication date: January 23, 2014
    Applicant: CHIPBOND TECHNOLOGY CORPORATION
    Inventors: Chih-Ming Kuo, Lung-Hua Ho, Shih-Chieh Chang, Chia-Yeh Huang, Chin-Tang Hsieh
  • Publication number: 20140021605
    Abstract: Package on package (PoP) devices and methods of packaging semiconductor dies are disclosed. A PoP device includes a first packaged die and a second packaged die coupled to the first packaged die. Metal stud bumps are disposed between the first packaged die and the second packaged die. The metal stud bumps include a stick region, a first ball region coupled to a first end of the stick region, and a second ball region coupled to a second end of the stick region. The metal stud bumps include a portion that is partially embedded in a solder joint.
    Type: Application
    Filed: July 18, 2012
    Publication date: January 23, 2014
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Chen-Hua Yu, Yung Ching Chen, Chien-Hsun Lee, Jiun Yi Wu, Mirng-Ji Lii, Ming-Da Cheng
  • Publication number: 20140021607
    Abstract: An integrated circuit (IC) chip including solder structures for connection to a package substrate, an IC chip package, and a method of forming the same are disclosed. In an embodiment, an IC chip is provided comprising a wafer having a plurality of solder structures disposed above the wafer. A ball limiting metallurgy (BLM) layer is disposed between each of the plurality of solder structures and the wafer. At least one of the plurality of solder structures has a first diameter and a first height, and at least one other solder structure has a second diameter and a second height. The differing heights and volumes of solder structures facilitate solder volume compensation for chip join improvement on the IC chip side rather than the package side.
    Type: Application
    Filed: July 19, 2012
    Publication date: January 23, 2014
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Charles L. Arvin, Eric D. Perfecto, Wolfgang Sauter, Jennifer D. Schuler
  • Patent number: 8633601
    Abstract: The various embodiments of the present invention provide fine pitch, chip-to-substrate interconnect assemblies, as well as methods of making and using the assemblies. The assemblies generally include a semiconductor having a die pad and a bump disposed thereon and a substrate having a substrate pad disposed thereon. The bump is configured to electrically interconnect at least a portion of the semiconductor with at least a portion of the substrate when the bump is contacted with the substrate pad. In addition, when the bump is contacted to the substrate pad, at least a portion of the bump and at least a portion of the substrate pad are deformed so as to create a non-metallurgical bond therebetween.
    Type: Grant
    Filed: July 13, 2010
    Date of Patent: January 21, 2014
    Assignee: Georgia Tech Research Corporation
    Inventors: Nitesh Kumbhat, Abhishek Choudhury, Venkatesh V. Sundaram, Rao R. Tummala