Geometry Or Layout (epo) Patents (Class 257/E23.07)
  • Publication number: 20120007230
    Abstract: An embodiment of the disclosure includes a conductive bump on a semiconductor die. A substrate is provided. A bond pad is over the substrate. An under bump metallurgy (UBM) layer is over the bond pad. A copper pillar is over the UBM layer. The copper pillar has a top surface with a first width and sidewalls with a concave shape. A nickel layer having a top surface and a bottom surface is over the top surface of the copper pillar. The bottom surface of the nickel layer has a second width. A ratio of the second width to the first width is between about 0.93 to about 1.07. A solder material is over the top surface of the cap layer.
    Type: Application
    Filed: July 8, 2010
    Publication date: January 12, 2012
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Chien Ling Hwang, Ying-Jui Huang, Zheng-Yi Lim, Yi-Yang Lei, Cheng-Chung Lin, Chung-Shi Liu
  • Publication number: 20120007231
    Abstract: A nickel barrier layer is formed on an upper sidewall surface of a Cu pillar. A mask layer with an opening for defining the Cu pillar window has an upper portion and a lower portion. The upper portion of the mask layer is removed after the formation of the Cu pillar so as to expose the upper sidewall surface of the Cu pillar. The nickel barrier layer is then deposited on the exposed sidewall surface of the Cu pillar followed by removing and the lower portion of the mask layer.
    Type: Application
    Filed: July 8, 2010
    Publication date: January 12, 2012
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventor: Wei Sen CHANG
  • Publication number: 20120007228
    Abstract: An embodiment of the disclosure includes a conductive pillar on a semiconductor die. A substrate is provided. A bond pad is over the substrate. A conductive pillar is over the bond pad. The conductive pillar has a top surface, edge sidewalls and a height. A cap layer is over the top surface of the conductive pillar. The cap layer extends along the edge sidewalls of the conductive pillar for a length. A solder material is over a top surface of the cap layer.
    Type: Application
    Filed: July 8, 2010
    Publication date: January 12, 2012
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Wen-Hsiung LU, Ming-Da CHENG, Chih-Wei LIN, Ming-Che HO, Chung-Shi LIU
  • Patent number: 8080883
    Abstract: A longest wiring and a shortest wiring alongside each other among the plurality of wirings are placed. Then, a longest wiring from among remaining wires which have not being placed yet, alongside an outside of a space surrounded by the wirings already placed and on a side of a shorter wiring of the wrings placed at outermost ends are placed. A shortest wiring from among remaining wires which have not placed yet, alongside an outside of a space surrounded by the wirings already placed and on a side of a longer wiring of the wirings placed at outermost ends is placed. These two processes are repeated.
    Type: Grant
    Filed: February 4, 2009
    Date of Patent: December 20, 2011
    Assignee: Renesas Electronics Corporation
    Inventor: Tamotsu Watarai
  • Patent number: 8076787
    Abstract: An improvement is achieved in the mounting reliability of a semiconductor device. A semiconductor chip is mounted over an upper surface of a wiring substrate. A plurality of solder balls are disposed individually over a plurality of lands formed on a lower surface of the wiring substrate. The plural lands include a first land group arranged in a plurality of rows and arranged along a peripheral edge portion of the lower surface of the wiring substrate, and a second land group arranged inside the first land group in the lower surface of the wiring substrate. The lands in the first land group are arranged with a first pitch, and the lands in the second land group are arranged with a second pitch higher than the first pitch.
    Type: Grant
    Filed: August 28, 2009
    Date of Patent: December 13, 2011
    Assignee: Renesas Electronics Corporation
    Inventor: Yoshinari Hayashi
  • Patent number: 8072068
    Abstract: A semiconductor device according to the present invention includes: a semiconductor chip; a sealing resin layer formed on the semiconductor chip; and a post electrode formed in a through-hole penetrating through the sealing resin layer in a thickness direction, and having a hemispheric top surface.
    Type: Grant
    Filed: May 20, 2009
    Date of Patent: December 6, 2011
    Assignee: Rohm Co., Ltd.
    Inventor: Tatsuya Sakamoto
  • Patent number: 8072030
    Abstract: A semiconductor device, which is connected to a protected device and protects a protected device, includes a semiconductor layer provided on an insulating film; a plurality of source layers which is formed in the semiconductor layer and extends in a first direction; a plurality of drain layers which is formed in the semiconductor layer and extends along with the source layers; a plurality of body regions which is provided between the source layers and the drain layers in the semiconductor layer and extends in the first direction; and at least one body connecting part connecting the plurality of body regions, wherein a first width between the source layer and the drain layer at a first position is larger than a second width between the source layer and the drain layer at a second position, the second position is closer to the body connecting part than the first position.
    Type: Grant
    Filed: March 16, 2009
    Date of Patent: December 6, 2011
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Masayuki Sugiura
  • Publication number: 20110291274
    Abstract: A method of manufacturing a semiconductor device is disclosed. One embodiment provides a carrier. Semiconductor chips are placed over the carrier. The semiconductor chips include contact elements. A polymer material is applied over the semiconductor chips and the carrier. The polymer material is removed until the contact elements are exposed. The carrier is removed from the semiconductor chips.
    Type: Application
    Filed: August 8, 2011
    Publication date: December 1, 2011
    Applicant: INFINEON TECHNOLOGIES AG
    Inventors: Thorsten Meyer, Gerald Ofner, Rainer Steiner
  • Publication number: 20110285015
    Abstract: There is provided a bump structure for a semiconductor device, comprising a metal post formed on and electrically connected to an electrode pad on a substrate, a solder post formed on the top surface of the metal post, said solder post having the same horizontal width as the metal post and the top surface of the solder post being substantially rounded, and an intermetallic compound layer disposed at the interface between the metal post and the solder post. An oxide layer formed on the solder post prevents solder post under reflow from being changed into a spherical shape. An intermetallic compound layer may be formed by an aging process at the interface between the metal post and the solder post. The bump structure can realize fine pitch semiconductor package without a short between neighboring bumps.
    Type: Application
    Filed: July 7, 2010
    Publication date: November 24, 2011
    Applicant: NEPES CORPORATION
    Inventors: Chi Jung Song, In Soo Kang, Gi Jo Jung, Yun Mook Park, Eung Ju Lee, Jun Kyu Lee, Jung Won Lee
  • Patent number: 8058653
    Abstract: A thin film transistor array panel is provided according to one or more embodiments. In an embodiment, the thin film transistor array panel includes: a base substrate that has a display area and a peripheral area; a plurality of thin film transistors that are formed in the display area; a plurality of signal input pads that are formed in the peripheral area and that are formed long in a first direction; and a plurality of signal lines that are connected to the thin film transistors and the signal input pads, wherein at least a part of each of the plurality of signal input pads is arranged in a line along the first direction.
    Type: Grant
    Filed: November 25, 2008
    Date of Patent: November 15, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Son-Uk Lee, Sung-Jim Kim, Jeong-Kuk Lee
  • Patent number: 8049249
    Abstract: A semiconductor wafer with an electrostatic discharge (ESD) protective device is disclosed. The semiconductor wafer includes first and second adjacent semiconductor die regions, a protective device in a scribe line region between the first and second die regions, and at least one metal line on a surface of the first die region, wherein the metal line(s) is/are in electrical communication with the protective device.
    Type: Grant
    Filed: September 14, 2006
    Date of Patent: November 1, 2011
    Assignee: Marvell International Ltd.
    Inventors: Chuan-Cheng Cheng, Choy Hing Li, Shuhua Yu
  • Patent number: 8044518
    Abstract: A second semiconductor chip and a junction member are mounted on a first semiconductor chip formed with a plurality of first pads on a surface thereof. A resin encapsulating body is provided which seals the first semiconductor chip, the second semiconductor chip and the junction member. The second semiconductor chip includes a plurality of second pads arranged in a central part thereof. The junction member includes first junction pads, second junction pads and connecting portions which connect the first junction pads and the second junction pads respectively. Electrical connections of the second semiconductor chip from the second pads include connections to connecting terminals and connections to the connecting terminals or the first semiconductor chip from the second junction pads via the first junction pads.
    Type: Grant
    Filed: October 8, 2004
    Date of Patent: October 25, 2011
    Assignee: Oki Semiconductor Co., Ltd.
    Inventor: Yasufumi Uchida
  • Publication number: 20110254151
    Abstract: A method for fabricating bump structure without UBM undercut uses an electroless Cu plating process to selectively form a Cu UBM layer on a Ti UBM layer within an opening of a photoresist layer. After stripping the photoresist layer, there is no need to perform a wet etching process on the Cu UBM layer, and thereby the UBM structure has a non-undercut profile.
    Type: Application
    Filed: April 16, 2010
    Publication date: October 20, 2011
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Chih-Wei LIN, Ming-Da CHENG, Wen-Hsiung LU, Chung-Shi LIU
  • Patent number: 8039304
    Abstract: A semiconductor device has dual-molded semiconductor die mounted to opposite sides of a build-up interconnect structure. A first semiconductor die is mounted to a temporary carrier. A first encapsulant is deposited over the first semiconductor die and temporary carrier. The temporary carrier is removed. A first interconnect structure is formed over a first surface of the first encapsulant and first semiconductor die. The first interconnect structure is electrically connected to first contact pads of the first semiconductor die. A plurality of conductive pillars is formed over the first interconnect structure. A second semiconductor die is mounted between the conductive pillars to the first interconnect structure. A second encapsulant is deposited over the second semiconductor die. A second interconnect structure is formed over the second encapsulant. The second interconnect structure is electrically connected to the conductive pillars and first and second semiconductor die.
    Type: Grant
    Filed: August 12, 2009
    Date of Patent: October 18, 2011
    Assignee: STATS ChipPAC, Ltd.
    Inventor: Reza A. Pagaila
  • Patent number: 8026447
    Abstract: Devices and methods for electrical interconnection for microelectronic circuits are disclosed. One method of electrical interconnection includes forming a bundle of microfilaments, wherein at least two of the microfilaments include electrically conductive portions extending along their lengths. The method can also include bonding the microfilaments to corresponding bond pads of a microelectronic circuit substrate to form electrical connections between the electrically conductive portions and the corresponding bond pads. A microelectronic circuit can include a bundle of microfilaments bonded to corresponding bond pads to make electrical connection between corresponding bonds pads and electrically-conductive portions of the microfilaments.
    Type: Grant
    Filed: November 9, 2009
    Date of Patent: September 27, 2011
    Assignee: Raytheon Sarcos, LLC
    Inventors: Stephen C. Jacobsen, David P. Marceau, Shayne M. Zurn, David T. Markus
  • Publication number: 20110210440
    Abstract: An electronic package includes a first layer having a first surface, the first layer includes a first device having a first electrical node, and a first contact pad in electrical communication with the first electrical node and positioned within the first surface. The package includes a second layer having a second surface and a third surface, the second layer includes a first conductor positioned within the second surface and a second contact pad positioned within the third surface and in electrical communication with the first conductor. A first anisotropic conducting paste (ACP) is positioned between the first contact pad and the first conductor to electrically connect the first contact pad to the first conductor such that an electrical signal may pass therebetween.
    Type: Application
    Filed: May 5, 2011
    Publication date: September 1, 2011
    Inventors: James Sabatini, Christopher James Kapusta, Glenn Forman
  • Patent number: 7999392
    Abstract: A multilayer interconnection structure according to this invention is applied to a case where a plurality of interconnections are formed at a fine pitch and a via is connected to at least one of the interconnections. In the multilayer interconnection structure, a region facing the via is locally narrowed in at least the interconnection, facing the via, of the interconnections adjacent to the interconnection connected to the via.
    Type: Grant
    Filed: March 9, 2006
    Date of Patent: August 16, 2011
    Assignee: Renesas Electronics Corporation
    Inventors: Hiroto Ohtake, Yoshihiro Hayashi
  • Publication number: 20110193220
    Abstract: A conductive pillar for a semiconductor device is provided. The conductive pillar is formed such that a top surface is non-planar. In embodiments, the top surface may be concave, convex, or wave shaped. An optional capping layer may be formed over the conductive pillar to allow for a stronger inter-metallic compound (IMC) layer. The IMC layer is a layer formed between solder material and an underlying layer, such as the conductive pillar or the optional capping layer.
    Type: Application
    Filed: February 11, 2010
    Publication date: August 11, 2011
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Tin-Hao Kuo, Chen-Shien Chen, Ching-Wen Hsiao
  • Publication number: 20110156239
    Abstract: A method for manufacturing a fan-out embedded panel-level package. Film having an adhesive on each side is applied to the non-active face of a plurality of semiconductor die while the die are still in wafer form. The die are singulated from the wafer and placed on a carrier, using the adhesive on the unused side of the film to attach the die to the carrier. Encapsulant material is dispensed onto the carrier adjacent to the die, providing an exposed surface on the encapsulant material approximately even with the active faces of the die. Elements of the redistribution layer such as conductors and fan-out pads are applied to this surface. A solder ball array is placed on the fan-out pads and then the die are re-singulated by cutting through the encapsulation material and the carrier, yielding individual electronic packages.
    Type: Application
    Filed: December 29, 2009
    Publication date: June 30, 2011
    Applicant: STMICROELECTRONICS ASIA PACIFIC PTE LTD.
    Inventor: Yonggang Jin
  • Patent number: 7968997
    Abstract: A semiconductor device includes a wring board having a first surface with external connection terminals and a second surface with internal connection terminals. On the second surface of the wiring board, a semiconductor chip having electrode pads is mounted. The electrode pads of the semiconductor chip and the internal connection terminals of the wiring board are electrically connected via connecting members. The external connection terminals are arranged along two opposite outer sides of the wiring board and each have a rectangular shape elongated in a direction toward the outer side.
    Type: Grant
    Filed: January 28, 2009
    Date of Patent: June 28, 2011
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Yasuo Takemoto
  • Patent number: 7969013
    Abstract: A through silicon via structure includes a top pad and a vertical conductive post that is connected to the top pad. The top pad covers a wider area than the cross section of the vertical conductive post. An interconnect pad is formed at least partially below the top pad. An under layer is also formed at least partially below the top pad. At least one dummy structure connects the top pad and the under layer to fasten the top pad and the interconnect pad.
    Type: Grant
    Filed: June 2, 2010
    Date of Patent: June 28, 2011
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chih-Hua Chen, Chen-Shien Chen, Chen-Cheng Kuo, Wen-Wei Shen
  • Publication number: 20110147928
    Abstract: Microelectronic assemblies can have multiple conductive bond elements, e.g., bond wires, or a lead bond and a bond wire, extending between a pair of a substrate contact and a chip contact. E.g., a first bond wire can have ends joined to the contacts of the chip and substrate. A second bond wire can be joined to the ends of the first bond wire so that the second bond wire does not touch either the chip contact or the substrate contact to which the first bond wire is joined. In one example, a bond wire has a looped connection with first and second ends joined at a first contact and a middle portion joined to a second contact. In one example, first and second bond elements, e.g., bond wires or lead bonds can connect first and second pairs of a substrate contact with a chip contact. A third bond element, e.g., a bond wire or bond ribbon, can be joined to ends of the first and second bond elements.
    Type: Application
    Filed: December 22, 2009
    Publication date: June 23, 2011
    Applicant: TESSERA RESEARCH LLC
    Inventors: Belgacem Haba, Philip Damberg, Philip R. Osborn
  • Patent number: 7960211
    Abstract: Semiconductor devices that contain a system in package and methods for making such packages are described. The semiconductor device with a system in package (SIP) contains a first IC die, passive components, and discrete devices that are contained in a lower level of the package. The SIP also contains a second IC die that is vertically separated from the first IC die by an array of metal interposers, thereby isolating the components of the first IC die from the components of the second IC die. Such a configuration provides more functionality within a single semiconductor package while also reducing or eliminating local heating in the package. Other embodiments are also described.
    Type: Grant
    Filed: July 23, 2008
    Date of Patent: June 14, 2011
    Assignee: Fairchild Semiconductor Corporation
    Inventors: Manolito Galera, Leocadio Morona Alabin
  • Patent number: 7956378
    Abstract: Provided is a light emitting diode package and a method of manufacturing the same. The light emitting diode package includes a package main body with a cavity, a plurality of light emitting diode chips, a wire, and a plurality of lead frames. The plurality of light emitting diode chips are mounted in the cavity. The wire is connected to an electrode of at least one light emitting diode chip. The plurality of lead frames are formed in the cavity, and at least one lead frame is electrically connected to the light emitting diode chip or a plurality of wires.
    Type: Grant
    Filed: May 3, 2010
    Date of Patent: June 7, 2011
    Assignee: LG Innotek Co., Ltd.
    Inventor: Won-Jin Son
  • Patent number: 7944040
    Abstract: A semiconductor device comprises an IC chip body and a package substrate that has thereon many external electrodes arranged in a two-dimensional grid configuration. Groups of signal lines that are likely to emit noise (noisy signal lines) are separated and spaced apart from groups of signal lines that are susceptible to noise (noise susceptible signal lines). Each of the noisy signal lines and noise susceptible signal lines is connected to an associated member of an associated IC pad group separated and spaced apart from other IC pad groups. Further, each of the noisy signal lines and noise susceptible signal lines is connected to an associated member of an associated external electrode group selected from the multiplicity of external electrodes arranged in a two-dimensional grid configuration on the package substrate. Thus, groups of potentially interfering signal lines are mutually separated and spaced apart from one another, thereby suppressing the noise.
    Type: Grant
    Filed: March 26, 2010
    Date of Patent: May 17, 2011
    Assignee: Rohm Co., Ltd
    Inventor: Fumihiko Terasaki
  • Patent number: 7936059
    Abstract: Broadly speaking, the present invention fills these needs by providing a lead frame package including a substrate stack having opposed sides, one of which includes a plurality of signal traces, with the remaining side including a ground plane. An integrated circuit is mounted to the substrate stack. The integrated circuit includes a plurality of bond pads. A plurality of leads is in electrical communication with a subset of the plurality of signal traces. A plurality of electrically conductive elements placing a sub-group of the plurality of bond pads in electrical communication with a sub-part of the plurality of electrically leads by being bonded signal traces of the subset, spaced-apart from the plurality of leads.
    Type: Grant
    Filed: February 20, 2007
    Date of Patent: May 3, 2011
    Assignee: Altera Corporation
    Inventor: Yuanlin Xie
  • Patent number: 7928543
    Abstract: A tape wiring substrate may have dispersion wiring patterns. The dispersion wiring patterns may be provided between input/output wiring pattern groups to compensate for the intervals therebetween. Connecting wiring patterns may be configured to connect the dispersion wiring patterns to a first end of the adjacent input/output wiring pattern.
    Type: Grant
    Filed: April 3, 2009
    Date of Patent: April 19, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Dong-Han Kim
  • Patent number: 7915745
    Abstract: A multi-port memory device includes a first package ball out region in which a plurality of balls for a serial I/O interface part are arranged; and a second package ball out region in which a plurality of balls for a dynamic random access memory (DRAM) part are arranged.
    Type: Grant
    Filed: February 2, 2010
    Date of Patent: March 29, 2011
    Assignee: Hynix Semiconductor Inc.
    Inventors: Jae-Hyuk Im, Chang-Ho Do
  • Publication number: 20110068427
    Abstract: A stackable wafer level package and a fabricating method thereof are disclosed. In the stackable wafer level package, bond pads (or redistribution layers) are arranged on a bottom semiconductor die, and metal pillars are formed on some of the bond pads positioned around the edges of the bottom semiconductor die. A top semiconductor die is electrically connected to the other bond pads, on which the metal pillars are not formed, positioned around the center of the bottom semiconductor die through conductive bumps. The metal pillars and the top semiconductor die are encapsulated by an encapsulant. A plurality of interconnection patterns electrically connected to the metal pillars are formed on the surface of the encapsulant. Solder balls are attached to the interconnection patterns. Due to this stack structure, the wafer level package is reduced in thickness and footprint. Therefore, the wafer level package is highly suitable for mobile applications.
    Type: Application
    Filed: September 18, 2009
    Publication date: March 24, 2011
    Applicant: AMKOR TECHONOLOGY KOREA, INC.
    Inventors: Jong Sik PAEK, In Bae PARK, Chang Deok LEE
  • Patent number: 7911068
    Abstract: A component and a method for producing a component are disclosed. The component comprises an integrated circuit, a housing body, a wiring device overlapping the integrated circuit and the housing body, and one or more external contact devices in communication with the wiring device.
    Type: Grant
    Filed: July 13, 2006
    Date of Patent: March 22, 2011
    Assignee: Infineon Technologies AG
    Inventors: Thorsten Meyer, Harry Hedler, Markus Brunnbauer
  • Publication number: 20110049704
    Abstract: In one embodiment, a semiconductor device package includes a circuit substrate, a chip, a plurality of first solder balls, an encapsulant, and a heatsink. The circuit substrate includes a carrying surface and a plurality of first bonding pads thereon. The chip is disposed on the carrying surface and electrically connected to the circuit substrate. The first bonding pads are located outside of the chip. The first solder balls are disposed on the first bonding pads. The encapsulant is disposed on the carrying surface and covers the chip. The encapsulant includes a plurality of openings exposing the first solder balls. The heatsink is disposed over the encapsulant and bonded to the first solder balls, wherein the heatsink includes a plurality of protrusions on a bonding surface facing the encapsulant, and the protrusions are correspondingly embedded into the first solder balls.
    Type: Application
    Filed: April 29, 2010
    Publication date: March 3, 2011
    Inventors: Yu-Ching Sun, Fa-Hao Wu, Kuang-Hsiung Chen
  • Publication number: 20110042798
    Abstract: A semiconductor device has a first semiconductor die mounted to a first contact pad on a leadframe or substrate with bumps. A conductive pillar is formed over a second semiconductor die. The second die is mounted over the first die by electrically connecting the conductive pillar to a second contact pad on the substrate with bumps. The second die is larger than the first die. An encapsulant is deposited over the first and second die. Alternatively, the conductive pillars are formed over the substrate around the first die. A heat sink is formed over the second die, and a thermal interface material is formed between the first and second die. An underfill material is deposited under the first semiconductor die. A shielding layer is formed between the first and second die. An interconnect structure can be formed over the second contact pad of the substrate.
    Type: Application
    Filed: August 21, 2009
    Publication date: February 24, 2011
    Applicant: STATS CHIPPAC, LTD.
    Inventors: Reza A. Pagaila, Byung Tai Do, Linda Pei Ee Chua
  • Patent number: 7893530
    Abstract: The present invention relates to a circuit substrate comprising an upper surface, a first layout area, a second layout area, and a third layout area. The first layout area is on the upper surface, and has a plurality of first electrical contacts. The second layout area is on the upper surface, and has a plurality of second electrical contacts. The third layout area is on the upper surface, and has a plurality of third electrical contacts. The second and the third electrical contacts that have the same electrical property are electrically connected to each other. Thus, the circuit substrate can be applied to memory chips with different size.
    Type: Grant
    Filed: January 15, 2008
    Date of Patent: February 22, 2011
    Assignee: Advanced Semiconductor Engineering, Inc.
    Inventor: Po-Hsin Hsieh
  • Publication number: 20110037169
    Abstract: A semiconductor device has dual-molded semiconductor die mounted to opposite sides of a build-up interconnect structure. A first semiconductor die is mounted to a temporary carrier. A first encapsulant is deposited over the first semiconductor die and temporary carrier. The temporary carrier is removed. A first interconnect structure is formed over a first surface of the first encapsulant and first semiconductor die. The first interconnect structure is electrically connected to first contact pads of the first semiconductor die. A plurality of conductive pillars is formed over the first interconnect structure. A second semiconductor die is mounted between the conductive pillars to the first interconnect structure. A second encapsulant is deposited over the second semiconductor die. A second interconnect structure is formed over the second encapsulant. The second interconnect structure is electrically connected to the conductive pillars and first and second semiconductor die.
    Type: Application
    Filed: August 12, 2009
    Publication date: February 17, 2011
    Applicant: STATS CHIPPAC, LTD.
    Inventor: Reza A. Pagaila
  • Patent number: 7888788
    Abstract: Mutual inductance from an external output signal system to an external input signal system, in which parallel input/output operation is enabled, is reduced. A semiconductor integrated circuit has a plurality of external connection terminals facing a package substrate, and has an external input terminal and an external output terminal, in which parallel input/output operation is enabled, as part of the external connection terminals. The package substrate has a plurality of wiring layers for electrically connecting between the external connection terminals and module terminals corresponding to each other. A first wiring layer facing the semiconductor integrated circuit has a major wiring for connecting between the external input terminal and a module terminal corresponding to each other, and a second wiring layer in which the module terminals are formed has a major wiring for connecting between an external output terminal and a module terminal corresponding to each other.
    Type: Grant
    Filed: August 20, 2010
    Date of Patent: February 15, 2011
    Assignee: Renesas Electronics Corporation
    Inventors: Yasuhiro Yoshikawa, Motoo Suwa, Hiroshi Toyoshima
  • Publication number: 20110024899
    Abstract: Various embodiments provide semiconductor devices having cavity substrate structures for package-on-package assembly and methods for their fabrication. In one embodiment, the cavity substrate structure can include at least one top interconnect via formed within a top substrate. The top substrate can be disposed over a base substrate having at least one base interconnect via that is not aligned with the top interconnect via. Semiconductor dies can be assembled in an open cavity of the top substrate and attached to a base center portion of the base substrate of the cavity substrate structure. A top semiconductor package can be mounted over the top substrate of the cavity substrate structure.
    Type: Application
    Filed: July 28, 2009
    Publication date: February 3, 2011
    Inventors: Kenji MASUMOTO, Masazumi Amagai, Masayuki Yoshino, Yukio Moriyama
  • Publication number: 20110018128
    Abstract: A semiconductor package structure is provided. The structure includes a semiconductor chip having a plurality of interconnect layers formed thereover. A first passivation layer is formed over the plurality of interconnect layers. A stress buffer layer is formed over the first passivation layer. A bonding pad is formed over the stress buffer layer. A second passivation layer is formed over a portion of the bonding pad, the second passivation having at least one opening therein exposing a portion of the bonding pad.
    Type: Application
    Filed: April 9, 2010
    Publication date: January 27, 2011
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Hsiu-Ping WEI, Shin-Puu JENG, Hao-Yi TSAI, Hsien-Wei CHEN, Yu-Wen LIU, Ying-Ju CHEN, Tzuan-Horng LIU
  • Patent number: 7872360
    Abstract: A semiconductor device is disclosed that includes a wiring board having a via formed therein; a semiconductor element provided on the wiring board; a resist layer covering a surface of the wiring board, the resist layer having an opening in a part thereof positioned on the via; and a sealing resin covering the surface of the via in the opening and the resist layer, and sealing the semiconductor device.
    Type: Grant
    Filed: March 4, 2008
    Date of Patent: January 18, 2011
    Assignee: Fujitsu Semiconductor Limited
    Inventor: Norio Fukasawa
  • Publication number: 20110006422
    Abstract: Controlled collapse chip connection (C4) structures and methods of manufacture, and more specifically to structures and methods to improve lead-free C4 interconnect reliability. A structure includes a ball limited metallization (BLM) layer and a controlled collapse chip connection (C4) solder ball formed on the BLM layer. Additionally, the structure includes a final metal pad layer beneath the BLM layer and a cap layer beneath the final metal pad layer. Furthermore, the structure includes an air gap formed beneath the C4 solder ball between the final metal pad layer and one of the BLM layer and the cap layer.
    Type: Application
    Filed: July 13, 2009
    Publication date: January 13, 2011
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Timothy H. Daubenspeck, Jeffrey P. Gambino, Christopher D. Muzzy, David L. Questad, Wolfgang Sauter, Timothy D. Sullivan
  • Patent number: 7868469
    Abstract: An adapter board includes a package substrate having a first surface and a second surface and further including a board having wirings formed therein, pads disposed in the device side, and the pads disposed in the bump side, an insulating resin layer joined to the first surface, through holes formed in the positions corresponding to the pads in the insulating resin layer, vias formed in the through holes, and pads covering the through holes, wherein the pads are electrically coupled to the pads through the wirings, and the pads are electrically coupled to the pads through the vias.
    Type: Grant
    Filed: January 22, 2009
    Date of Patent: January 11, 2011
    Assignee: Renesas Electronics Corporation
    Inventor: Osamu Mizoguchi
  • Publication number: 20110001215
    Abstract: An electronic multi-component package is assembled by placing multiple electronic components within multiple openings of a package substrate, then depositing and curing adhesive filler in gaps between the components and the inner peripheries of the openings. Circuit features, including conductive interconnects, are formed by thin-film photolithography over both front and back surfaces of the package substrate. Preformed conductive vias through the package substrate provide electrical connection between circuit features on opposite substrate surfaces. Additional electronic components may be attached to conductive lands on at least one side of the package. The circuit features also include contact pads for external package connections, such as in a ball-grid-array or equivalent structure.
    Type: Application
    Filed: September 17, 2010
    Publication date: January 6, 2011
    Applicant: Atmel Corporation
    Inventor: Ken M. Lam
  • Patent number: 7863726
    Abstract: A method of manufacture of an integrated circuit package system includes: forming a package substrate with a top substrate side and a bottom substrate side; forming a corner contact in a first corner of the bottom substrate side, the corner contact extending to a substrate edge of the package substrate; mounting an integrated circuit device over the top substrate side; connecting an electrical interconnect between the integrated circuit device and the top substrate side; and forming a package encapsulation over the top substrate side, the integrated circuit device, and the electrical interconnect.
    Type: Grant
    Filed: November 4, 2009
    Date of Patent: January 4, 2011
    Assignee: Stats Chippac Ltd.
    Inventors: Seng Guan Chow, Tae Hoan Jang
  • Patent number: 7855452
    Abstract: An electrode for a semiconductor device is formed on the mounting surface (particularly, the outer periphery thereof) of a semiconductor substrate in a semiconductor module. In order to secure a large gap between the electrodes, an insulating layer is formed on the electrode. Also formed are a plurality of bumps penetrating the insulating layer and connected to the electrode, and a rewiring pattern integrally formed with the bumps. The rewiring pattern includes a bump area and a wiring area extending contiguously with the bump area. The insulating layer is formed to have a concave upper surface in an interval between the bumps, and the wiring area of the rewiring pattern is formed to fit that upper surface. The wiring area of the rewiring pattern is formed to be depressed toward the semiconductor substrate in relation to the bump area of the rewiring pattern.
    Type: Grant
    Filed: January 30, 2008
    Date of Patent: December 21, 2010
    Assignee: Sanyo Electric Co., Ltd.
    Inventors: Yasuyuki Yanase, Yoshio Okayama, Kiyoshi Shibata, Yasunori Inoue, Hideki Mizuhara, Ryosuke Usui, Tetsuya Yamamoto, Masurao Yoshii
  • Patent number: 7855419
    Abstract: An improved layout pattern for electrostatic discharge protection is disclosed. A first heavily doped region of a first type is formed in a well of said first type. A second heavily doped region of a second type is formed in a well of said second type. A battlement layout pattern of said first heavily doped region is formed along the boundary of said first heavily doped region and said second heavily doped region. A battlement layout pattern of said second heavily doped region is formed along the boundary of said first heavily doped region and said second heavily doped region. By adjusting a distance between the battlement layout pattern of a heavily doped region and a edge of well of said second type, i.e. n-well, a first distance will be shorter than what is typically required by the layout rules of internal circuit; and a second distance will be longer than the first distance to ensure that the I/O device have a better ESD protection capability.
    Type: Grant
    Filed: June 15, 2006
    Date of Patent: December 21, 2010
    Assignee: Himax Technologies Limited
    Inventor: Tung-Yang Chen
  • Publication number: 20100314747
    Abstract: A method of manufacturing an electronic device package. Coating a first side of a metallic layer with a first insulating layer and coating a second opposite side of the metallic layer with a second insulating layer. Patterning the first insulating layer to expose bonding locations on the first side of the metallic layer, and patterning the second insulating layer such that remaining portions of the second insulating layer on the second opposite side are located directly opposite to the bonding locations on the first side. Selectively removing portions of the metallic layer that are not covered by the remaining portions of the second insulating layer on the second opposite side to form separated coplanar metallic layers. The separated coplanar metallic layers include the bonding locations. Selectively removing remaining portions of the second insulating layer thereby exposing second bonding locations on the second opposite sides of the separated coplanar metallic layers.
    Type: Application
    Filed: June 11, 2009
    Publication date: December 16, 2010
    Applicant: LSI Corporation
    Inventors: Qwai Low, Patrick Variot
  • Patent number: 7830024
    Abstract: A package and a fabricating method thereof are provided. The package includes a conductive layer, a chip, a plurality of first pads, a plurality of bonding wires and a sealant. The conductive layer has a die pad and includes a plurality of wires. A path of each wire is substantially parallel to a supporting surface of the die pad. Each wire has an upper surface and a lower surface. The chip disposed on the supporting surface has a plurality of pads. The first pads are correspondingly formed on the upper surfaces of the wires. The bonding wires electrically connect the pads of the chip to the first pads. The sealant seals up the conductive layer, the first pads, the chip and the bonding wires, and exposes the lower surface of the conductive layer. The conductive layer projects from a bottom surface of the sealant.
    Type: Grant
    Filed: October 2, 2008
    Date of Patent: November 9, 2010
    Assignee: Advanced Semiconductor Engineering, Inc.
    Inventor: Hyeong-No Kim
  • Publication number: 20100258936
    Abstract: A stacked semiconductor package is presented which includes multiple semiconductor chips and through-electrodes. Each semiconductor chip has bonding pads formed on a first surface of the semiconductor chip and has a projection which projects from a portion of a second surface of the semiconductor chip. The first and second surfaces of the semiconductor chip face away from each other the first surface. The through-electrodes pass through the first surface and through the projection on the second surface.
    Type: Application
    Filed: June 25, 2009
    Publication date: October 14, 2010
    Inventors: Jong Hoon KIM, Ho Young SON
  • Publication number: 20100244225
    Abstract: An electronic package includes a first layer having a first surface, the first layer includes a first device having a first electrical node, and a first contact pad in electrical communication with the first electrical node and positioned within the first surface. The package includes a second layer having a second surface and a third surface, the second layer includes a first conductor positioned within the second surface and a second contact pad positioned within the third surface and in electrical communication with the first conductor. A first anisotropic conducting paste (ACP) is positioned between the first contact pad and the first conductor to electrically connect the first contact pad to the first conductor such that an electrical signal may pass therebetween.
    Type: Application
    Filed: March 24, 2009
    Publication date: September 30, 2010
    Inventors: James Sabatini, Christopher James Kapusta, Glenn Forman
  • Publication number: 20100244226
    Abstract: An electronic package includes a first layer having a first surface, the first layer includes a first device having a first electrical node, and a first contact pad in electrical communication with the first electrical node and positioned within the first surface. The package includes a second layer having a second surface and a third surface, the second layer includes a first conductor positioned within the second surface and a second contact pad positioned within the third surface and in electrical communication with the first conductor. A first anisotropic conducting paste (ACP) is positioned between the first contact pad and the first conductor to electrically connect the first contact pad to the first conductor such that an electrical signal may pass therebetween.
    Type: Application
    Filed: May 8, 2009
    Publication date: September 30, 2010
    Inventors: James Sabatini, Christopher James Kapusta, Glenn Forman
  • Publication number: 20100244240
    Abstract: An apparatus comprises a first chip layer comprising a first component coupled to a first side of a first flex layer, the first component comprising a plurality of electrical pads. The first chip layer also comprises a first plurality of feed-thru pads coupled to the first side of the first flex layer and a first encapsulant encapsulating the first component, the first encapsulant having a portion thereof removed to form a first plurality of cavities in the first encapsulant and to expose the first plurality of feed-thru pads by way of the first plurality of cavities.
    Type: Application
    Filed: March 24, 2009
    Publication date: September 30, 2010
    Inventors: Christopher James Kapusta, James Sabatini