Cooling Facilitated By Shape Of Device (epo) Patents (Class 257/E23.102)
  • Patent number: 12237618
    Abstract: An interface card assembly adapted for fixing an M.2 interface card to a circuit board body with an M.2 connector is provided. The M.2 interface card includes a connecting end and an end. The interface card assembly includes a heat dissipation plate and a fastener. The heat dissipation plate is disposed at a position adjacent to the M.2 connector, and the heat dissipation plate includes a hole. The fastener is detachably disposed in the hole. The fastener includes a main body and a cantilever, and a clamping part is disposed between the main body and the cantilever. When the M.2 interface card is inserted into the M.2 connector through the connecting end, the fastener moves relative to the heat dissipation plate at the end, so that the M.2 interface card extends into the clamping part and is clamped between the main body and the cantilever.
    Type: Grant
    Filed: June 8, 2022
    Date of Patent: February 25, 2025
    Assignee: ASUSTeK COMPUTER INC.
    Inventors: Po-Ting Chen, Chang-Hung Chen, Chih-Hung Chuang
  • Patent number: 12238898
    Abstract: Aspects of the subject disclosure may include, for example, a process that provides a semiconductor substrate and forms repeating, conductive patterns configured for coupling to active circuitry. Each pattern comprises a group of thermally conductive layers, wherein the group of thermally layers is thermally coupled to a thermal source generated by the active circuitry. Thermally conductive vias interconnect the group of thermally conductive layers, wherein a combination of the vias and the group of thermally conductive layers is configured to transfer heat from the thermal source with a desired directionality. The first repeating patterns are thermally coupled to each other to combine the desired directionality of each of the patterns, wherein the combination results in a distributed directionality of the heat from the thermal source thereby reducing a localized concentration of the heat. Other embodiments are disclosed.
    Type: Grant
    Filed: October 6, 2022
    Date of Patent: February 25, 2025
    Assignee: CIENA CORPORATION
    Inventors: Charles Baudot, Sean Sebastian O'Keefe, Francois Pelletier, Antoine Bois
  • Patent number: 12165990
    Abstract: A semiconductor device includes a substrate, an electronic component, a stiffener ring and an adhesive ring. The substrate has a first surface and a second surface opposite to the first surface. The electronic component is over the first surface of the substrate. The stiffener ring is over the first surface of the substrate. The stiffener ring includes a plurality of side parts and a plurality of corner parts coupled to the side parts. Heights of the corner parts are less than heights of the side parts. The adhesive ring is interposed between the first surface of the substrate and the stiffener ring. The adhesive ring includes a plurality of side portions and a plurality of corner portions coupled to the side portions. Thicknesses of the side portions are less than thicknesses of the corner portions.
    Type: Grant
    Filed: February 1, 2023
    Date of Patent: December 10, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: Kuan-Yu Huang, Sung-Hui Huang, Pai-Yuan Li, Shu-Chia Hsu, Hsiang-Fan Lee, Szu-Po Huang
  • Patent number: 12068223
    Abstract: A heatsink assembly comprising a substrate having an active circuitry, at least one cavity located adjacent to at least one heat producing element of the active circuitry, at least one vessel sealably coupled to said substrate in fluid communication with the at least one cavity, and a phase change material (PCM) contained inside the vessel. The vessel and at least one cavity configured to facilitate migration of the PCM from the vessel into the at least one cavity for absorbing heat produced by the at least one heat producing element of the active circuitry.
    Type: Grant
    Filed: June 28, 2021
    Date of Patent: August 20, 2024
    Assignee: Elta Systems Ltd.
    Inventor: Michael Kedem
  • Patent number: 12051638
    Abstract: A microfabrication device is provided. The microfabrication device includes a transistor plane formed on a substrate, the transistor plane including a plurality of field effect transistors; fluidic passages formed within the transistor plane; a dielectric fluid added to the fluidic passages; and a circulating mechanism configured to circulate the dielectric fluid through the transistor plane.
    Type: Grant
    Filed: June 10, 2021
    Date of Patent: July 30, 2024
    Assignee: Tokyo Electron Limited
    Inventors: Daniel Chanemougame, Lars Liebmann, Jeffrey Smith, Paul Gutwin
  • Patent number: 11867467
    Abstract: A cooling device includes a heat-radiating fin group having a plurality of heat-radiating fins that are arranged parallel to each other in a first direction; first heat pipes, one end of each first heat pipe being configured to be thermally connected to a first heat-generating element, another end of each first heat pipe being thermally connected to the heat-radiating fin group; and second heat pipes, one end of each second heat pipe being configured to be thermally connected to a second heat-generating element, another end of each second heat pipe being thermally connected to the heat-radiating fin group, wherein respective inserted another ends of the first and second heat pipes are disposed on a plane parallel to the first direction and defined in the heat-radiating fin group and have portions parallel to the first direction.
    Type: Grant
    Filed: June 23, 2021
    Date of Patent: January 9, 2024
    Assignee: FURUKAWA ELECTRIC CO., LTD.
    Inventors: Shinichi Ito, Masahiro Meguro, Kenya Kawabata, Yoshikatsu Inagaki
  • Patent number: 11804826
    Abstract: A semiconductor device includes a first functional block configured to provide a first predetermined function, a second functional block configured to provide a second predetermined function, a first capacitive device, a second capacitive device, a first coupling path, a first switch device and a second switch device. The first capacitive device is disposed physically proximate the first functional block. The second capacitive device is disposed physically proximate the second functional block. The first coupling path includes at least a first connection node connecting to the first functional block. The first switch device is controlled to selectively connect the first capacitive device to the first connection node. The second switch device is controlled to selectively connect the second capacitive device to the second functional block or a second connection node. The second connection node is disposed on the first coupling path and connecting to the first connection node.
    Type: Grant
    Filed: April 25, 2022
    Date of Patent: October 31, 2023
    Assignee: MediaTek Singapore Pte. Ltd.
    Inventors: Zhigang Duan, Yung-Ching Chen, Chang Liang, Jinghao Chen
  • Patent number: 11764125
    Abstract: A heatsink assembly, a method of producing a heat sink assembly and an electrical device. The heatsink assembly including a heatsink having a surface for receiving a heat source, a copper insert and a layer of low density pyrolytic graphite. The copper insert and the layer of low density pyrolytic graphite are arranged on the surface of the heatsink in layers to form a heat transferring assembly, and the heat transferring assembly is adapted to receive a heat source for transferring the heat from the heat source to the heatsink.
    Type: Grant
    Filed: April 14, 2020
    Date of Patent: September 19, 2023
    Assignee: ABB Schweiz AG
    Inventors: Jorma Manninen, Mika Silvennoinen, Joni Pakarinen
  • Patent number: 11749640
    Abstract: A semiconductor package includes a redistribution structure, at least one semiconductor device, a heat dissipation component, and an encapsulating material. The at least one semiconductor device is disposed on and electrically connected to the redistribution structure. The heat dissipation component is disposed on the redistribution structure and includes a concave portion for receiving the at least one semiconductor device and an extending portion connected to the concave portion and contacting the redistribution structure, wherein the concave portion contacts the at least one semiconductor device. The encapsulating material is disposed over the redistribution structure, wherein the encapsulating material fills the concave portion and encapsulates the at least one semiconductor device.
    Type: Grant
    Filed: December 13, 2021
    Date of Patent: September 5, 2023
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Shih-Wei Chen, Chih-Hua Chen, Hsin-Yu Pan, Hao-Yi Tsai, Lipu Kris Chuang, Tin-Hao Kuo
  • Patent number: 11590681
    Abstract: A fin block is provided for a calibrating device for the calibrating of an extruded profile. The fin block includes a fin structure, which has a plurality of fins which are spaced apart from one another by grooves and are arranged in longitudinal direction of the fin block, wherein the fins of the fin structure have a variable dimension in longitudinal direction of the fin block. Further, there is provided a method for the production of the above-mentioned fin block and a calibrating device, which includes a plurality of the above-mentioned fin blocks. Furthermore, there is provided a system for the additive manufacture of the above-mentioned fin block, a corresponding computer program and corresponding data set.
    Type: Grant
    Filed: February 11, 2020
    Date of Patent: February 28, 2023
    Assignee: KRAUSSMAFFEI TECHNOLOGIES GMBH
    Inventors: Michael Esswein, Walter Breuning, Stefan Buhl
  • Patent number: 11570885
    Abstract: A heat dissipating circuit board assembly includes a heat sink having a first wall, a second wall spaced from the first wall, and an end wall extending between the first and second walls. The first wall, the second wall, and the end wall collectively define a cavity. The assembly additionally includes a printed circuit board having a first face and a second face opposite the first face. The printed circuit board is located within the cavity such that the first wall of the heat sink extends over the first face and the second wall of the heat sink extends over the second face to allow heat to be transferred from the printed circuit board to the heat sink. The heat sink is configured to interface with a connector socket when the circuit board is connected to the connector socket for stabilizing the printed circuit board.
    Type: Grant
    Filed: September 28, 2021
    Date of Patent: January 31, 2023
    Assignee: Tri-Tech International
    Inventor: Richard P. Zirretta
  • Patent number: 11508659
    Abstract: A semiconductor device includes a gate electrode extending in a first direction in a first layer over an active region, a first conductive line extending in the first layer adjacent to the gate electrode, a first power rail extending in a second direction perpendicular to the first direction in a second layer over the first layer, a second conductive line arranged in a third layer over the second layer, and a conductive via extending through the first power rail and electrically connecting the second conductive line to one of the gate electrode and the first conductive line. The conductive via is electrically insulated from the first power rail.
    Type: Grant
    Filed: September 10, 2020
    Date of Patent: November 22, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: Guo-Huei Wu, Shun-Li Chen, Hui-Zhong Zhuang, Chih-Liang Chen, Li-Chun Tien
  • Patent number: 11495519
    Abstract: An electronic device includes a heat-generating electronic component, a heat spreader and a heat sink. The heat spreader has an area at least about 4 times greater than the heat-generating component. A first surface of the heat spreader is in thermal contact with the first surface of the heat-generating component along a first, non-dielectric interface. The heat sink has greater mass than the heat spreader and comprises one or more layers of thermally conductive material. A first surface of the heat sink is in thermal contact with the second surface of the heat spreader along a second interface having greater area than the first interface. Dielectric thermal interface material is provided at the second interface in direct contact with the heat spreader and the heat sink, such that the second interface is dielectric.
    Type: Grant
    Filed: June 5, 2020
    Date of Patent: November 8, 2022
    Assignee: Dana Canada Corporation
    Inventor: Doug Vanderwees
  • Patent number: 11393739
    Abstract: A heat dissipation device includes a heat diffusion plate, a resin unit, and a connecting unit. The heat diffusion plate is configured such that the first surface is overlapped with an electronic component via a heat conductive material. The resin unit integrally includes a contact portion, an outer frame portion, and a deformation portion. The contact portion is configured so that at least a part thereof can make surface contact with the second surface of the heat diffusion plate opposite from the first surface. The outer frame portion is configured to surround the contact portion with a gap from the surroundings to form a part of a housing surrounding the electronic component and the heat diffusion plate. The deformation portion is provided between the outer frame portion and the contact portion, and is configured to elastically deform when the contact portion is pressed against the second surface.
    Type: Grant
    Filed: August 26, 2020
    Date of Patent: July 19, 2022
    Assignee: DENSO CORPORATION
    Inventor: Toshiyuki Goto
  • Patent number: 11395440
    Abstract: In a heat sink module and a manufacturing method thereof, the method includes steps of: forming a heat dissipation fin set by aluminum extrusion process, wherein the heat dissipation fin set includes a plate, a plurality of fins extending from one side of the plate and being arranged spaced apart from one another, and a joint portion formed on the other side of the plate; placing the plate in a mold; injecting molten metal into the mold; forming a base by die-casting of the molten metal. The plate and the joint portion are wrapped by the base. The joint portion forms a connection structure including a bump and a notch fitted with the bump, so as to connect and fix the base and the heat dissipation fin set. The heat sink module has the strengthened connection structure and the fins with a superior aspect ratio.
    Type: Grant
    Filed: September 5, 2020
    Date of Patent: July 19, 2022
    Assignee: DELTA ELECTRONICS, INC.
    Inventors: Chun-Yang Hung, Li-Kuang Tan
  • Patent number: 11234348
    Abstract: Proposed is a heatsink module for an inverter. The heatsink module includes a housing a bottom face, both spaced side walls, and both flanges. The heatsink module include a heat-dissipation plate including a base fixed to the both flanges; and a plurality of heat-dissipation fins extending downward from a bottom of the base. The heatsink module includes a supporter interposed between the bottom face of the housing and the heat-dissipation fins. The supporter has slots defined therein for accommodating at least portions of the heat-dissipation fins respectively.
    Type: Grant
    Filed: August 13, 2019
    Date of Patent: January 25, 2022
    Assignee: LSIS CO., LTD.
    Inventor: Kyu-Hwa Kim
  • Patent number: 10763188
    Abstract: Integrated heat spreaders having electromagnetically-formed features, and semiconductor packages incorporating such integrated heat spreaders, are described. In an example, an integrated heat spreader includes a top plate flattened using an electromagnetic forming process. Methods of manufacturing integrated heat spreaders having electromagnetically-formed features are also described.
    Type: Grant
    Filed: December 23, 2015
    Date of Patent: September 1, 2020
    Assignee: Intel Corporation
    Inventors: Aravindha R. Antoniswamy, Thomas John Fitzgerald, Kumaran Murugesan Chakravarthy, Syadwad Jain, Wei Hu, Zhizhong Tang
  • Patent number: 10571337
    Abstract: Examples described herein generally relate to apparatus and methods for rapid thermal processing (RTP) of a substrate. In one example, a process chamber includes chamber body, a window disposed on a first portion of the chamber body, a chamber bottom, and a shield disposed on a second portion of the chamber body. The shield has a flat surface facing the window to reduce reflected radiant energy to a back side of a substrate disposed in the process chamber during operation. The process chamber further includes an edge support for supporting the substrate and a cooling member disposed on the chamber bottom. The cooling member is disposed in proximity of the edge support to cool the edge support during low temperature operation in order to improve the temperature uniformity of the substrate.
    Type: Grant
    Filed: July 28, 2017
    Date of Patent: February 25, 2020
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Lara Hawrylchak, Samuel C. Howells, Wolfgang R. Aderhold, Leonid M. Tertitski, Michael Liu, Dongming Iu, Norman L. Tam, Ji-Dih Hu
  • Patent number: 8952523
    Abstract: An integrated circuit package apparatus includes a packaging substrate, an integrated circuit coupled to an upper side of the packaging substrate, an array of contacts coupled to an underside of the packaging substrate for electrically coupling the integrated circuit to a circuit board, and a lid coupled to the upper side of the packaging substrate. In one form, the lid includes a central portion lying on a first plane, corner areas lying on a second plane, and arcuate wall portions disposed between and interconnecting the corner areas and the central portion. Other forms of the lid are provided.
    Type: Grant
    Filed: September 27, 2010
    Date of Patent: February 10, 2015
    Assignee: Cisco Technology, Inc.
    Inventors: Mudasir Ahmad, Mohan R. Nagar, Weidong Xie
  • Patent number: 8936955
    Abstract: An LED manufacturing method includes following steps: providing an LED die; providing an electrode layer having a first section and a second section electrically insulated from the first section, and arranging the LED die on the second section wherein an electrically conductive material electrical connects a bottom of the LED die with second section; forming a transparent conductive layer to electrically connect a top of the LED die with the first section; providing a base and coating an outer surface of the base with a layer of electrically conductive material, defining a continuous gap in the electrically conductive material to divide the electrically conductive material into a first electrode part, and a second electrode part, arranging the electrode layer on the base so that the first section contacts the first electrode part, and the second section contacts the second electrode part.
    Type: Grant
    Filed: December 18, 2013
    Date of Patent: January 20, 2015
    Assignee: Advanced Optoelectronic Technology, Inc.
    Inventors: Po-Min Tu, Shih-Cheng Huang, Ya-Wen Lin
  • Patent number: 8912577
    Abstract: According to various embodiments, a distributed heating transistor includes: a plurality of active regions where transistor action occurs including a heat source; and at least one inactive region where transistor action does not occur and no heat source is present, wherein adjacent active regions are separated by the at least one inactive region. The distributed heating transistor may be configured as field effect transistors (FETs), and bipolar junction transistors (BJTs). Methods for forming the distributed heating transistors are also provided.
    Type: Grant
    Filed: September 19, 2012
    Date of Patent: December 16, 2014
    Assignee: The United States of America as represented by the Secretary of the Army
    Inventors: Ali Darwish, Hingloi Alfred Hung
  • Patent number: 8841768
    Abstract: A chip package is provided, the chip package including: first encapsulation structure; first passivation layer formed over first encapsulation structure and first electrically conductive layer formed over first passivation layer; at least one chip arranged over first electrically conductive layer and passivation layer wherein at least one chip contact pad contacts first electrically conductive layer; at least one cavity formed in first encapsulation structure, wherein at least one cavity exposes a portion of first passivation layer covering at least one chip contact pad; second encapsulation structure disposed over first encapsulation structure and covering at least one cavity, wherein a chamber region over at least one chip contact pad is defined by at least one cavity and second encapsulation structure; wherein second encapsulation structure includes an inlet and outlet connected to chamber region, wherein inlet and outlet control an inflow and outflow of heat dissipating material to and from chamber region
    Type: Grant
    Filed: July 23, 2012
    Date of Patent: September 23, 2014
    Assignee: Infineon Technologies AG
    Inventors: Carsten Von Koblinski, Michael Knabl, Ursula Meyer, Francisco Javier Santos Rodriguez, Alexander Breymesser, Andre Brockmeier
  • Patent number: 8790964
    Abstract: A device comprising a substrate, an integrated circuit (IC) die attached to the substrate on one side, a plurality of contact pads on an active side of the IC die, a plurality of thermally and electrically conductive legs, each of the legs attached to a respective one of the contact pads, and an encapsulating material formed around the substrate, the IC die, and a portion of the legs. A contact end of each of the legs is exposed, and one of the contact ends conducts a signal from a transistor in the IC die.
    Type: Grant
    Filed: June 29, 2012
    Date of Patent: July 29, 2014
    Assignee: Freescale Semiconductor, Inc.
    Inventor: Min Ding
  • Patent number: 8749052
    Abstract: An electric device with an insulating substrate consisting of an insulating layer and at least one metallization on a surface side of the insulating layer, the metallization being structured and having an electric component on the metallization. The metallization has a layer thickness that is stepped and is greater in an area adjoining the component.
    Type: Grant
    Filed: June 29, 2010
    Date of Patent: June 10, 2014
    Assignee: Curamik Electronics GmbH
    Inventors: Jürgen Schulz-Harder, Andreas Meyer
  • Patent number: 8736048
    Abstract: A multi-chip module (MCM) structure comprises more than one semiconductor chip lying in a horizontal plane, the MCM having individual chip contact patches on the chips and a flexible heat sink having lateral compliance and extending in a plane in the MCM and secured in a heat exchange relation to the chips through the contact patches. The MCM has a mismatch between the coefficient of thermal expansion of the heat sink and the MCM and also has chip tilt and chip height mismatches. The flexible heat sink with lateral compliance minimizes or eliminates shear stress and shear strain developed in the horizontal direction at the interface between the heat sink and the chip contact patches by allowing for horizontal expansion and contraction of the heat sink relative to the MCM without moving the individual chip contact patches in a horizontal direction.
    Type: Grant
    Filed: February 16, 2012
    Date of Patent: May 27, 2014
    Assignee: International Business Machines Corporation
    Inventor: Mark D. Schultz
  • Patent number: 8664758
    Abstract: A semiconductor package includes a printed circuit board, a chip, a protection frame, and a covering layer. The chip is mounted on the printed circuit board and is electrically connected to the printed circuit board through a number of first bonding wires. The protection frame includes a sidewall surrounding the chip and the bonding wires and defines a number of through holes passing through an inner surface and an outer surface of the sidewall. The protection frame is filled with adhesive. The adhesive adheres to the inner surface and covers the chip and the boding wires. The covering layer is coated on the outer surface and covers the through holes.
    Type: Grant
    Filed: August 8, 2012
    Date of Patent: March 4, 2014
    Assignee: Hon Hai Precision Industry Co., Ltd.
    Inventor: Chih-Chen Lai
  • Publication number: 20130341782
    Abstract: There is provided a semiconductor package module, and more particularly, a semiconductor package module constituted by modularizing power semiconductor devices incapable of being able to be easily integrated due to heat generated therefrom. To this end, the semiconductor package module includes a plurality of semiconductor packages; and a plurality of semiconductor packages; and a heat dissipation member having a pipe shape including a flow channel formed therein and including at least one or more through holes into which the semiconductor packages are inserted.
    Type: Application
    Filed: September 13, 2012
    Publication date: December 26, 2013
    Inventors: Kwang Soo Kim, Young Ki Lee, Bum Seok Suh
  • Patent number: 8536687
    Abstract: A technology with which the reliability of a package making up a semiconductor device can be enhanced is provided. A feature of the technical idea of the invention is that: a heat sink unit and an outer lead unit are separated from each other: and the outer lead unit is provided with chip placement portions and each of the chip placement portions and each heat sink are joined together. As a result, when a sealing body is formed at a resin sealing step, tying portions function as a stopper for preventing resin leakage and the formation of resin burr in a package product can be thereby prevented. In addition, camber does not occur in the heat sink unit and cracking in a sealing body caused by winding (camber) can be suppressed.
    Type: Grant
    Filed: January 9, 2012
    Date of Patent: September 17, 2013
    Assignee: Renesas Electronics Corporation
    Inventor: Toshiyuki Hata
  • Patent number: 8531024
    Abstract: A semiconductor chip assembly includes a semiconductor device, a heat spreader, a conductive trace, a substrate and an adhesive. The heat spreader includes a post and a base. The conductive trace includes a pad, a terminal, a conductive pattern and first and second vias. The substrate includes the conductive pattern and a dielectric layer. The semiconductor device is electrically connected to the conductive trace and thermally connected to the heat spreader. The post extends upwardly from the base into an opening in the adhesive and an aperture in the substrate, and the base extends laterally from the post. The conductive trace provides signal routing between the pad and the terminal using the conductive pattern and the vias.
    Type: Grant
    Filed: April 21, 2011
    Date of Patent: September 10, 2013
    Assignee: Bridge Semiconductor Corporation
    Inventors: Charles W. C. Lin, Chia-Chung Wang
  • Publication number: 20130214406
    Abstract: A multi-chip module (MCM) structure comprises more than one semiconductor chip lying in a horizontal plane, the MCM having individual chip contact patches on the chips and a flexible heat sink having lateral compliance and extending in a plane in the MCM and secured in a heat exchange relation to the chips through the contact patches. The MCM has a mismatch between the coefficient of thermal expansion of the heat sink and the MCM and also has chip tilt and chip height mismatches. The flexible heat sink with lateral compliance minimizes or eliminates shear stress and shear strain developed in the horizontal direction at the interface between the heat sink and the chip contact patches by allowing for horizontal expansion and contraction of the heat sink relative to the MCM without moving the individual chip contact patches in a horizontal direction.
    Type: Application
    Filed: February 16, 2012
    Publication date: August 22, 2013
    Applicant: International Business Machines Corporation
    Inventor: Mark D. Schultz
  • Patent number: 8446003
    Abstract: A semiconductor device includes a multilayer wiring substrate and a double-sided multi-electrode chip. The double-sided multi-electrode chip includes a semiconductor chip and has multiple electrodes on both sides of the semiconductor chip. The double-sided multi-electrode chip is embedded in the multilayer wiring substrate in such a manner that the double-sided multi-electrode chip is not exposed outside the multilayer wiring substrate. The electrodes of the double-sided multi-electrode chip are connected to wiring layers of the multilayer wiring substrate.
    Type: Grant
    Filed: May 24, 2010
    Date of Patent: May 21, 2013
    Assignee: DENSO CORPORATION
    Inventors: Atsushi Komura, Yasuhiro Kitamura, Nozomu Akagi, Yasutomi Asai
  • Patent number: 8299608
    Abstract: A die stack package is provided and includes a substrate, a stack of computing components, at least one thermal plate, which is thermally communicative with the stack and a lid supported on the substrate to surround the stack and the at least one thermal plate to thereby define a first heat transfer path extending from one of the computing components to the lid via the at least one thermal plate and a fin coupled to a surface of the lid and the at least one thermal plate, and a second heat transfer path extending from the one of the computing components to the lid surface without passing through the at least one thermal plate.
    Type: Grant
    Filed: July 8, 2010
    Date of Patent: October 30, 2012
    Assignee: International Business Machines Corporation
    Inventors: Gerald K. Bartley, David R. Motschman, Kamal K. Sikka, Jamil A. Wakil, Xiaojin Wei, Jiantao Zheng
  • Patent number: 8288792
    Abstract: A semiconductor chip assembly includes a semiconductor device, a heat spreader, a conductive trace and first and second adhesives. The heat spreader includes a first post, a second post and a base. The conductive trace includes a pad and a terminal. The semiconductor device is electrically connected to the conductive trace and thermally connected to the heat spreader. The first post extends from the base in a first vertical direction into a first opening in the first adhesive, the second post extends from the base in a second vertical direction into a second opening in the second adhesive and the base is sandwiched between and extends laterally from the posts. The conductive trace provides signal routing between the pad and the terminal.
    Type: Grant
    Filed: January 10, 2011
    Date of Patent: October 16, 2012
    Assignee: Bridge Semiconductor Corporation
    Inventors: Charles W. C. Lin, Chia-Chung Wang
  • Patent number: 8269336
    Abstract: A semiconductor chip assembly includes a semiconductor device, a heat spreader, a conductive trace and an adhesive. The semiconductor device is electrically connected to the conductive trace and thermally connected to the heat spreader. The heat spreader includes a thermal post and a base. The thermal post extends upwardly from the base into a first opening in the adhesive, and the base extends laterally from the thermal post. The conductive trace includes a pad, a terminal and a signal post. The signal post extends upwardly from the terminal into a second opening in the adhesive.
    Type: Grant
    Filed: December 19, 2009
    Date of Patent: September 18, 2012
    Assignee: Bridge Semiconductor Corporation
    Inventors: Charles W. C. Lin, Chia-Chung Wang
  • Patent number: 8236618
    Abstract: A method of making a semiconductor chip assembly includes providing first and second posts, first and second adhesives and a base, wherein the first post extends from the base in a first vertical direction into a first opening in the first adhesive, the second post extends from the base in a second vertical direction into a second opening in the second adhesive and the base is sandwiched between and extends laterally from the posts, then flowing the first adhesive in the first vertical direction and the second adhesive in the second vertical direction, solidifying the adhesives, then providing a conductive trace that includes a pad and a terminal, wherein the pad extends beyond the base in the first vertical direction and the terminal extends beyond the base in the second vertical direction, providing a heat spreader that includes the posts and the base, then mounting a semiconductor device on the first post, electrically connecting the semiconductor device to the conductive trace and thermally connecting the
    Type: Grant
    Filed: January 12, 2011
    Date of Patent: August 7, 2012
    Assignee: Bridge Semiconductor Corporation
    Inventors: Charles W. C. Lin, Chia-Chung Wang
  • Patent number: 8207019
    Abstract: A method of making a semiconductor chip assembly includes providing first and second posts, first and second adhesives and a base, wherein the first post extends from the base in a first vertical direction into a first opening in the first adhesive and is located within a periphery of the second post, the second post extends from the base in a second vertical direction into a second opening in the second adhesive and the base is sandwiched between and extends laterally from the posts, then flowing and solidifying the adhesives, then providing a conductive trace that includes a pad and a terminal, wherein the pad extends beyond the base in the first vertical direction and the terminal extends beyond the base in the second vertical direction, providing a heat spreader that includes the posts and the base, then mounting a semiconductor device on the first post, electrically connecting the semiconductor device to the conductive trace and thermally connecting the semiconductor device to the heat spreader.
    Type: Grant
    Filed: February 20, 2011
    Date of Patent: June 26, 2012
    Assignee: Bridge Semiconductor Corporation
    Inventors: Charles W. C. Lin, Chia-Chung Wang
  • Publication number: 20120153358
    Abstract: The thermal energy transfer techniques of the disclosed embodiments utilize passive thermal energy transfer techniques to reduce undesirable side effects of trapped thermal energy at the circuit level. The trapped thermal energy may be transferred through the circuit with thermally conductive structures or elements that may be produced as part of a standard integrated circuit process. The localized and passive removal of thermal energy achieved at the circuit level rather just at the package level is both more effective and more efficient.
    Type: Application
    Filed: December 21, 2010
    Publication date: June 21, 2012
    Applicant: STMICROELECTRONICS PTE LTD.
    Inventors: Ravi Shankar, Olivier Le Neel
  • Publication number: 20120104592
    Abstract: A semiconductor module having a semiconductor chip stack and a method for producing the same is disclosed. In one embodiment, a thermally conductive layer with anisotropically thermally conductive particles is arranged between the semiconductor chips. The anisotropically thermally conductive particles have a lower thermal conductivity in a direction vertically with respect to the layer or the film than in a direction of the layer or the film.
    Type: Application
    Filed: December 21, 2011
    Publication date: May 3, 2012
    Applicant: INFINEON TECHNOLOGIES AG
    Inventors: Markus Brunnbauer, Markus Fink, Hans-Gerd Jetten
  • Publication number: 20120098118
    Abstract: An integrated circuit chip package is described. The integrated circuit package comprises a substrate, a chip attached to the substrate, and a heat spreader mounted over the chip for sealing the chip therein. The heat spreader includes a thermally-conductive element having a side opposed to the top of the chip for transmitting heat away from the chip to the heat spreader, and a compliant element having a first portion attached to and positioned around the periphery of the thermally-conductive element and a second portion affixed to a surface of the substrate.
    Type: Application
    Filed: January 28, 2011
    Publication date: April 26, 2012
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Wen-Yi LIN, Po-Yao LIN
  • Patent number: 8163603
    Abstract: A method of making a semiconductor chip assembly includes providing a post and a base, mounting an adhesive on the base including inserting the post through an opening in the adhesive, mounting a substrate on the adhesive including inserting the post into an aperture in the substrate, then flowing the adhesive between the post and the substrate in the aperture, solidifying the adhesive, then grinding the post and the adhesive, then mounting a semiconductor device on a heat spreader that includes the post and the base, electrically connecting the semiconductor device to the substrate and thermally connecting the semiconductor device to the heat spreader.
    Type: Grant
    Filed: November 21, 2011
    Date of Patent: April 24, 2012
    Assignee: Bridge Semiconductor Corporation
    Inventors: Charles W. C. Lin, Chia-Chung Wang
  • Patent number: 8153477
    Abstract: A method of making a semiconductor chip assembly includes providing first and second posts, first and second adhesives, first and second conductive layers and a dielectric base, wherein the first post extends from the dielectric base in a first vertical direction into a first opening in the first adhesive and is aligned with a first aperture in the first conductive layer, the second post extends from the dielectric base in a second vertical direction into a second opening in the second adhesive and is aligned with a second aperture in the second conductive layer and the dielectric base is sandwiched between and extends laterally from the posts, then flowing the first adhesive in the first vertical direction and the second adhesive in the second vertical direction, solidifying the adhesives, then providing a conductive trace that includes a pad, a terminal and selected portions of the conductive layers, wherein the pad extends beyond the dielectric base in the first vertical direction and the terminal extends
    Type: Grant
    Filed: July 30, 2011
    Date of Patent: April 10, 2012
    Assignee: Bridge Semiconductor Corporation
    Inventors: Charles W. C. Lin, Chia-Chung Wang
  • Patent number: 8129742
    Abstract: A semiconductor chip assembly includes a semiconductor device, a heat spreader, a conductive trace and an adhesive. The heat spreader includes a post and a base. The conductive trace includes a pad, a terminal and a plated through-hole. The semiconductor device is electrically connected to the conductive trace and thermally connected to the heat spreader. The post extends upwardly from the base into an opening in the adhesive, and the base extends laterally from the post. The conductive trace provides signal routing between the pad and the terminal using the plated through-hole.
    Type: Grant
    Filed: April 2, 2011
    Date of Patent: March 6, 2012
    Assignee: Bridge Semiconductor Corporation
    Inventors: Charles W. C. Lin, Chia-Chung Wang
  • Patent number: 8115301
    Abstract: Methods for fabricating flip-chips are disclosed. In an exemplary method, a flip-chip is mounted, active-surface downward, onto a substrate such that a back-side of the flip-chip is facing upward and electrical connections are made between the chip and an upward-facing surface of the substrate. An adhesive is applied to selected regions not occupied by the flip-chip. A heat-spreader is applied to contact the applied adhesive without contacting the back-side of the flip-chip, leaving a gap between the heat-spreader and the back-side of the flip-chip. The heat-spreader defines at least one through-hole that, when the heat-spreader is placed, is within a perimeter of the flip-chip. The adhesive is cured, and a thermal-insulating material (TIM) is applied through the at least one through-hole so as to fill the gap with the TIM. The methods substantially reduce the probability of die damage that otherwise occurs during attachment of heat-spreaders.
    Type: Grant
    Filed: November 17, 2006
    Date of Patent: February 14, 2012
    Assignee: STATS ChipPAC, Inc.
    Inventors: KyungOe Kim, YoungJoon Kim, HyunSoo Shin
  • Patent number: 8089085
    Abstract: An LED assembly can include a heat sink base, at least one LED die attached to the heat sink base, and a lens. One or more layers of phosphor can be formed upon the lens. A heat sink, such as a finned heat sink, can attach the heat sink base to the lens. Heat from the LED die can flow through the heat sink base to the heat sink, from which the heat can be dissipated. Similarly, heat from phosphors can flow through the lens to the heat sink, from which the heat can be dissipated. By removing heat from the LED die, more current can be used to drive the LED die, thus providing brighter light. By removing heat from the phosphors, desired colors can be more reliably provided.
    Type: Grant
    Filed: February 26, 2009
    Date of Patent: January 3, 2012
    Assignee: Bridgelux, Inc.
    Inventor: Wei Shi
  • Patent number: 8022532
    Abstract: An interposer and a semiconductor device including the interposer, which can prevent thermal warpage of an insulative substrate. The interposer is provided with a semiconductor chip in a semiconductor device and may be disposed between the semiconductor chip and a mount board. The interposer includes: a substrate of an insulative resin; an island on one surface of the substrate to be bonded to a rear surface of the chip; a thermal pad on the other surface opposite the one surface opposed to the island with the intervention of the substrate; and a thermal via extending through the substrate from the one surface to the other surface to thermally connect the island to the thermal pad.
    Type: Grant
    Filed: June 2, 2006
    Date of Patent: September 20, 2011
    Assignee: Rohm Co., Ltd.
    Inventors: Yasumasa Kasuya, Sadamasa Fujii, Motoharu Haga
  • Patent number: 7989947
    Abstract: A semiconductor device includes a semiconductor element 1, a thermal conductor 91 located opposite a major surface of the semiconductor element 1, and a mold resin member 6 molding the semiconductor element 1 and at least a part of the thermal conductor 91, wherein at least a part of a top surface of the thermal conductor 91 has an exposed portion exposed from the mold resin member 6, the exposed portion of the thermal conductor 91 has an opening 11, and a periphery of the opening 11 forms a projecting portion 91b projecting toward an opposite side of the semiconductor element 1.
    Type: Grant
    Filed: March 4, 2008
    Date of Patent: August 2, 2011
    Assignee: Panasonic Corporation
    Inventor: Katsumi Otani
  • Patent number: 7936045
    Abstract: An integrated circuit with a multi-stage matching circuit with an inductive conductive structure with a first end and a second end in the integrated circuit and a capacitor structure in the integrated circuit connected to a tap between the ends of the inductive conductive structure between the inductive conductive structure and a reference potential.
    Type: Grant
    Filed: June 11, 2007
    Date of Patent: May 3, 2011
    Assignee: Infineon Technologies AG
    Inventors: Winfried Bakalski, Krzysztof Kitlinski, Markus Zannoth
  • Patent number: 7923834
    Abstract: An interposer and a semiconductor device including the interposer, which can prevent thermal warpage of an insulative substrate. The interposer is provided with a semiconductor chip in a semiconductor device and may be disposed between the semiconductor chip and a mount board. The interposer includes: a substrate of an insulative resin; an island on one surface of the substrate to be bonded to a rear surface of the chip; a thermal pad on the other surface opposite the one surface opposed to the island with the intervention of the substrate; and a thermal via extending through the substrate from the one surface to the other surface to thermally connect the island to the thermal pad.
    Type: Grant
    Filed: June 2, 2006
    Date of Patent: April 12, 2011
    Assignee: ROHM Co., Ltd.
    Inventors: Yasumasa Kasuya, Sadamasa Fujii, Motoharu Haga
  • Publication number: 20110057306
    Abstract: A module has a substrate, first and second integrated circuits, and a heat sink. The integrated circuits each have a first major surface, a second major surface, a first edge, a second edge, and a third edge and have optical circuits having ports on the first edge and electronic circuits having ports on the second edge. The second edges are connected to the substrate. The first major surface of the second integrated circuit is parallel with the second major surface of the first integrated circuit. The heat sink has a backplane adjacent to the third edge, a first portion along the first major surface of the first integrated circuit, a second portion along the second major surface of the second integrated circuit extending from the backplane, and an insert between the first major surface of the second integrated circuit and the second major surface of the first integrated circuit.
    Type: Application
    Filed: September 4, 2009
    Publication date: March 10, 2011
    Inventors: Michael B. McShane, Perry H. Pelley
  • Patent number: 7855397
    Abstract: An electronic assembly may include a packaging substrate, an integrated circuit (IC) semiconductor chip, a plurality of metal interconnection structures, and a thermoelectric heat pump. The integrated circuit (IC) semiconductor chip may have an active side including input/output pads thereon and a back side opposite the active side, and the IC semiconductor chip may be arranged with the active side facing the first surface of the packaging substrate. The plurality of metal interconnection structures may be between the active side of the IC semiconductor chip and the first surface of the packaging substrate, and the plurality of metal interconnection structures may provide mechanical connection between the active side of the IC semiconductor chip and the first surface of the packaging substrate. The thermoelectric heat pump may be coupled to the packaging substrate with the thermoelectric heat pump being configured to actively pump heat between the IC semiconductor chip and the packaging substrate.
    Type: Grant
    Filed: January 18, 2008
    Date of Patent: December 21, 2010
    Assignee: Nextreme Thermal Solutions, Inc.
    Inventors: Randall G. Alley, Philip A. Deane, David A. Koester, Thomas Peter Schneider, Jesko von Windheim