Principal Metal Being Refractory Metal (epo) Patents (Class 257/E23.163)
-
Patent number: 10319633Abstract: A method of forming a titanium nitride (TiN) diffusion barrier includes exposing a deposition surface to a first pulse of a titanium-containing precursor and to a first pulse of a nitrogen-rich plasma to form a first TiN layer with a first nitrogen concentration making a lower portion of the TiN diffusion barrier, the first nitrogen concentration of the first TiN layer is increased by the first pulse of the nitrogen-rich plasma reducing a reactivity of the lower portion of the TiN diffusion barrier to prevent fluorine diffusion. The first TiN layer is exposed to second pulses of the titanium-containing precursor and the nitrogen-rich plasma to form a second TiN layer with a second nitrogen concentration above the first TiN layer making an upper portion of the TiN diffusion barrier, the first pulse of the nitrogen-rich plasma has a substantially longer duration than the second pulse of the nitrogen-rich plasma.Type: GrantFiled: May 25, 2016Date of Patent: June 11, 2019Assignee: International Business Machines CorporationInventors: Brett H. Engel, Domingo A. Ferrer, Arun Vijayakumar, Keith Kwong Hon Wong
-
Patent number: 10170359Abstract: A method of forming a titanium nitride (TiN) diffusion barrier includes exposing a deposition surface to a first pulse of a titanium-containing precursor and to a first pulse of a nitrogen-rich plasma to form a first TiN layer with a first nitrogen concentration making a lower portion of the TiN diffusion barrier, the first nitrogen concentration of the first TiN layer is increased by the first pulse of the nitrogen-rich plasma reducing a reactivity of the lower portion of the TiN diffusion barrier to prevent fluorine diffusion. The first TiN layer is exposed to second pulses of the titanium-containing precursor and the nitrogen-rich plasma to form a second TiN layer with a second nitrogen concentration above the first TiN layer making an upper portion of the TiN diffusion barrier, the first pulse of the nitrogen-rich plasma has a substantially longer duration than the second pulse of the nitrogen-rich plasma.Type: GrantFiled: October 30, 2017Date of Patent: January 1, 2019Assignee: International Business Machines CorporationInventors: Brett H. Engel, Domingo A. Ferrer, Arun Vijayakumar, Keith Kwong Hon Wong
-
Patent number: 9847251Abstract: A method of forming a titanium nitride (TiN) diffusion barrier includes exposing a deposition surface to a first pulse of a titanium-containing precursor and to a first pulse of a nitrogen-rich plasma to form a first TiN layer with a first nitrogen concentration making a lower portion of the TiN diffusion barrier, the first nitrogen concentration of the first TiN layer is increased by the first pulse of the nitrogen-rich plasma reducing a reactivity of the lower portion of the TiN diffusion barrier to prevent fluorine diffusion. The first TiN layer is exposed to second pulses of the titanium-containing precursor and the nitrogen-rich plasma to form a second TiN layer with a second nitrogen concentration above the first TiN layer making an upper portion of the TiN diffusion barrier, the first pulse of the nitrogen-rich plasma has a substantially longer duration than the second pulse of the nitrogen-rich plasma.Type: GrantFiled: May 25, 2016Date of Patent: December 19, 2017Assignee: International Business Machines CorporationInventors: Brett H. Engel, Domingo A. Ferrer, Arun Vijayakumar, Keith Kwong Hon Wong
-
Patent number: 8888916Abstract: Embodiments of the present invention provide apparatus and method for improving gas distribution during thermal processing. One embodiment of the present invention provides an apparatus for processing a substrate comprising a chamber body defining a processing volume, a substrate support disposed in the processing volume, wherein the substrate support is configured to support and rotate the substrate, a gas inlet assembly coupled to an inlet of the chamber body and configured to provide a first gas flow to the processing volume, and an exhaust assembly coupled to an outlet of the chamber body, wherein the gas inlet assembly and the exhaust assembly are disposed on opposite sides of the chamber body, and the exhaust assembly defines an exhaust volume configured to extend the processing volume.Type: GrantFiled: November 22, 2013Date of Patent: November 18, 2014Assignee: Applied Materials, Inc.Inventors: Ming-Kuei (Michael) Tseng, Norman L. Tam, Yoshitaka Yokota, Agus S. Tjandra, Robert Navasca, Mehran Behdjat, Sundar Ramamurthy, Kedarnath Sangam, Alexander N. Lerner
-
Patent number: 8883654Abstract: The present arrangement provides a method of treating an oxidized layer of metal nitride, including oxidizing a layer (2) of metal oxide at the surface of a first layer (1) of nitride of said metal using a plasma of an oxidizing species with an oxidation number that is greater than that of oxygen in order to form a metallic layer (3) of a compound based on said metal; and reducing the metallic layer (3) formed in step i) using a plasma of hydrogen and nitrogen to form a second layer (4) of nitride of said metal.Type: GrantFiled: February 29, 2012Date of Patent: November 11, 2014Assignee: Altis SemiconductorInventors: Michel Aube, Pierre De Person
-
Patent number: 8865594Abstract: The invention provides a method of forming a film stack on a substrate, comprising performing a silicon containing gas soak process to form a silicon containing layer over the substrate, reacting with the silicon containing layer to form a tungsten silicide layer on the substrate, depositing a tungsten nitride layer on the substrate, subjecting the substrate to a nitridation treatment using active nitrogen species from a remote plasma, and depositing a conductive bulk layer directly on the tungsten nitride layer.Type: GrantFiled: March 8, 2012Date of Patent: October 21, 2014Assignee: Applied Materials, Inc.Inventors: Sang-Hyeob Lee, Sang Ho Yu, Kai Wu
-
Patent number: 8704232Abstract: A transistor that may be used in electronic displays to selectively activate one or more pixels. The transistor includes a metal layer, a silicon layer deposited on at least a portion of the metal layer, the silicon layer includes an extension portion that extends a distance past the metal layer, and at least three lightly doped regions positioned in the silicon layer. The at least three lightly doped regions have a lower concentration of doping atoms than other portions of the silicon layer forming the transistor.Type: GrantFiled: September 27, 2012Date of Patent: April 22, 2014Assignee: Apple Inc.Inventors: Abbas Jamshidi Roudbari, Cheng-Ho Yu, Shih Chang Chang, Ting-Kuo Chang
-
Patent number: 8679978Abstract: A method for forming a film includes the steps of: placing an object to be processed into a processing container; and generating M(BH4)4 gas by feeding H2 gas as carrier gas into a raw material container in which solid M(BH4)4 (where M is Zr or Hf) is accommodated to introduce a mixture gas of H2 gas and M(BH4)4 gas having a volume ratio of flow rates (H2/M(BH4)4) of 2 or more into the processing container, and deposit a MBx film (where M is Zr or Hf and x is 1.8 to 2.5) on the object using a thermal CVD.Type: GrantFiled: October 14, 2011Date of Patent: March 25, 2014Assignee: Tokyo Electron LimitedInventor: Takayuki Komiya
-
Patent number: 8633101Abstract: A manufacturing method of a semiconductor device including an electrode having low contact resistivity to a nitride semiconductor is provided. The manufacturing method includes a carbon containing layer forming step of forming a carbon containing layer containing carbon on a nitride semiconductor layer, and a titanium containing layer forming step of forming a titanium containing layer containing titanium on the carbon containing layer. A complete solid solution Ti (C, N) layer of TiN and TiC is formed between the titanium containing layer and the nitride semiconductor layer. As a result, the titanium containing layer comes to be in ohmic contact with the nitride semiconductor layer throughout the border therebetween.Type: GrantFiled: September 2, 2010Date of Patent: January 21, 2014Assignee: Toyota Jidosha Kabushiki KaishaInventors: Masahiro Sugimoto, Akinori Seki, Akira Kawahashi, Yasuo Takahashi, Masakatsu Maeda
-
Patent number: 8617984Abstract: A local interconnect structure is provided in which a tungsten region, i.e., tungsten stud, that is formed within a middle-of-the-line (MOL) dielectric material is not damaged and/or contaminated during a multiple interconnect patterning process. This is achieved in the present disclosure by forming a self-aligned tungsten nitride passivation layer within a topmost surface and upper sidewalls portions of the tungsten region that extend above a MOL dielectric material which includes a first interconnect pattern formed therein. During the formation of the self-aligned tungsten nitride passivation layer, a nitrogen enriched dielectric surface also forms within exposed surface of the MOL dielectric material. A second interconnect pattern is then formed adjacent to, but not connect with, the first interconnect pattern. Because of the presence of the self-aligned tungsten nitride passivation layer on the tungsten region, no damaging and/or contamination of the tungsten region can occur.Type: GrantFiled: February 12, 2013Date of Patent: December 31, 2013Assignee: International Business Machines CorporationInventors: Chih-Chao Yang, Daniel C. Edelstein
-
Patent number: 8564129Abstract: Embodiments of a low resistivity contact to a semiconductor structure are disclosed. In one embodiment, a semiconductor structure includes a semiconductor layer, a semiconductor contact layer having a low bandgap on a surface of the semiconductor layer, and an electrode on a surface of the semiconductor contact layer opposite the semiconductor layer. The bandgap of the semiconductor contact layer is in a range of and including 0 to 0.2 electron-volts (eV), more preferably in a range of and including 0 to 0.1 eV, even more preferably in a range of and including 0 to 0.05 eV. Preferably, the semiconductor layer is p-type. In one particular embodiment, the semiconductor contact layer and the electrode form an ohmic contact to the p-type semiconductor layer and, as a result of the low bandgap of the semiconductor contact layer, the ohmic contact has a resistivity that is less than 1×10?6 ohms·cm2.Type: GrantFiled: August 3, 2012Date of Patent: October 22, 2013Assignee: Phononic Devices, Inc.Inventors: Robert Joseph Therrien, Jason D. Reed, Jaime A. Rumsey, Allen L. Gray
-
Patent number: 8564132Abstract: A local interconnect structure is provided in which a tungsten region, i.e., tungsten stud, that is formed within a middle-of-the-line (MOL) dielectric material is not damaged and/or contaminated during a multiple interconnect patterning process. This is achieved in the present disclosure by forming a self-aligned tungsten nitride passivation layer within a topmost surface and upper sidewalls portions of the tungsten region that extend above a MOL dielectric material which includes a first interconnect pattern formed therein. During the formation of the self-aligned tungsten nitride passivation layer, a nitrogen enriched dielectric surface also forms within exposed surface of the MOL dielectric material. A second interconnect pattern is then formed adjacent to, but not connect with, the first interconnect pattern. Because of the presence of the self-aligned tungsten nitride passivation layer on the tungsten region, no damaging and/or contamination of the tungsten region can occur.Type: GrantFiled: August 17, 2011Date of Patent: October 22, 2013Assignee: International Business Machines CorporationInventors: Chih-Chao Yang, Daniel C. Edelstein
-
Patent number: 8466553Abstract: The present invention relates to a semiconductor device and a semiconductor package having the same. The semiconductor device includes a conductive element. The conductive element is disposed on a protruded conductive via and liner, and covers a sidewall of the liner. Whereby, the conductive element can protect the protruded conductive via and liner from being damaged. Further, the size of the conductive element is large, thus it is easy to perform a probe test process.Type: GrantFiled: October 12, 2010Date of Patent: June 18, 2013Assignee: Advanced Semiconductor Engineering, Inc.Inventors: Bing-Hong Cheng, Meng-Jen Wang
-
Patent number: 8409985Abstract: The present invention addresses this need by providing methods for depositing low resistivity tungsten films in small features and features having high aspect ratios. The methods involve depositing very thin tungsten nucleation layers by pulsed nucleation layer (PNL) processes and then using chemical vapor deposition (CVD) to deposit a tungsten layer to fill the feature. Depositing the tungsten nucleation layer involves exposing the substrate to alternating pulses of a boron-containing reducing agent and a tungsten-containing precursor without using any hydrogen gas, e.g., as a carrier or background gas. Using this process, a conformal tungsten nucleation layer can be deposited to a thickness as small as about 10 Angstroms. The feature may then be wholly or partially filled with tungsten by a hydrogen reduction chemical vapor deposition process. Resistivities of about 14 ??-cm for a 500 Angstrom film may be obtained.Type: GrantFiled: April 27, 2011Date of Patent: April 2, 2013Assignee: Novellus Systems, Inc.Inventors: Lana Hiului Chan, Kaihan Ashtiani, Joshua Collins
-
Patent number: 8344511Abstract: To provide a semiconductor device which can reduce an electrical resistance between a plug and a silicide region, and a manufacturing method thereof. At least one semiconductor element having a silicide region, is formed over a semiconductor substrate. An interlayer insulating film is formed over the silicide region. A through hole having an inner surface including a bottom surface comprised of the silicide regions is formed in the interlayer insulating film. A Ti (titanium) film covering the inner surface of the hole is formed by a chemical vapor deposition method. At least a surface of the Ti film is nitrided so as to forma barrier metal film covering the inner surface. A plug is formed to fill the through hole via the barrier metal film.Type: GrantFiled: March 7, 2012Date of Patent: January 1, 2013Assignee: Renesas Electronics CorporationInventors: Kazuhito Ichinose, Yukari Imai
-
Publication number: 20120193799Abstract: A circuit substrate is presented. The circuit substrate comprises internal terminal electrode 2; a substrate 1; a wiring layer 21 formed on a portion of the surface of the substrate and having one end thereof connected to the internal terminal electrode; an insulating film contacting as a surface with the wiring layer; and an external terminal electrode 9 connected to the other end of the wiring layer and used for connecting to the exterior. The angle of the cross-section of the wiring layer taken perpendicularly to the surface of the substrate in the edge portion that the wiring layer contains is 55° (55 degree) or less, and the wiring layer that contains multiple mutually independent columnar crystals extending perpendicularly in a direction different from the direction of the surface of the substrate.Type: ApplicationFiled: February 10, 2012Publication date: August 2, 2012Applicant: SKLink Co., Ltd.Inventors: Masao SAKUMA, Kanji OTSUKA
-
Publication number: 20120001337Abstract: In accordance with an embodiment, a structure comprises a substrate having a first area and a second area; a through substrate via (TSV) in the substrate penetrating the first area of the substrate; an isolation layer over the second area of the substrate, the isolation layer having a recess; and a conductive material in the recess of the isolation layer, the isolation layer being disposed between the conductive material and the substrate in the recess.Type: ApplicationFiled: June 30, 2010Publication date: January 5, 2012Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Chen-Yu Tsai, Shih-Hui Wang, Chien-Ming Chiu, Chia-Ho Chen, Fang Wen Tsai, Weng-Jin Wu, Jing-Cheng Lin, Wen-Chih Chiou, Shin-Puu Jeng, Chen-Hua Yu
-
Patent number: 8056500Abstract: Embodiments of the present invention provide apparatus and method for improving gas distribution during thermal processing. One embodiment of the present invention provides an apparatus for processing a substrate comprising a chamber body defining a processing volume, a substrate support disposed in the processing volume, wherein the substrate support is configured to support and rotate the substrate, a gas inlet assembly coupled to an inlet of the chamber body and configured to provide a first gas flow to the processing volume, and an exhaust assembly coupled to an outlet of the chamber body, wherein the gas inlet assembly and the exhaust assembly are disposed on opposite sides of the chamber body, and the exhaust assembly defines an exhaust volume configured to extend the processing volume.Type: GrantFiled: December 19, 2008Date of Patent: November 15, 2011Assignee: Applied Materials, Inc.Inventors: Ming-Kuei (Michael) Tseng, Norman Tam, Yoshitaka Yokota, Agus Tjandra, Robert Navasca, Mehran Behdjat, Sundar Ramamurthy, Kedarnath Sangam, Alexander N. Lerner
-
Publication number: 20110248403Abstract: A stacked integrated circuit (IC) may be manufactured with a second tier wafer bonded to a double-sided first tier wafer. The double-sided first tier wafer includes back-end-of-line (BEOL) layers on a front and a back side of the wafer. Extended contacts within the first tier wafer connect the front side and the back side BEOL layers. The extended contact extends through a junction of the first tier wafer. The second tier wafer couples to the front side of the first tier wafer through the extended contacts. Additional contacts couple devices within the first tier wafer to the front side BEOL layers. When double-sided wafers are used in stacked ICs, the height of the stacked ICs may be reduced. The stacked ICs may include wafers of identical functions or wafers of different functions.Type: ApplicationFiled: April 12, 2010Publication date: October 13, 2011Applicant: QUALCOMM INCORPORATEDInventors: Arvind Chandrasekaran, Brian Henderson
-
Publication number: 20110241213Abstract: A method for forming a silicide contact includes depositing a metal layer on silicon such that the metal layer intermixes with the silicon to form an intermixed region on the silicon; removing an unintermixed portion of the metal layer from the intermixed region; and annealing the intermixed region to form a silicide contact on the silicon. A semiconductor device comprising a silicide contact located over a silicon layer of the semiconductor device, the silicide contact comprising nickel (Ni) and silicon (Si) and having Ni amount equivalent to a thickness of about 21 angstroms or less.Type: ApplicationFiled: April 6, 2010Publication date: October 6, 2011Applicants: INTERNATIONAL BUSINESS MACHINES CORPORATION, GLOBAL FOUNDRIES INC.Inventors: Andrew J. Kellock, Christian Lavoie, Ahmet Ozcan, Stephen Rossnagel, Bin Yang, Zhen Zhang, Yu Zhu, Stefan Zollner
-
Publication number: 20110233778Abstract: The invention provides a method of forming a film stack on a substrate, comprising depositing a tungsten nitride layer on the substrate, subjecting the substrate to a nitridation treatment using active nitrogen species from a remote plasma, and depositing a conductive bulk layer directly on the tungsten nitride layer without depositing a tungsten nucleation layer on the tungsten nitride layer as a growth site for tungsten.Type: ApplicationFiled: March 24, 2010Publication date: September 29, 2011Applicant: APPLIED MATERIALS, INC.Inventors: Sang-Hyeob Lee, Sang Ho Yu, Wei Ti Lee, Seshadri Ganguli, Hyoung-Chan Ha, Hoon Kim
-
Patent number: 8022542Abstract: A semiconductor device includes a semiconductor substrate, an interlayer insulating film, a tungsten film, a first barrier metal film, a second barrier metal film and a metal wiring film. The interlayer insulating film is formed on the semiconductor substrate, and has an opening. The tungsten film is embedded in the opening. The first barrier metal film is formed on the tungsten film and excludes a Ti film. The second barrier metal film is formed on the first barrier metal film and is a Ti-containing film. The metal wiring film is formed on the second barrier metal film.Type: GrantFiled: October 6, 2006Date of Patent: September 20, 2011Assignee: Renesas Electronics CorpInventor: Kazumi Saitou
-
Publication number: 20110199569Abstract: A wiring board of the present invention (1) is arranged so that: pads (30) arranged in a plurality of rows include: first-row pads (30a) connected to first metal wires (10a) among metal wires (10); and second-row pads (30b) connected to second metal wires (10b) among the metal wires (10), the first metal wires (10a) being longer than the second metal wires (10b); each of the first metal wires (10a) is formed so as to be separated from a corresponding one of the second-row pads (30b) by at least an insulating layer, and so as to have a widthwise center in a lower region below the corresponding second-row pad (30b); and each of the first metal wires (10a) has widthwise edges provided, in a plan view, beyond widthwise edges of a corresponding one of the second-row pads (30b) in a region in which the first metal wire (10a) overlaps with the corresponding second-row pad (30b).Type: ApplicationFiled: July 17, 2008Publication date: August 18, 2011Inventors: Takashi Matsui, Motoji Shiota
-
Patent number: 7999384Abstract: A method of closely interconnecting integrated circuits contained within a semiconductor wafer to electrical circuits surrounding the semiconductor wafer. Electrical interconnects are held to a minimum in length by making efficient use of polyimide or polymer as an inter-metal dielectric thus enabling the integration of very small integrated circuits within a larger circuit environment at a minimum cost in electrical circuit performance.Type: GrantFiled: July 27, 2007Date of Patent: August 16, 2011Assignee: Megica CorporationInventor: Mou-Shiung Lin
-
Patent number: 7968455Abstract: A method for plating copper onto a semiconductor integrated circuit device substrate by forming an initial metal deposit in the feature which has a profile comprising metal on the bottom of the feature and a segment of the sidewalls having essentially no metal thereon, electrolessly depositing copper onto the initial metal deposit to fill the feature with copper. A method for plating copper onto a semiconductor integrated circuit device substrate by forming a deposit comprising a copper wettable metal in the feature, forming a copper-based deposit on the top-field surface, and depositing copper onto the deposit comprising the copper wettable metal to fill the feature with copper.Type: GrantFiled: October 17, 2007Date of Patent: June 28, 2011Assignee: Enthone Inc.Inventors: Xuan Lin, Richard Hurtubise, Vincent Paneccasio, Qingyun Chen
-
Patent number: 7960832Abstract: An integrated circuit arrangement includes an electrically conductive conduction structure made from copper or a copper alloy. At a side wall of the conduction structure, there is a layer stack which includes at least three layers. Despite very thin layers in the layer stack, it is possible to achieve a high barrier action against copper diffusion combined with a high electrical conductivity, as is required for electrolytic deposition of copper using external current.Type: GrantFiled: May 19, 2006Date of Patent: June 14, 2011Assignee: Infineon Technologies AGInventor: Heinrich Koerner
-
Patent number: 7955972Abstract: The present invention addresses this need by providing methods for depositing low resistivity tungsten films in small features and features having high aspect ratios. The methods involve depositing very thin tungsten nucleation layers by pulsed nucleation layer (PNL) processes and then using chemical vapor deposition (CVD) to deposit a tungsten layer to fill the feature. Depositing the tungsten nucleation layer involves exposing the substrate to alternating pulses of a boron-containing reducing agent and a tungsten-containing precursor without using any hydrogen gas, e.g., as a carrier or background gas. Using this process, a conformal tungsten nucleation layer can be deposited to a thickness as small as about 10 Angstroms. The feature may then be wholly or partially filled with tungsten by a hydrogen reduction chemical vapor deposition process. Resistivities of about 14 ??-cm for a 500 Angstrom film may be obtained.Type: GrantFiled: February 13, 2008Date of Patent: June 7, 2011Assignee: Novellus Systems, Inc.Inventors: Lana Hiului Chan, Kaihan Ashtiani, Joshua Collins
-
Publication number: 20110079910Abstract: Embodiments of apparatus and methods for forming dual metal interconnects are described herein. Other embodiments may be described and claimed.Type: ApplicationFiled: December 14, 2010Publication date: April 7, 2011Inventors: Kevin O'brien, Rohan Akolkar, Tejaswi Indukuri, Arnel M. Fajardo
-
Publication number: 20110018109Abstract: According to an exemplary embodiment, a semiconductor die including at least one deep silicon via is provided. The deep silicon via comprises a deep silicon via opening that extends through at least one pre-metal dielectric layer of the semiconductor die, at least one epitaxial layer of the semiconductor die, and partially into a conductive substrate of the semiconductor die. The deep silicon via further comprises a conductive plug situated in the deep silicon via opening and forming an electrical contact with the conductive substrate. The deep silicon via may include a sidewall dielectric layer and a bottom conductive layer. A method for making a deep silicon via is also disclosed. The deep silicon via is used to, for example, provide a ground connection for power transistors in the semiconductor die.Type: ApplicationFiled: May 20, 2010Publication date: January 27, 2011Applicant: NEWPORT FAB, LLC DBA JAZZ SEMICONDUCTORInventors: Volker Blaschke, Todd Thibeault, Chris Cureton, Paul Hurwitz, Arjun Kar-Roy, David Howard, Marco Racanelli
-
Patent number: 7875978Abstract: A metal line having a multi-layered diffusion layer in a resultant semiconductor device is presented along with corresponding methods of forming the same. The metal line includes an insulation layer, a multi-layered diffusion barrier, and a metal layer. The insulation layer is formed on a semiconductor substrate and has a metal line forming region. The multi-layered diffusion barrier is formed on a surface of the metal line forming region defined in the insulation layer. The diffusion barrier includes a VB2 layer, a CrV layer and a Cr layer. The metal layer is formed on the diffusion barrier which substantially fills in the metal line forming region of the insulation layer to eventually form the metal line.Type: GrantFiled: June 16, 2009Date of Patent: January 25, 2011Assignee: Hynix Semiconductor Inc.Inventors: Dong Ha Jung, Seung Jin Yeom, Baek Mann Kim, Joon Seok Oh, Nam Yeal Lee
-
Patent number: 7800105Abstract: To provide a Ga2O3 compound semiconductor device in which a Ga2O3 system compound is used as a semiconductor, which has an electrode having ohmic characteristics adapted to the Ga2O3 system compound, and which can make a heat treatment for obtaining the ohmic characteristics unnecessary. An n-side electrode 20 including at least a Ti layer is formed on a lower surface of an n-type ?-Ga2O3 substrate 2 by utilizing a PLD method. This n-side electrode 20 has ohmic characteristics at 25° C. The n-side electrode 20 may have two layer including a Ti layer and an Au layer, three layers including a Ti layer, an Al layer and an Au layer, or four layers including a Ti layer, an Al layer, a Ni layer and an Au layer.Type: GrantFiled: January 14, 2005Date of Patent: September 21, 2010Assignee: Waseda UniversityInventors: Noboru Ichinose, Kiyoshi Shimamura, Kazuo Aoki, Encarnacion Antonia Garcia Villora
-
Patent number: 7790616Abstract: A method for producing a silicide contact. The method comprises the steps of depositing a metal on a SiC substrate; forming an encapsulating layer on deposited metal; and annealing said deposited metal to form a silicide contact. The encapsulating layer prevents agglomeration and formation of stringers during the annealing process.Type: GrantFiled: August 29, 2007Date of Patent: September 7, 2010Assignee: Northrop Grumman Systems CorporationInventors: Steven Mark Buchoff, Andrew Christian Loyd, Robert S. Howell
-
Publication number: 20100164110Abstract: The present invention provides metal silicide nanowires, including metallic, semiconducting, and ferromagnetic semiconducting transition metal silicide nanowires. The nanowires are grown using either chemical vapor deposition (CVD) or chemical vapor transport (CVT) on silicon substrates covered with a thin silicon oxide film, the oxide film desirably having a thickness of no greater than about 5 nm and, desirably, no more than about 2 nm (e.g., about 1-2 nm). The metal silicide nanowires and heterostructures made from the nanowires are well-suited for use in CMOS compatible wire-like electronic, photonic, and spintronic devices.Type: ApplicationFiled: August 17, 2006Publication date: July 1, 2010Inventors: Song Jin, Andrew L. Schmitt, Yipu Song
-
Publication number: 20100072623Abstract: Semiconductor device structures and related fabrication methods are provided herein. One fabrication method relates to the formation of conductive contact plugs for a semiconductor device. The method begins by providing a semiconductor device structure having a conductive contact region, a layer of insulating material overlying the conductive contact region, and a via formed in the layer of insulating material and terminating at the conductive contact region. The fabrication process then deposits a first electrically conductive material on the semiconductor device structure such that the first electrically conductive material at least partially fills the via. Then, the process anisotropically etches a portion of the first electrically conductive material located in the filled via, resulting in a lined via. Thereafter, the process deposits a second electrically conductive material on the semiconductor device structure such that the second electrically conductive material at least partially fills the lined via.Type: ApplicationFiled: September 19, 2008Publication date: March 25, 2010Applicant: ADVANCED MICRO DEVICES, INC.Inventors: Christopher M. PRINDLE, Richard J. CARTER, Doug LEE, Man Fai NG
-
Publication number: 20100072624Abstract: A metal interconnection including a substrate, a first conductive structure, a second conductive structure, a complex plug and a plug is provided. The substrate includes a first region and a second region. The first conductive structure is disposed on the first region. The second conductive structure is disposed on the second region. The complex plug is disposed on the first conductive structure and includes a tungsten layer and a plurality of insulator columns, wherein an extended direction of each of the insulator columns is perpendicular to a surface of the substrate and the tungsten layer is electrically connected with the first conductive structure. The plug is disposed on the second conductive structure and electrically connected with the second conductive structure.Type: ApplicationFiled: September 19, 2008Publication date: March 25, 2010Applicant: United Microelectronics Corp.Inventor: Yan-Hsiu Liu
-
Publication number: 20100059893Abstract: A method of forming an integrated circuit structure, the method includes providing a semiconductor substrate; forming a dielectric layer over the semiconductor substrate; forming an opening in the dielectric layer; forming a seed layer in the opening; forming a copper line on the seed layer, wherein at least one of the seed layer and the copper line includes an alloying material; and forming an etch stop layer on the copper line.Type: ApplicationFiled: November 16, 2009Publication date: March 11, 2010Inventors: Hui-Lin Chang, Yung-Cheng Lu, Syun-Ming Jang
-
Publication number: 20100059825Abstract: A method of forming an integrated circuit 68 provides over a diffusion region 28 on a substrate 26 a gate electrode 36. A source electrode is provided by a source local interconnect conductor 30 and a drain electrode is provided by a drain local interconnect conductor 32. An insulator layer 38 is formed over these electrodes and respective electrode openings are formed through the insulator layer 38 so as to provide electrical connection to a Metal1 layer 46, 48, 50. The etching process for the electrode openings is controlled such that the maximum etching depth is insufficient to penetrate through the insulating layer 38 and accordingly short circuit a gate insulator layer 34 provided between the diffusion region 28 and the gate electrode 36. Thus, the gate opening may be positioned over the diffusion region 28.Type: ApplicationFiled: September 10, 2008Publication date: March 11, 2010Inventors: Gregory Munson Yeric, Marlin Wayne Frederick
-
Publication number: 20100032842Abstract: A multi-layer TiN film with reduced tensile stress and discontinuous grain structure, and a method of fabricating the TiN film are disclosed. The TiN layers are formed by PVD or IMP in a nitrogen plasma. Tensile stress in a center layer of the film is reduced by increasing N2 gas flow to the nitrogen plasma, resulting in a Ti:N stoichiometry between 1:2.1 to 1:2.3. TiN films thicker than 40 nanometers without cracks are attained by the disclosed process.Type: ApplicationFiled: August 7, 2009Publication date: February 11, 2010Applicant: TEXAS INSTRUMENTS INCORPORATEDInventors: Gregory Charles HERDT, Joseph W. BUCKFELLER
-
Publication number: 20090302475Abstract: A semiconductor device includes a first interlayer insulating film, and a plurality of first interconnects formed in the first interlayer insulating film. A void is selectively formed between adjacent ones of the plurality of first interconnects in the first interlayer insulating film, and a cap insulating film is formed in a region located over the void and between the interconnects. Respective widths of a lower end and an upper end of the void are substantially the same as a gap between the interconnects located adjacent to the void, and the lower end of the void is located lower than lower ends of the first interconnects located adjacent to the void.Type: ApplicationFiled: August 12, 2009Publication date: December 10, 2009Inventors: Hayato Korogi, Takeshi Harada, Akira Ueki
-
Publication number: 20090267231Abstract: In one embodiment, a lower interlayer dielectric layer, and first and second landing pads penetrating the lower interlayer dielectric layer are formed on a substrate. Interconnection patterns covering the second landing pads are formed on the lower interlayer dielectric layer. An etch stop layer is formed over the interconnection patterns. An upper interlayer dielectric layer filling a gap region between the interconnection patterns is formed on the etch stop layer. The upper interlayer dielectric layer is patterned to form a preliminary contact hole between the interconnection patterns, where the etch stop layer is exposed at the bottom of the preliminary contact hole. The preliminary contact hole is extended and the etch stop layer exposed by the extended preliminary contact hole is removed to form a first contact hole exposing the first landing pad. A buried contact plug is then formed within the first contact hole.Type: ApplicationFiled: July 6, 2009Publication date: October 29, 2009Applicant: SAMSUNG ELECTRONICS CO., LTD.Inventor: Si-Youn KIM
-
Patent number: 7589017Abstract: Improved methods for depositing low resistivity tungsten films are provided. The methods involve depositing a tungsten nucleation layer on a substrate and then depositing a tungsten bulk layer over the tungsten nucleation layer to form the tungsten film. The methods provide precise control of the nucleation layer thickness and improved step coverage. According to various embodiments, the methods involve controlling thickness and/or improving step coverage by exposing the substrate to pulse nucleation layer (PNL) cycles at low temperature. Also in some embodiments, the methods may improve resistivity by using a high temperature PNL cycle of a boron-containing species and a tungsten-containing precursor to finish forming the tungsten nucleation layer.Type: GrantFiled: November 1, 2005Date of Patent: September 15, 2009Assignee: Novellus Systems, Inc.Inventors: Lana Hiului Chan, Panya Wongsenakhum, Joshua Collins
-
Publication number: 20090200671Abstract: A System In Package (SIP) semiconductor device and a method for manufacturing a SIP device. A TiSiN film may be used as a diffusion barrier film for metal wiring in a SIP semiconductor device. A TiSiN film may provide relatively good step coverage in a relatively easy formation process, which may maximize reliability of a semiconductor device.Type: ApplicationFiled: April 15, 2009Publication date: August 13, 2009Inventor: Han-Choon Lee
-
Publication number: 20090189229Abstract: Provided are semiconductor devices and methods of fabricating the same, and more specifically, semiconductor devices having a W—Ni alloy thin layer that has a low resistance, and methods of fabricating the same. The semiconductor devices include the W—Ni alloy thin layer. The weight of Ni in the W—Ni alloy thin layer may be in a range from approximately 0.01 to approximately 5.0 wt % of the total weight of the W—Ni alloy thin layer.Type: ApplicationFiled: December 3, 2008Publication date: July 30, 2009Applicant: Samsung Electronics Co., Ltd.Inventors: Jong-min Baek, Seong-hwee Cheong, Gil-heyun Choi, Tae-ho Cha, Hee-sook Park, Byung-hak Lee, Jae-hwa Park
-
Patent number: 7557446Abstract: A semiconductor device formed by the steps of forming a contact hole in an insulation film so as to extend therethrough and so as to expose a conductor body at a bottom part of the contact hole, forming a barrier metal film of tungsten nitride on the bottom part and a sidewall surface of the contact hole with a conformal shape to the bottom part and the sidewall surface of the contact hole, forming a tungsten layer so as to fill the contact hole via the barrier metal film, and forming a tungsten plug in the contact hole by the tungsten layer by polishing away a part of the tungsten film on the insulation film until a surface of the insulation film is exposed, wherein there is conducted a step of cleaning a surface of the conductor body prior to the forming step of the barrier metal film.Type: GrantFiled: June 30, 2008Date of Patent: July 7, 2009Assignee: Fujitsu Microelectronics LimitedInventors: Takeshi Ito, Satoshi Inagaki, Yasunori Uchino, Kazuo Kawamura
-
Patent number: 7554162Abstract: A thin film transistor substrate includes an upper electrode for electrically connecting a transparent picture element electrode to the thin film transistor. The upper electrode includes at least a first metal layer and a second metal layer formed on the first metal layer. The second metal layer has a lower reflectance than the first metal layer and the first metal layer has a region not overlapped by the second metal layer.Type: GrantFiled: June 23, 2004Date of Patent: June 30, 2009Assignee: NEC CorporationInventors: Kenichi Hayashi, Hirofumi Shimamoto, Tadahiro Matsuzaki
-
Patent number: 7545043Abstract: A device comprises a multi-layered thin film having excellent adhesion due to the method of fabricating the same. More particularly, the device includes a multi-layered thin film consisting of a tantalum nitride layer, a tantalum layer formed on the tantalum nitride layer, and a gold thin film formed on the tantalum layer.Type: GrantFiled: October 14, 2005Date of Patent: June 9, 2009Assignees: Samsung SDI Co., Ltd., Seoul National University Industry FoundationInventors: Ju-Yong Kim, Ho-Jin Kweon, Jae-Jeong Kim, Jin-Goo Ahn, Oh-Joong Kwon
-
Publication number: 20090108457Abstract: A first through via is electrically insulated from surrounding wafer substrate material. A second through via is not electrically insulated from the surrounding wafer substrate material. This configuration is advantageous when the non-insulated via serves as the path for either Vdd or GND. By not insulating the through via, a first supply voltage (Vdd or GND) is allowed to flow through the surrounding wafer substrate material thereby decreasing the resistance of the first supply voltage path.Type: ApplicationFiled: October 31, 2007Publication date: April 30, 2009Inventors: Todd Alan Christensen, John Edward Sheets, II
-
Semiconductor device having a refractory metal containing film and method for manufacturing the same
Patent number: 7521802Abstract: A semiconductor device and a method for manufacturing the same of the present invention in which the semiconductor device is provided with a fuse structure or an electrode pad structure, suppress the copper blowing-out from a copper containing metal film. The semiconductor device comprises a silicon substrate, SiO2 film provided on the silicon substrate, copper films embedded in the SiO2 film, TiN films covering an upper face of a boundary region between an upper face of copper films and the copper films, and the SiO2 film, and SiON films covering an upper face of the TiN films.Type: GrantFiled: March 17, 2005Date of Patent: April 21, 2009Assignee: NEC Electronics CorporationInventors: Toshiyuki Takewaki, Mari Watanabe -
Patent number: 7504731Abstract: An interconnect structure that may reduce or eliminate stress induced voids is provided. In an embodiment, a via is formed below a conductive line to provide an electrical connection to an underlying conductive region. The conductive line includes a widened region above the via. The widened region serves to reduce or eliminate stress induced voids between the via and the underlying conductive region. In another embodiment, one or more redundant lines are formed extending from a conductive region, such as a contact pad, such that the redundant line does not electrically couple the conductive region to an underlying conductive region. In a preferred embodiment, the redundant lines extend from a conductive region on a side adjacent to a side having a conductive line coupled to a via.Type: GrantFiled: May 2, 2007Date of Patent: March 17, 2009Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.Inventor: Chien-Jung Wang
-
Publication number: 20090039517Abstract: A titanium layer is formed on a substrate with chemical vapor deposition (CVD). First, a seed layer is formed on the substrate by combining a first precursor with a reducing agent by CVD. Then, the titanium layer is formed on the substrate by combining a second precursor with the seed layer by CVD. The titanium layer is used to form contacts to active areas of substrate and for the formation of interlevel vias.Type: ApplicationFiled: October 10, 2008Publication date: February 12, 2009Applicant: Micron Technology, Inc.Inventors: Gurtej Singh Sandhu, Donald L. Westmoreland