Containing Carbon, E.g., Fullerenes (epo) Patents (Class 257/E23.165)
  • Patent number: 11626320
    Abstract: A method for manufacturing a semiconductor device includes forming a source region, a drain region, and a gate dielectric layer and a gate electrode covering a channel region between the source region and the drain region, forming an insulating layer over the source region, the drain region, and the gate electrode, forming first to third vias penetrating the insulating layer and exposing portions of the source region, the drain region, and the gate electrode, respectively, forming a source contact in the first via to electrically connect to the source region, forming a drain contact in the second via to electrically connect to the drain region, and forming a gate contact in the third via to electrically connect to the gate electrode. One or more of the first to third vias is formed by ion bombarding by a focused ion beam and followed by a thermal annealing process.
    Type: Grant
    Filed: October 18, 2021
    Date of Patent: April 11, 2023
    Assignees: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD., NATIONAL TAIWAN UNIVERSITY
    Inventors: Che-Wei Yang, Hao-Hsiung Lin
  • Patent number: 11527435
    Abstract: A method and structure for forming an enhanced metal capping layer includes forming a portion of a multi-level metal interconnect network over a substrate. In some embodiments, the portion of the multi-level metal interconnect network includes a plurality of metal regions. In some cases, a dielectric region is disposed between each of the plurality of metal regions. By way of example, a metal capping layer may be deposited over each of the plurality of metal regions. Thereafter, in some embodiments, a self-assembled monolayer (SAM) may be deposited, where the SAM forms selectively on the metal capping layer, while the dielectric region is substantially free of the SAM. In various examples, after selectively forming the SAM on the metal capping layer, a thermal process may be performed, where the SAM prevents diffusion of the metal capping layer during the thermal process.
    Type: Grant
    Filed: July 27, 2021
    Date of Patent: December 13, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD
    Inventors: Shao-Kuan Lee, Cheng-Chin Lee, Hsin-Yen Huang, Hai-Ching Chen, Shau-Lin Shue
  • Patent number: 9960299
    Abstract: Disclosed is an avalanche photodiode using a silicon nanowire, including a first silicon nanowire formed of silicon (Si), a first conductive region formed by doping one surface of the first silicon nanowire with a first dopant, and a second conductive region formed by doping one surface of the first silicon nanowire with a second dopant having a conductive type different from that of the first dopant so as to be arranged continuously in a longitudinal direction from the first conductive region, wherein, when the magnitude of a reverse voltage applied to both ends of the first silicon nanowire is equal to or greater than a preset breakdown voltage, avalanche multiplication of inner current occurs due to the incidence of light from the outside.
    Type: Grant
    Filed: July 15, 2016
    Date of Patent: May 1, 2018
    Assignee: KOREA ELECTRONICS TECHNOLOGY INSTITUTE
    Inventors: Suk Won Jung, Yeon Shik Choi, Young Chang Jo, Jae Gi Son, Ki Man Jeon, Woo Kyeong Seong, Kook Nyung Lee, Min Ho Lee, Hyuck Ki Hong
  • Patent number: 9000591
    Abstract: A conductive film of an embodiment includes: a fine catalytic metal particle as a junction and a graphene extending in a network form from the junction.
    Type: Grant
    Filed: February 15, 2013
    Date of Patent: April 7, 2015
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Yuichi Yamazaki, Makoto Wada, Tatsuro Saito, Tadashi Sakai
  • Patent number: 8648464
    Abstract: According to one embodiment, a semiconductor device is disclosed. The device includes a semiconductor substrate, and an interconnection above the semiconductor substrate. The interconnection includes a co-catalyst layer, a catalyst layer on the co-catalyst layer, and a graphene layer on the catalyst layer. The co-catalyst layer includes a portion contacting the catalyst layer. The portion has a face-centered cubic structure with a (111) plane oriented parallel to a surface of the semiconductor substrate. The catalyst layer has a face-centered cubic structure with a (111) plane oriented parallel to the surface of the semiconductor substrate.
    Type: Grant
    Filed: March 7, 2012
    Date of Patent: February 11, 2014
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Masayuki Kitamura, Makoto Wada, Yuichi Yamazaki, Masayuki Katagiri, Atsuko Sakata, Akihiro Kajita, Tadashi Sakai, Naoshi Sakuma, Ichiro Mizushima
  • Patent number: 8624396
    Abstract: An apparatus comprises a first dielectric layer formed over a substrate, a first metal line embedded in the first dielectric layer, a second dielectric layer formed over the first dielectric layer, a second metal line embedded in the second dielectric layer, an interconnect structure formed between the first metal line and the second metal line, a first carbon layer formed between the first metal line and the interconnect structure and a second carbon layer formed between the second metal line and the interconnect structure.
    Type: Grant
    Filed: June 14, 2012
    Date of Patent: January 7, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Hsien-Chang Wu, Hsiang-Huan Lee, Shau-Lin Shue
  • Publication number: 20130334689
    Abstract: An apparatus comprises a first dielectric layer formed over a substrate, a first metal line embedded in the first dielectric layer, a second dielectric layer formed over the first dielectric layer, a second metal line embedded in the second dielectric layer, an interconnect structure formed between the first metal line and the second metal line, a first carbon layer formed between the first metal line and the interconnect structure and a second carbon layer formed between the second metal line and the interconnect structure.
    Type: Application
    Filed: June 14, 2012
    Publication date: December 19, 2013
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Hsien-Chang Wu, Hsiang-Huan Lee, Shau-Lin Shue
  • Patent number: 8501529
    Abstract: Provided are a method of doping carbon nanotubes, p-doped carbon nanotubes prepared using the method, and an electrode, a display device or a solar cell including the carbon nanotubes. Particularly, a method of doping carbon nanotubes having improved conductivity by reforming the carbon nanotubes using an oxidizer, doped carbon nanotubes prepared using the method, and an electrode, a display device or a solar cell including the carbon nanotubes are provided.
    Type: Grant
    Filed: October 7, 2010
    Date of Patent: August 6, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Seon-mi Yoon, Seong-jae Choi, Hyeon-jin Shin, Jae-young Choi, Sung-jin Kim, Young-hee Lee
  • Patent number: 8482126
    Abstract: According to an embodiment of the present invention, a device includes a substrate, a base body formed on or above the substrate, and a pair of wirings. The base body has a line shape in a plan view and extends along a length direction. The pair of wirings includes first and second catalyst layers formed on both side surfaces of the base body in the length direction of the base body with sandwiching the base body; and first and second graphene layers formed on both side surfaces of the base body in a manner of contacting the first and second catalyst layers, respectively, and extending along the length direction of the base body, the graphene layers includes a plurality of graphenes laminated perpendicularly with respect to both side surfaces of the base body, respectively.
    Type: Grant
    Filed: September 2, 2011
    Date of Patent: July 9, 2013
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Makoto Wada, Yuichi Yamazaki, Akihiro Kajita, Atsuko Sakata
  • Publication number: 20130168862
    Abstract: A method of manufacturing a semiconductor memory and a structure of the semiconductor memory device, where the semiconductor memory device includes a material layer and a barrier layer. The barrier layer has a structure in which a horizontal cross-section of an upper portion thereof is larger than that of a lower portion thereof so that a fine pattern may be formed on the material layer using the barrier layer pattern without a structural damage or collapse in etching the underlying material layer.
    Type: Application
    Filed: June 8, 2012
    Publication date: July 4, 2013
    Inventor: Ha Chang JUNG
  • Patent number: 8450850
    Abstract: Provided are a thin-film transistor (TFT) substrate and a method of manufacturing the same. The method includes: forming a passivation film by forming an insulating film on a substrate; forming a photoresist pattern by forming a photoresist film on the passivation film, exposing the photoresist film to light, and developing the photoresist film; performing a first dry-etching by dry-etching the passivation film using the photoresist pattern as an etch mask; performing a baking to reduce a size of the photoresist pattern; performing a second dry-etching to form a contact hole by dry-etching the passivation film again using the photoresist pattern as a mask; removing the photoresist pattern; and forming a pixel electrode of a carbon composition that includes carbon nanotubes and/or graphene on a top surface of the passivation film.
    Type: Grant
    Filed: July 28, 2011
    Date of Patent: May 28, 2013
    Assignee: Samsung Display Co., Ltd.
    Inventors: Hong Long Ning, Chang-Oh Jeong, Ji-Young Park, Sang-Gab Kim, Sung-Haeng Cho, Yeon-Hong Kim, Jin-Su Byun
  • Publication number: 20130056873
    Abstract: According to an embodiment of the present invention, a device includes a substrate, a base body formed on or above the substrate, and a pair of wirings. The base body has a line shape in a plan view and extends along a length direction. The pair of wirings includes first and second catalyst layers formed on both side surfaces of the base body in the length direction of the base body with sandwiching the base body; and first and second graphene layers formed on both side surfaces of the base body in a manner of contacting the first and second catalyst layers, respectively, and extending along the length direction of the base body, the graphene layers includes a plurality of graphenes laminated perpendicularly with respect to both side surfaces of the base body, respectively.
    Type: Application
    Filed: September 2, 2011
    Publication date: March 7, 2013
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Makoto Wada, Yuichi Yamazaki, Akihiro Kajita, Atsuko Sakata
  • Patent number: 8377683
    Abstract: A dynamic and noninvasive method of monitoring the adhesion and proliferation of biological cells through multimode operation (acoustic and optical) using a ZnO nanostructure-modified quartz crystal microbalance (ZnOnano-QCM) biosensor is disclosed.
    Type: Grant
    Filed: July 23, 2012
    Date of Patent: February 19, 2013
    Assignee: Rutgers, The State University of New Jersey
    Inventors: Yicheng Lu, Pavel Ivanoff Reyes, Nada N. Boustany
  • Patent number: 8358008
    Abstract: A semiconductor device according to one embodiment includes: a semiconductor substrate; an insulating film provided on the semiconductor substrate and containing a wiring trench; a first catalyst layer provided directly or via another member on side and bottom surfaces of the wiring trench; and a first graphene layer provided in the wiring trench so as to be along the side and bottom surface of the wiring trench, the first graphene layer being provided on the first catalyst layer so as to be in contact with the first catalyst layer.
    Type: Grant
    Filed: March 18, 2010
    Date of Patent: January 22, 2013
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Makoto Wada, Noriaki Matsunaga, Yosuke Akimoto
  • Patent number: 8347726
    Abstract: A sensing device includes a nanowire configured to deform upon exposure to a force, and a transducer for converting the deformation into a measurement. The nanowire has two opposed ends; and the transducer is operatively connected to one of the two opposed ends of the nanowire. The other of the two opposed ends of the nanowire is freestanding.
    Type: Grant
    Filed: April 25, 2007
    Date of Patent: January 8, 2013
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Nobuhiko P. Kobayashi, Shih-Yuan Wang, Alexandre M. Bratkovski, R. Stanley Williams
  • Patent number: 8338822
    Abstract: An electrical connection structure having elongated carbon structures electrically connected to an electroconductive body is obtained by successively layering an electroconductive catalyst support layer, a fine catalyst particle layer for producing the elongated carbon structures and the elongated carbon structures on the electroconductive body. A low-resistance electrical connection structure is provided.
    Type: Grant
    Filed: November 17, 2005
    Date of Patent: December 25, 2012
    Assignee: Fujitsu Limited
    Inventor: Shintaro Sato
  • Publication number: 20120112346
    Abstract: Provided are a thin-film transistor (TFT) substrate and a method of manufacturing the same. The method includes: forming a passivation film by forming an insulating film on a substrate; forming a photoresist pattern by forming a photoresist film on the passivation film, exposing the photoresist film to light, and developing the photoresist film; performing a first dry-etching by dry-etching the passivation film using the photoresist pattern as an etch mask; performing a baking to reduce a size of the photoresist pattern; performing a second dry-etching to form a contact hole by dry-etching the passivation film again using the photoresist pattern as a mask; removing the photoresist pattern; and forming a pixel electrode of a carbon composition that includes carbon nanotubes and/or graphene on a top surface of the passivation film.
    Type: Application
    Filed: July 28, 2011
    Publication date: May 10, 2012
    Inventors: Hong Long NING, Chang-Oh Jeong, Ji-Young Park, Sang-Gab Kim, Sung-Haeng Cho, Yeon-Hong Kim, Jin-Su Byun
  • Patent number: 8174084
    Abstract: A stress sensor is disclosed herein. The stress sensor includes a plurality of carbon nanotubes in a substrate, and first and second contacts electrically connectable with the plurality of carbon nanotubes. Methods of making and using the stress sensor are also disclosed.
    Type: Grant
    Filed: September 19, 2006
    Date of Patent: May 8, 2012
    Assignee: Intel Corporation
    Inventors: Mohammad M. Farahani, Vladimir Noveski, Neha M. Patel, Nachiket R. Raravikar
  • Publication number: 20110309507
    Abstract: The present disclosure relates to a structure comprising 1. an electrically conductive substrate having carbon nanotubes grown thereon; 2. a cured polymeric fill matrix comprising at least one latent photoacid generator embedded around the carbon nanotubes but allowing tips of the carbon nanotubes to be exposed; 3. a layer of patterned and cured photosensitive dielectric material on the cured polymeric fill matrix, wherein tips of the carbon nanotubes are exposed within the patterns; and 4. an electrically conductive material filled into the interconnect pattern and in contact with the exposed tips of the carbon nanotubes; and to methods of making the structure and using the structure to measure the electrical characteristics of carbon nanotubes.
    Type: Application
    Filed: June 22, 2010
    Publication date: December 22, 2011
    Applicant: International Business Machines Corp.
    Inventors: Maxime Darnon, Gerald W. Gibson, Pratik P. Joshi, Qinghuang Lin
  • Publication number: 20110266680
    Abstract: The present invention proposes a circuit component structure, which comprises a semiconductor substrate, a fine-line metallization structure formed over the semiconductor substrate and having at least one metal pad, a passivation layer formed over the fine-line metallization structure with the metal pads exposed by the openings of the passivation layer, at least one carbon nanotube layer formed over the fine-line metallization structure and the passivation layer and connecting with the metal pads. The present invention is to provide a carbon nanotube circuit component structure and a method for fabricating the same, wherein the circuit of a semiconductor element is made of an electrically conductive carbon nanotube, and the circuit of the semiconductor element can thus be made finer and denser via the superior electric conductivity, flexibility and strength of the carbon nanotube.
    Type: Application
    Filed: July 11, 2011
    Publication date: November 3, 2011
    Applicant: MEGICA CORPORATION
    Inventors: Mou-Shiung Lin, Chien-Kang Chou, Hsin-Jung Lo
  • Patent number: 8044517
    Abstract: An electronic component comprises a plurality of layers at least two of which comprise predominantly organic functional materials with improved through-plating through certain of the layers. The through-plating is formed in one embodiment by a disruption element on a first lower layer which results in a void in the subsequently applied layers, which void is filled with a material which may be conductive to form the through plating. In a second embodiment, the through plating is formed on the first lower layer prior to the subsequent application of the other layers, in the form of a free-standing truncated frusto-conical raised portion, and forms a disruption or non-welting element for the subsequently applied other layers, formed on the first lower layer and which are engaged with and surround the through plating after their application.
    Type: Grant
    Filed: July 9, 2003
    Date of Patent: October 25, 2011
    Assignee: PolyIC GmbH & Co. KG
    Inventors: Wolfgang Clemens, Adolf Bernds, Alexander Friedrich Knobloch
  • Publication number: 20110204519
    Abstract: A semiconductor device includes a first interconnect, a porous dielectric layer formed over the first interconnect, a second interconnect buried in the porous dielectric layer and electrically connected to the first interconnect, and a carbon-containing metal film that is disposed between the porous dielectric layer and the second interconnect and isolates these layers.
    Type: Application
    Filed: October 22, 2009
    Publication date: August 25, 2011
    Applicants: RENESAS ELECTRONICS CORPORATION, ULVAC, INC.
    Inventors: Shinichi Chikaki, Takahiro Nakayama
  • Patent number: 7989851
    Abstract: The present invention provides the multifunctional biological and biochemical sensor technology based on the integration of ZnO nanotips with bulk acoustic wave (BAW) devices, particularly, quartz crystal microbalance (QCM) and thin film bulk acoustic wave resonator (TFBAR). ZnO nanotips provide giant effective surface area and strong bonding sites. Furthermore, the controllable wettability of ZnO nanostructured surface dramatically reduces the liquid consumption and enhances the sensitivity of the biosensor device.
    Type: Grant
    Filed: November 16, 2006
    Date of Patent: August 2, 2011
    Assignee: Rutgers, the State University of New Jersey
    Inventors: Yicheng Lu, Ying Chen, Zheng Zhang
  • Patent number: 7927905
    Abstract: A stress-engineered microspring is formed generally in the plane of a substrate. A nanowire (or equivalently, a nanotube) is formed at the tip thereof, also in the plane of the substrate. Once formed, the length of the nanowire may be defined, for example photolithographically. A sacrificial layer underlying the microspring may then be removed, allowing the engineered stresses in the microspring to cause the structure to bend out of plane, elevating the nanowire off the substrate and out of plane. Use of the nanowire as a contact is thereby provided. The nanowire may be clamped at the tip of the microspring for added robustness. The nanowire may be coated during the formation process to provide additional functionality of the final device.
    Type: Grant
    Filed: December 21, 2007
    Date of Patent: April 19, 2011
    Assignee: Palo Alto Research Center Incorporated
    Inventors: Eugene Michael Chow, Pengfei Qi
  • Patent number: 7911831
    Abstract: Under one aspect, non-volatile transistor device includes a source and drain with a channel in between; a gate structure made of a semiconductive or conductive material disposed over an insulator over the channel; a control gate made of a semiconductive or conductive material; and an electromechanically-deflectable nanotube switching element in fixed contact with one of the gate structure and the control gate structure and is not in fixed contact with the other of the gate structure and the control gate structure. The device has a network of inherent capacitances, including an inherent capacitance of an undeflected nanotube switching element in relation to the gate structure. The network is such that the nanotube switching element is deflectable into contact with the other of the gate structure and the control gate structure in response to signals being applied to the control gate and one of the source region and drain region.
    Type: Grant
    Filed: November 13, 2007
    Date of Patent: March 22, 2011
    Assignee: Nantero, Inc.
    Inventors: Thomas Rueckes, Brent M. Segal, Bernhard Vogeli, Darren K. Brock, Venkatachalam C. Jaiprakash, Claude L. Bertin
  • Patent number: 7902064
    Abstract: A layer to enhance nucleation of a substrate is described, including a method to form the layer, the method including obtaining a substrate comprising a patterned feature comprising a dielectric region and a conductive region, selectively forming a self-aligned monolayer (SAM) on the dielectric region of the substrate to enhance nucleation process of a first precursor, and depositing the first precursor on the substrate, the precursor to adsorb on the SAM.
    Type: Grant
    Filed: May 15, 2008
    Date of Patent: March 8, 2011
    Assignee: Intermolecular, Inc.
    Inventors: Tony Chiang, Chi-I Lang, Zachary Fresco
  • Patent number: 7872352
    Abstract: A bond pad structure (300) for an integrated circuit (IC) device uses carbon nanotubes to increase the strength and resilience of wire bonds (360). In an example embodiment there is, a bond pad structure (300) on an IC substrate, the bond pad structure comprises, a first conductive layer (310) having a top surface and a bottom surface, the bottom surface attached to the IC substrate. A dielectric layer (320) is deposited on the top surface of the first conductive layer (310), the dielectric layer having an array of vias (325), the array of vias filled with a carbon nanotube material (325), the carbon nanotube material (325) is electrically coupled to the first conductive layer (310). There is a second conductive layer (330) having a top surface and a bottom surface, the bottom surface of the second conductive layer is electrically coupled to the carbon nanotube material (325).
    Type: Grant
    Filed: March 27, 2006
    Date of Patent: January 18, 2011
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventor: Chris Wyland
  • Publication number: 20110006425
    Abstract: A semiconductor device according to one embodiment includes: a semiconductor substrate; an insulating film provided on the semiconductor substrate and containing a wiring trench; a first catalyst layer provided directly or via another member on side and bottom surfaces of the wiring trench; and a first graphene layer provided in the wiring trench so as to be along the side and bottom surface of the wiring trench, the first graphene layer being provided on the first catalyst layer so as to be in contact with the first catalyst layer.
    Type: Application
    Filed: March 18, 2010
    Publication date: January 13, 2011
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Makoto Wada, Noriaki Matsunaga, Yosuke Akimoto
  • Patent number: 7847340
    Abstract: The present invention provides a semiconductor device and a method of manufacturing the semiconductor device, the semiconductor device including: ONO films that are formed on a semiconductor substrate and include trapping layers; word lines that are formed on the ONO films; and silicon oxide layers that are formed at portions on the semiconductor substrate, the portions being located between the word lines, the silicon oxide layers being located between the trapping layers.
    Type: Grant
    Filed: December 21, 2007
    Date of Patent: December 7, 2010
    Assignee: Spansion LLC
    Inventors: Kenichi Fujii, Masatomi Okanishi
  • Patent number: 7795044
    Abstract: An electronically scannable multiplexing device is capable of addressing multiple bits within a volatile or non-volatile memory cell. The multiplexing device generates an electronically scannable conducting channel with two oppositely formed depletion regions. The depletion width of each depletion region is controlled by a voltage applied to a respective control gate at each end of the multiplexing device. The present multi-bit addressing technique allows, for example, 10 to 100 bits of data to be accessed or addressed at a single node. The present invention can also be used to build a programmable nanoscale logic array or for randomly accessing a nanoscale sensor array.
    Type: Grant
    Filed: December 18, 2008
    Date of Patent: September 14, 2010
    Assignee: International Business Machines Corporation
    Inventors: Hemantha Kumar Wickramasinghe, Kailash Gopalakrishnan
  • Publication number: 20100224998
    Abstract: An integrated circuit (IC) includes an interconnect system made of electrically conducting ribtan material. The integrated circuit includes a substrate, a set of circuit elements that are formed on the substrate, an interconnect system that interconnects the circuit elements. At least part of the interconnect system is made of a metallic ribtan material.
    Type: Application
    Filed: June 25, 2009
    Publication date: September 9, 2010
    Applicant: Carben Semicon Limited
    Inventors: Steven Grant Duvall, Pavel Khokhlov, Pavel I. Lazarev
  • Patent number: 7781267
    Abstract: A semiconductor device and associated method for forming. The semiconductor device comprises an electrically conductive nanotube formed over a first electrically conductive member such that a first gap exists between a bottom side the electrically conductive nanotube and a top side of the first electrically conductive member. A second insulating layer is formed over the electrically conductive nanotube. A second gap exists between a top side of the electrically conductive nanotube and a first portion of the second insulating layer. A first via opening and a second via opening each extend through the second insulating layer and into the second gap.
    Type: Grant
    Filed: May 19, 2006
    Date of Patent: August 24, 2010
    Assignee: International Business Machines Corporation
    Inventors: Jeffrey Peter Gambino, Son Van Nguyen
  • Patent number: 7732316
    Abstract: In accordance with an embodiment of the invention the method of manufacturing a semiconductor device is capable of forming a semiconductor substrate having an embossing structure. The method includes forming a layer having a plurality of hemispherical single crystal silicon elements, and forming one or more carbon nano tubes between adjacent hemispherical single crystal silicon elements, thereby, increasing a length of an effective channel of a transistor.
    Type: Grant
    Filed: December 29, 2008
    Date of Patent: June 8, 2010
    Assignee: Hynix Semiconductor Inc.
    Inventor: Chi Hwan Jang
  • Patent number: 7728405
    Abstract: An integrated circuit including a memory cell and methods of manufacturing the integrated circuit are described. The memory cell includes a resistive memory element including a top contact, a bottom contact, and a carbon storage layer disposed between the top contact and the bottom contact. The memory cell operates at a voltage in a range of approximately 0.5V to approximately 3V, and at a current in a range of approximately 1 ?A to approximately 150 ?A.
    Type: Grant
    Filed: March 8, 2007
    Date of Patent: June 1, 2010
    Assignee: Qimonda AG
    Inventor: Franz Kreupl
  • Patent number: 7728436
    Abstract: A method for selective deposition of self-assembled monolayers to the surface of a substrate for use as a diffusion barrier layer in interconnect structures is provided comprising the steps of depositing a first self-assembled monolayer to said surface, depositing a second self-assembled monolayer to the non-covered parts of said surface and subsequently heating said substrate to remove the first self-assembled monolayer. The method of selective deposition of self-assembled monolayers is applied for the use as diffusion barrier layers in a (dual) damascene structure for integrated circuits.
    Type: Grant
    Filed: January 9, 2008
    Date of Patent: June 1, 2010
    Assignees: IMEC, Texas Instruments Inc.
    Inventors: Caroline Whelan, Victor Sutcliffe
  • Patent number: 7719032
    Abstract: A microelectronic device and a method for producing the device can overcome the disadvantages of known electronic devices composed of carbon molecules, and can deliver performance superior to the known devices. An insulated-gate field-effect transistor includes a multi-walled carbon nanotube (10) having an outer semiconductive carbon nanotube layer (1) and an inner metallic carbon nanotube layer (2) that is partially covered by the outer semiconductive carbon nanotube layer (1). A metal source electrode (3) and a metal drain electrode (5) are brought into contact with both ends of the semiconductive carbon nanotube layer (1) while a metal gate electrode (4) is brought into contact with the metallic carbon nanotube layer (2). The space between the semiconductive carbon nanotube layer (1) and the metallic carbon nanotube layer (2) is used as a gate insulating layer.
    Type: Grant
    Filed: November 5, 2003
    Date of Patent: May 18, 2010
    Assignee: Sony Corporation
    Inventors: Ryuichiro Maruyama, Masafumi Ata, Masashi Shiraishi
  • Patent number: 7671398
    Abstract: An apparatus includes a plurality of wash durable clothing strands; an array of nano electronic elements fabricated in the strands; and an array of memory elements coupled to the nano electronic elements. The nano electronic elements can include solar cells, display elements, or antennas, among others.
    Type: Grant
    Filed: March 6, 2006
    Date of Patent: March 2, 2010
    Inventor: Bao Q. Tran
  • Patent number: 7649266
    Abstract: For semiconductor chips (1) using thin film technology, an active layer sequence (20) is applied to a growth substrate (3), on which a reflective electrically conductive contact material layer (40) is then formed. The active layer sequence is patterned to form active layer stacks (2), and reflective electrically conductive contact material layer (40) is patterned to be located on each active layer stack (2). Then, a flexible, electrically conductive foil (6) is applied to the contact material layers as an auxiliary carrier layer, and the growth substrate is removed.
    Type: Grant
    Filed: August 1, 2005
    Date of Patent: January 19, 2010
    Assignee: Osram Opto Semiconductors GmbH
    Inventors: Andreas Ploessl, Stephan Kaiser, Volker Härle, Berthold Hahn
  • Patent number: 7625766
    Abstract: A step wall is formed over a substrate. Catalytic material of different composition than the step wall is provided proximate thereto. A carbon nanotube is grown from the catalytic material along the step wall generally parallel to the substrate. A method of fabricating integrated circuitry includes forming a step wall over a semiconductor substrate. Catalytic material is provided proximate the step wall. An elevationally outer surface of the catalytic material is masked with a masking material. The catalytic material and the masking material are patterned to form an exposed end sidewall of the catalytic material proximate the step wall, with remaining of the elevationally outer surface of the catalytic material being masked. A carbon nanotube is grown from the exposed end sidewall of the catalytic material along the step wall generally parallel to the semiconductor substrate. The carbon nanotube is incorporated into a circuit component of an integrated circuit.
    Type: Grant
    Filed: June 2, 2006
    Date of Patent: December 1, 2009
    Assignee: Micron Technology, Inc.
    Inventor: Gurtej S. Sandhu
  • Patent number: 7601633
    Abstract: A semiconductor device and fabricating method thereof are provided. A carbon interconnection line can be formed on an interlayer insulating layer such that the carbon interconnection line is electrically connected to a conductive metal layer disposed in a contact hole of the semiconductor device.
    Type: Grant
    Filed: October 25, 2007
    Date of Patent: October 13, 2009
    Assignee: Dongbu Hitek Co., Ltd.
    Inventor: Dong Ki Jeon
  • Patent number: 7592248
    Abstract: A semiconductor device having upright dielectric nanotubes at an inter-layer dielectric level and method of manufacturing such a device is disclosed. The use of a catalyst is proposed in the disclosed manufacturing flow that facilitates growth of upright dielectric nanotubes having ultra low-k values that form all or part of the dielectric material for an ILD. In one embodiment, carbon nanotubes form interlayer conducting vias. In another embodiment dielectric material nanotubes form reinforcing pillars. The integration of catalysts is proposed to accommodate both upright dielectric and upright conducting nanotube fabrication in the same layer.
    Type: Grant
    Filed: December 9, 2005
    Date of Patent: September 22, 2009
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Peter L. G. Ventzek, Marius K. Orlowski
  • Patent number: 7585762
    Abstract: Embodiments of the invention generally provide methods for depositing and compositions of tantalum carbide nitride materials. The methods include deposition processes that form predetermined compositions of the tantalum carbide nitride material by controlling the deposition temperature and the flow rate of a nitrogen-containing gas during a vapor deposition process, including thermal decomposition, CVD, pulsed-CVD, or ALD. In one embodiment, a method for forming a tantalum-containing material on a substrate is provided which includes heating the substrate to a temperature within a process chamber, and exposing the substrate to a nitrogen-containing gas and a process gas containing a tantalum precursor gas while depositing a tantalum carbide nitride material on the substrate.
    Type: Grant
    Filed: September 25, 2007
    Date of Patent: September 8, 2009
    Assignee: Applied Materials, Inc.
    Inventors: Kavita Shah, Haichun Yang, Schubert S. Chu
  • Patent number: 7585718
    Abstract: A multilayer insulating structure including a first stop layer, a first insulating layer and a second stop layer is formed on the first conductive structure. A second conductive structure and a second insulating layer are formed on the first conductive structure. The second insulating layer and the second conductive structure are etched to form a first hole and a second hole having a first radius. A spacer is formed on sidewalls of the first and second holes. The second stop layer and the first insulating layer are etched using the spacer as an etch mask to form a third hole having a second radius smaller than the first radius. A sacrificial filler is formed on the first stop layer to fill the third hole. After removing the spacer, the sacrificial filler is removed. The first stop layer is etched. A carbon nano-tube is grown from the first conductive structure.
    Type: Grant
    Filed: October 31, 2007
    Date of Patent: September 8, 2009
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Hong Cho, Seung-Pil Chung, Hong Sik Yoon, Kyung-Rae Byun
  • Publication number: 20090206483
    Abstract: Nanotube and metal composite interconnects are generally described. In one example, an apparatus includes an interlayer dielectric (ILD) and one or more interconnect structures coupled to the ILD, the one or more interconnect structures including a composite of metal and one or more nanotubes.
    Type: Application
    Filed: February 20, 2008
    Publication date: August 20, 2009
    Inventor: Kevin O'Brien
  • Patent number: 7554196
    Abstract: A plastic package and to a semiconductor component including such a plastic package, as well as to a method for its production is disclosed. In one embodiment, the plastic package includes plastic outer faces, which include lower outer contact faces on a lower side of the plastic package and upper outer contact faces on an upper side, which are connected together via outer conductor tracks. The conductor tracks include conduction paths which are formed on exposed conducting deposits in the plastic package.
    Type: Grant
    Filed: October 11, 2005
    Date of Patent: June 30, 2009
    Assignee: Infineon Technologies AG
    Inventors: Ulrich Bachmaier, Michael Bauer, Robert-Christian Hagen
  • Patent number: 7518247
    Abstract: There has been a problem that micromiaturization causes increase of the resistance of wiring structure and degradation of electron migration resistance and stress migration resistance. The present invention provides a wiring structure of a semiconductor device having a low resistance even when the semiconductor device is microminiaturized, free of electron migration and stress migration, and having a high reliability and a method for manufacturing the same. A semiconductor device having a wiring or a connection plug made of a mixture of a metal and carbon nanotubes berried in a wiring groove or a via hole made in an insulating film on a substrate where a semiconductor chip is fabricated, and its manufacturing method are provided.
    Type: Grant
    Filed: December 1, 2003
    Date of Patent: April 14, 2009
    Assignee: NEC Corporation
    Inventors: Toshitsugu Sakamoto, Hisao Kawaura, Toshio Baba, Fumiyuki Nihey, Yukinori Ochiai, Hiroo Hongo
  • Patent number: 7492046
    Abstract: A fuse structure and a method for operating the same. The fuse structure operating method includes providing a structure. The structure includes (a) an electrically conductive layer and (b) N electrically conductive regions hanging over without touching the electrically conductive layer. N is a positive integer and N is greater than 1. The N electrically conductive regions are electrically connected together. The structure operating method further includes causing a first electrically conductive region of the N electrically conductive regions to touch the electrically conductive layer without causing the remaining N?1 electrically conductive regions to touch the electrically conductive layer.
    Type: Grant
    Filed: April 21, 2006
    Date of Patent: February 17, 2009
    Assignee: International Business Machines Corporation
    Inventors: Toshiharu Furukawa, Mark Charles Hakey, Steven John Holmes, David Vaclav Horak, Charles William Koburger, III
  • Patent number: 7300860
    Abstract: A method of fabricating an integrated circuit comprises forming or providing a solution containing carbon nanotubes and forming a metal layer utilizing the solution.
    Type: Grant
    Filed: March 30, 2004
    Date of Patent: November 27, 2007
    Assignee: Intel Corporation
    Inventor: Valery M. Dubin
  • Patent number: 7301232
    Abstract: An integrated circuit package includes a die mounted on a substrate, an integrated heat spreader set above the die, and an array of carbon nanotubes mounted between the die and the integrated heat spreader. The integrated heat spreader is fixed on the substrate, and includes an inner face. The array of carbon nanotubes is formed on the inner face of the integrated heat spreader. Top and bottom ends of the carbon nanotubes perpendicularly contact the integrated heat spreader and the die respectively. Each carbon nanotube can be capsulated in a nanometer-scale metal having a high heat conduction coefficient.
    Type: Grant
    Filed: January 27, 2005
    Date of Patent: November 27, 2007
    Assignee: Hon Hai Precision Industry Co., Ltd.
    Inventors: Charles Leu, Tai-Cherng Yu, Chuan-De Huang, Wen-Jeng Huang, Jhy-Chain Lin, Ga-Lane Chen
  • Patent number: 7294877
    Abstract: Nanotube on gate FET structures and applications of such, including n2 crossbars requiring only 2n control lines. A non-volatile transistor device includes a source region and a drain region of a first semiconductor type of material and a channel region of a second semiconductor type of material disposed between the source and drain region. A gate structure is made of at least one of semiconductive or conductive material and is disposed over an insulator over the channel region. A control gate is made of at least one of semiconductive or conductive material. An electromechanically-deflectable nanotube switching element is in fixed contact with one of the gate structure and the control gate structure and is not in fixed contact with the other of the gate structure and the control gate structure. The device has a network of inherent capacitances, including an inherent capacitance of an undeflected nanotube switching element in relation to the gate structure.
    Type: Grant
    Filed: March 26, 2004
    Date of Patent: November 13, 2007
    Assignee: Nantero, Inc.
    Inventors: Thomas Rueckes, Brent M. Segal, Bernard Vogeli, Darren K. Brock, Venkatachalam C. Jaiprakash, Claude L. Bertin