Transistor In Trench (epo) Patents (Class 257/E27.091)
  • Patent number: 10043876
    Abstract: A semiconductor device with enhanced reliability in which a gate electrode for a trench-gate field effect transistor is formed through a gate insulating film in a trench made in a semiconductor substrate. The upper surface of the gate electrode is in a lower position than the upper surface of the semiconductor substrate in an area adjacent to the trench. A sidewall insulating film is formed over the gate electrode and over the sidewall of the trench. The gate electrode and the sidewall insulating film are covered by an insulating film as an interlayer insulating film.
    Type: Grant
    Filed: October 31, 2016
    Date of Patent: August 7, 2018
    Assignee: Renesas Electronics Corporation
    Inventors: Katsuhiro Uchimura, Michimoto Kaminaga
  • Patent number: 9515153
    Abstract: A semiconductor device with enhanced reliability in which a gate electrode for a trench-gate field effect transistor is formed through a gate insulating film in a trench made in a semiconductor substrate. The upper surface of the gate electrode is in a lower position than the upper surface of the semiconductor substrate in an area adjacent to the trench. A sidewall insulating film is formed over the gate electrode and over the sidewall of the trench. The gate electrode and the sidewall insulating film are covered by an insulating film as an interlayer insulating film.
    Type: Grant
    Filed: July 17, 2015
    Date of Patent: December 6, 2016
    Assignee: Renesas Electronics Corporation
    Inventors: Katsuhiro Uchimura, Michimoto Kaminaga
  • Patent number: 9012982
    Abstract: A recessed transistor and a method of manufacturing the same are provided. The recessed transistor may include a substrate, an active pin, a gate pattern and source and drain regions. The substrate may include an isolation layer that establishes an active region and a field region of the substrate. The substrate may include a recessed structure having an upper recess formed in the active region and a lower recess in communication with the upper recess. An active pin may be formed in a region between side surfaces of the isolation layer and the lower recess and an interface between the active region and the field region. The gate pattern may include a gate insulation layer formed on an inner surface of the recessed structure and a gate electrode formed on the gate insulation layer in the recessed structure. The source/drain regions may be formed adjacent to the active region and the gate electrode.
    Type: Grant
    Filed: February 4, 2008
    Date of Patent: April 21, 2015
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Keun-Nam Kim, Makoto Yoshida, Chul Lee, Dong-Gun Park, Woun-Suck Yang
  • Patent number: 9006063
    Abstract: A method for forming a trench MOSFET includes doping a body region of the trench MOSFET in multiple ion implantation steps each having different ion implantation energy. The method further comprises etching the trench to a depth of about 1.7 ?m.
    Type: Grant
    Filed: June 28, 2013
    Date of Patent: April 14, 2015
    Assignees: STMicroelectronics S.r.l., STMicroelectronics Asia Pacific Pte Ltd
    Inventors: Yean Ching Yong, Stefania Fortuna
  • Patent number: 8975705
    Abstract: A semiconductor device includes a first planar silicon layer, first and second pillar-shaped silicon layers, a first gate insulating film, a first gate electrode, a second gate insulating film, a second gate electrode, a first gate line connected to the first and second gate electrodes, a first n-type diffusion layer, a second n-type diffusion layer, a first p-type diffusion layer, and a second p-type diffusion layer. A center line extending along the first gate line is offset by a first predetermined amount from a line connecting a center of the first pillar-shaped silicon layer and a center of the second pillar-shaped silicon layer.
    Type: Grant
    Filed: May 14, 2013
    Date of Patent: March 10, 2015
    Assignee: Unisantis Electronics Singapore Pte. Ltd.
    Inventors: Fujio Masuoka, Nozomu Harada, Hiroki Nakamura
  • Patent number: 8962455
    Abstract: A method of fabricating a semiconductor device includes forming a first preliminary gate barrier layer and a first preliminary gate electrode recessed to have a first depth from the surface of the substrate within a gate trench, removing an upper portion of the first preliminary gate electrode by means of a first wet etching process using a first etchant to form a second preliminary gate electrode recessed to have a second depth greater than the first depth, and removing an upper portion of the first preliminary gate barrier layer and an upper portion of the second preliminary gate electrode by means of a second wet etching process using a second etchant to form a gate electrode and a gate barrier layer recessed to a third depth greater than the second depth.
    Type: Grant
    Filed: June 18, 2013
    Date of Patent: February 24, 2015
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Sang-Hyun Choi, Jin-Ho Noh, Yoon-Ho Son, Dae-Hyuk Chung, In-Seak Hwang, Tae-Joon Park, Tae-Ho Hwang
  • Patent number: 8941174
    Abstract: It is an object to improve the breakdown voltage characteristics of a vertical semiconductor device having an opening and including a channel formed of two-dimensional electron gas in the opening. A GaN-based stacked layer 15 includes n?-type GaN drift layer 4/p-type GaN barrier layer 6/n+-type GaN contact layer 7. An opening 28 extends from a top layer and reaches the n?-type GaN drift layer 4. The semiconductor device includes a regrown layer 27 located so as to cover a wall surface and a bottom portion of the opening, the regrown layer 27 including an electron drift layer 22 and an electron source layer 26, a source electrode S located around the opening, a gate electrode G located on the regrown layer in the opening, and a bottom insulating layer 37 located in the bottom portion of the opening.
    Type: Grant
    Filed: October 17, 2011
    Date of Patent: January 27, 2015
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Masaya Okada, Makoto Kiyama, Yu Saitoh, Seiji Yaegashi, Mitsunori Yokoyama, Kazutaka Inoue
  • Patent number: 8941162
    Abstract: A semiconductor device includes a semiconductor substrate having a first groove, a word line in the first groove, and a buried insulating film in the first groove. The buried insulating film covers the word line. The buried insulating film comprises a silicon nitride film.
    Type: Grant
    Filed: October 11, 2011
    Date of Patent: January 27, 2015
    Assignee: PS4 Luxco S.A.R.L.
    Inventor: Mitsunari Sukekawa
  • Patent number: 8937350
    Abstract: A gate trench 13 is formed in a semiconductor substrate 10. The gate trench 13 is provided with a gate electrode 16 formed over a gate insulating film 14. A portion of the gate electrode 16 protrudes from the semiconductor substrate 10, and a sidewall 24 is formed over a side wall portion of the protruding portion. A body trench 25 is formed in alignment with an adjacent gate electrode 16. A cobalt silicide film 28 is formed over a surface of the gate electrode 16 and over a surface of the body trench 25. A plug 34 is formed using an SAC technique.
    Type: Grant
    Filed: January 31, 2014
    Date of Patent: January 20, 2015
    Assignee: Renesas Electronics Corporation
    Inventors: Hitoshi Matsuura, Yoshito Nakazawa, Tsuyoshi Kachi, Yuji Yatsuda
  • Patent number: 8936992
    Abstract: Two trenches having different widths are formed in a semiconductor-on-insulator (SOI) substrate. An oxygen-impermeable layer and a fill material layer are formed in the trenches. The fill material layer and the oxygen-impermeable layer are removed from within a first trench. A thermal oxidation is performed to convert semiconductor materials underneath sidewalls of the first trench into an upper thermal oxide portion and a lower thermal oxide portion, while the remaining oxygen-impermeable layer on sidewalls of a second trench prevents oxidation of the semiconductor materials. After formation of a node dielectric on sidewalls of the second trench, a conductive material is deposited to fill the trenches, thereby forming a conductive trench fill portion and an inner electrode, respectively. The upper and lower thermal oxide portions function as components of dielectric material portions that electrically isolate two device regions.
    Type: Grant
    Filed: January 2, 2014
    Date of Patent: January 20, 2015
    Assignee: International Business Machines Corporation
    Inventors: Roger A. Booth, Jr., Kangguo Cheng, Joseph Ervin, Chengwen Pei, Ravi M. Todi, Geng Wang
  • Patent number: 8933504
    Abstract: The invention discloses a semiconductor structure comprising: a substrate, a conductor layer, and a dielectric layer surrounding the conductor layer on the substrate; a first insulating layer covering both of the conductor layer and the dielectric layer; a gate conductor layer formed on the first insulating layer, and a dielectric layer surrounding the gate conductor layer; and a second insulating layer covering both of the gate conductor layer and the dielectric layer surrounding the gate conductor layer; wherein a through hole filled with a semiconductor material penetrates through the gate conductor layer perpendicularly, the bottom of the through hole stops on the conductor layer, and a first conductor plug serving as a drain/source electrode is provided on the top of the through hole; and a second conductor plug serving as a source/drain electrode electrically contacts the conductor layer, and a third conductor plug serving as a gate electrode electrically contacts the gate conductor layer.
    Type: Grant
    Filed: November 30, 2011
    Date of Patent: January 13, 2015
    Inventors: Qingqing Liang, Huicai Zhong, Huilong Zhu
  • Patent number: 8921909
    Abstract: The invention includes methods for utilizing partial silicon-on-insulator (SOI) technology in combination with fin field effect transistor (finFET) technology to form transistors particularly suitable for utilization in dynamic random access memory (DRAM) arrays. The invention also includes DRAM arrays having low rates of refresh. Additionally, the invention includes semiconductor constructions containing transistors with horizontally-opposing source/drain regions and channel regions between the source/drain regions. The transistors can include gates that encircle at least three-fourths of at least portions of the channel regions, and in some aspects can include gates that encircle substantially an entirety of at least portions of the channel regions.
    Type: Grant
    Filed: April 16, 2014
    Date of Patent: December 30, 2014
    Assignee: Micron Technology, Inc.
    Inventor: Mark Fischer
  • Patent number: 8896058
    Abstract: It is an object to improve the breakdown voltage characteristics of a vertical semiconductor device having an opening and including a channel formed of two-dimensional electron gas in the opening. The vertical semiconductor device includes a GaN-based stacked layer 15 having an opening 28 and the GaN-based stacked layer 15 includes n-type GaN-based drift layer 4/p-type GaN-based barrier layer 6/n-type GaN-based contact layer 7. The vertical semiconductor device includes a regrown layer 27 located so as to cover the opening, the regrown layer 27 including an electron drift layer 22 and an electron supply layer 26, a source electrode S, and a gate electrode G located on the regrown layer. The gate electrode G covers a portion having a length corresponding to the thickness of the p-type GaN-based barrier layer and is terminated at a position on the wall surface, the position being away from the bottom portion of the opening.
    Type: Grant
    Filed: October 5, 2011
    Date of Patent: November 25, 2014
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Masaya Okada, Makoto Kiyama, Yu Saitoh, Seiji Yaegashi, Mitsunori Yokoyama, Kazutaka Inoue
  • Patent number: 8890239
    Abstract: In a vertical semiconductor device including a channel in an opening, a semiconductor device whose high-frequency characteristics can be improved and a method for producing the semiconductor device are provided. The semiconductor device includes n-type GaN-based drift layer 4/p-type GaN-based barrier layer 6/n-type GaN-based contact layer 7. An opening 28 extends from a top layer and reaches the n-type GaN-based drift layer. The semiconductor device includes a regrown layer 27 located so as to cover the opening, the regrown layer 27 including an electron drift layer 22 and an electron supply layer 26, a source electrode S, a drain electrode D, and a gate electrode G located on the regrown layer. Assuming that the source electrode serving as one electrode and the drain electrode serving as the other electrode constitute a capacitor, the semiconductor device includes a capacitance-decreasing structure that decreases the capacitance of the capacitor.
    Type: Grant
    Filed: July 26, 2011
    Date of Patent: November 18, 2014
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Seiji Yaegashi, Makoto Kiyama, Mitsunori Yokoyama, Kazutaka Inoue, Masaya Okada, Yu Saitoh
  • Patent number: 8841722
    Abstract: A semiconductor device includes a semiconductor substrate having a first groove. The first groove has a bottom and first and second side surfaces opposite to each other. A first gate insulator extends alongside the first side surface. A first gate electrode is formed in the first groove and on the first gate insulator. A second gate insulator extends alongside the second side surface. A second gate electrode is formed in the first groove and on the second gate insulator. The second gate electrode is separate from the first gate electrode.
    Type: Grant
    Filed: May 7, 2012
    Date of Patent: September 23, 2014
    Assignee: PS4 Luxco S.A.R.L.
    Inventor: Masayoshi Sammi
  • Patent number: 8835254
    Abstract: A method of forming a device in each of vertical trench gate MOSFET region and control lateral planar gate MOSFET region of a semiconductor substrate is disclosed. A trench is formed in the substrate in the vertical trench gate MOSFET region, a first gate oxide film is formed along the internal wall of the trench, and the trench is filled with a polysilicon film. A LOCOS oxide film is formed in a region isolating the devices. A second gate oxide film is formed on the substrate in the lateral planar gate MOSFET region. Advantages are that number of steps is suppressed, the gate threshold voltage of an output stage MOSFET is higher than the gate threshold voltage of a control MOSFET, the thickness of the LOCOS oxide film does not decrease, and no foreign object residue remains inside the trench.
    Type: Grant
    Filed: November 13, 2013
    Date of Patent: September 16, 2014
    Assignee: Fuji Electric Co., Ltd.
    Inventors: Yoshiaki Toyoda, Takatoshi Ooe
  • Patent number: 8809854
    Abstract: Stable electric characteristics and high reliability are provided to a miniaturized and integrated semiconductor device including an oxide semiconductor. In a transistor (a semiconductor device) including an oxide semiconductor film, the oxide semiconductor film is provided along a trench (groove) formed in an insulating layer. The trench includes a lower end corner portion having a curved shape with a curvature radius of longer than or equal to 20 nm and shorter than or equal to 60 nm, and the oxide semiconductor film is provided in contact with a bottom surface, the lower end corner portion, and an inner wall surface of the trench. The oxide semiconductor film includes a crystal having a c-axis substantially perpendicular to a surface at least over the lower end corner portion.
    Type: Grant
    Filed: April 13, 2012
    Date of Patent: August 19, 2014
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Atsuo Isobe, Toshinari Sasaki
  • Patent number: 8809994
    Abstract: Two trenches having different widths are formed in a semiconductor-on-insulator (SOI) substrate. An oxygen-impermeable layer and a fill material layer are formed in the trenches. The fill material layer and the oxygen-impermeable layer are removed from within a first trench. A thermal oxidation is performed to convert semiconductor materials underneath sidewalls of the first trench into an upper thermal oxide portion and a lower thermal oxide portion, while the remaining oxygen-impermeable layer on sidewalls of a second trench prevents oxidation of the semiconductor materials. After formation of a node dielectric on sidewalls of the second trench, a conductive material is deposited to fill the trenches, thereby forming a conductive trench fill portion and an inner electrode, respectively. The upper and lower thermal oxide portions function as components of dielectric material portions that electrically isolate two device regions.
    Type: Grant
    Filed: December 9, 2011
    Date of Patent: August 19, 2014
    Assignee: International Business Machines Corporation
    Inventors: Roger A. Booth, Jr., Kangguo Cheng, Joseph Ervin, Chengwen Pei, Ravi M. Todi, Geng Wang
  • Patent number: 8796764
    Abstract: A semiconductor device includes a semiconductor substrate, a trench, a buried insulated source electrode arranged in a bottom portion of the trench, a first gate electrode and a second gate electrode arranged in an upper portion of the trench and spaced apart from one another. A surface gate contact extends into the upper portion of the trench and is in physical and electrical contact with the first gate electrode and second gate electrode.
    Type: Grant
    Filed: September 30, 2008
    Date of Patent: August 5, 2014
    Assignee: Infineon Technologies Austria AG
    Inventors: Oliver Blank, Uli Hiller
  • Patent number: 8785997
    Abstract: A semiconductor device includes a semiconductor body including a first surface. The semiconductor device further includes a continuous silicate glass structure over the first surface. A first part of the continuous glass structure over an active area of the semiconductor body includes a first composition of dopants that differs from a second composition of dopants in a second part of the continuous glass structure over an area of the semiconductor body outside of the active area.
    Type: Grant
    Filed: May 16, 2012
    Date of Patent: July 22, 2014
    Assignee: Infineon Technologies AG
    Inventors: Hans-Joachim Schulze, Alexander Susiti, Markus Zundel, Reinhard Ploss
  • Patent number: 8753934
    Abstract: Various embodiment integrate embedded dynamic random access memory with fin field effect transistors. In one embodiment, a first fin structure and at least a second fin structure are formed on a substrate. A deep trench area is formed between the first and second fin structures. A high-k metal gate is formed within the deep trench area. The high-k metal gate includes a high-k dielectric layer and a metal layer. A polysilicon material is deposited within the deep trench area adjacent to the metal layer. The high-k metal gate and the polysilicon material are recessed and etched to an area below a top surface of a substrate insulator layer. A poly strap is formed in the deep trench area. The poly strap is dimensioned to be below a top surface of the first and second fin structures. The first and second fin structures are electrically coupled to the poly strap.
    Type: Grant
    Filed: September 12, 2012
    Date of Patent: June 17, 2014
    Assignee: International Business Machines Corporation
    Inventors: Sivananda Kanakasabapathy, Hemanth Jagannathan, Geng Wang
  • Patent number: 8748959
    Abstract: A semiconductor memory device is disclosed. In one particular exemplary embodiment, the semiconductor memory device includes a plurality of memory cells arranged in an array of rows and columns. Each memory cell may include a first region connected to a source line extending in a first orientation. Each memory cell may also include a second region connected to a bit line extending a second orientation. Each memory cell may further include a body region spaced apart from and capacitively coupled to a word line, wherein the body region is electrically floating and disposed between the first region and the second region. The semiconductor device may also include a first barrier wall extending in the first orientation and a second barrier wall extending in the second orientation and intersecting with the first barrier wall to form a trench region configured to accommodate each of the plurality of memory cells.
    Type: Grant
    Filed: March 31, 2010
    Date of Patent: June 10, 2014
    Assignee: Micron Technology, Inc.
    Inventors: Michael A. Van Buskirk, Christian Caillat, Viktor I Koldiaev, Jungtae Kwon, Pierre C. Fazan
  • Patent number: 8742483
    Abstract: The invention includes methods for utilizing partial silicon-on-insulator (SOI) technology in combination with fin field effect transistor (finFET) technology to form transistors particularly suitable for utilization in dynamic random access memory (DRAM) arrays. The invention also includes DRAM arrays having low rates of refresh. Additionally, the invention includes semiconductor constructions containing transistors with horizontally-opposing source/drain regions and channel regions between the source/drain regions. The transistors can include gates that encircle at least three-fourths of at least portions of the channel regions, and in some aspects can include gates that encircle substantially an entirety of at least portions of the channel regions.
    Type: Grant
    Filed: June 6, 2012
    Date of Patent: June 3, 2014
    Assignee: Micron Technology, Inc.
    Inventor: Mark Fischer
  • Patent number: 8716773
    Abstract: A semiconductor device includes a semiconductor substrate having a memory cell region and a peripheral circuit region; a bit line extending over the memory cell region and the peripheral circuit region, the bit line including a first portion in the peripheral circuit region; and a sense amplifier in the peripheral circuit region. The sense amplifier includes a transistor having a gate electrode which includes the first portion of the bit line.
    Type: Grant
    Filed: October 12, 2011
    Date of Patent: May 6, 2014
    Inventor: Koji Taniguchi
  • Patent number: 8704299
    Abstract: A semiconductor device capable of increasing ON current while reducing channel resistance and allowing transistors to operate independently and stably, having a fin formed to protrude from the bottom of a gate electrode trench, a gate insulating film covering the surfaces of the gate electrode trench and the fin, a gate electrode embedded in a lower part of the gate electrode trench and formed to stride over the fin via the gate insulating film, a first impurity diffusion region arranged on a first side face, and a second impurity diffusion region arranged on a second side face.
    Type: Grant
    Filed: January 8, 2013
    Date of Patent: April 22, 2014
    Inventors: Kiyonori Oyu, Kensuke Okonogi, Kazuto Mori
  • Patent number: 8680610
    Abstract: A trench MOSFET comprising source regions having a doping profile of a Gaussian-distribution along the top surface of epitaxial layer and floating dummy cells formed between edge trench and active area is disclosed. A SBR of n region existing at cell corners renders the parasitic bipolar transistor difficult to turn on, and the floating dummy cells having no parasitic bipolar transistor act as buffer cells to absorb avalanche energy when gate bias is increasing for turning on channel, therefore, the UIS failure issue is avoided and the avalanche capability of the trench MOSFET is enhanced.
    Type: Grant
    Filed: October 20, 2011
    Date of Patent: March 25, 2014
    Assignee: Force MOS Technology Co., Ltd.
    Inventor: Fu-Yuan Hsieh
  • Patent number: 8659078
    Abstract: A gate trench 13 is formed in a semiconductor substrate 10. The gate trench 13 is provided with a gate electrode 16 formed over a gate insulating film 14. A portion of the gate electrode 16 protrudes from the semiconductor substrate 10, and a sidewall 24 is formed over a side wall portion of the protruding portion. A body trench 25 is formed in alignment with an adjacent gate electrode 16. A cobalt silicide film 28 is formed over a surface of the gate electrode 16 and over a surface of the body trench 25. A plug 34 is formed using an SAC technique.
    Type: Grant
    Filed: March 10, 2013
    Date of Patent: February 25, 2014
    Assignee: Renesas Electronics Corporation
    Inventors: Hitoshi Matsuura, Yoshito Nakazawa, Tsuyoshi Kachi, Yuji Yatsuda
  • Patent number: 8648415
    Abstract: A semiconductor device includes a semiconductor substrate, an impurity region in the semiconductor substrate, and a conductive layer contacting a top surface of the impurity region and at least a side surface of the impurity region.
    Type: Grant
    Filed: December 14, 2010
    Date of Patent: February 11, 2014
    Inventor: Koji Taniguchi
  • Patent number: 8637378
    Abstract: A semiconductor component includes a semiconductor body, in which are formed: a substrate of a first conduction type, a buried semiconductor layer of a second conduction type arranged on the substrate, and a functional unit semiconductor layer of a third conduction type arranged on the buried semiconductor layer, in which at least two semiconductor functional units arranged laterally alongside one another are provided. The buried semiconductor layer is part of at least one semiconductor functional unit, the semiconductor functional units being electrically insulated from one another by an isolation structure which permeates the functional unit semiconductor layer, the buried semiconductor layer, and the substrate. The isolation structure includes at least one trench and an electrically conductive contact to the substrate, the contact to the substrate being electrically insulated from the functional unit semiconductor layer and the buried layer by the at least one trench.
    Type: Grant
    Filed: June 9, 2011
    Date of Patent: January 28, 2014
    Assignee: Infineon Technologies AG
    Inventors: Andreas Meiser, Walter Hartner, Hermann Gruber, Dietrich Bonart, Thomas Gross
  • Patent number: 8624350
    Abstract: The invention relates to a semiconductor device, wherein a storage node contact hole is made large to solve any problem caused during etching a storage node contact hole with a small CD, a landing plug is formed to lower plug resistance. A semiconductor device according to the invention comprises: first and second active regions formed in a substrate, the first and second active being adjacent to each other, each of the first and second active regions including a bit-line contact region and a storage node contact region and a device isolation structure; a word line provided within a trench formed in the substrate; first and second storage node contact plugs assigned to the first and second active regions, respectively, the first and second storage node contact plugs being separated from each other by a bit line groove; and a bit line formed within the bit-line groove.
    Type: Grant
    Filed: September 23, 2011
    Date of Patent: January 7, 2014
    Assignee: Hynix Semiconductor Inc.
    Inventors: Do Hyung Kim, Young Man Cho
  • Patent number: 8580633
    Abstract: A semiconductor device capable of ensuring a sufficient area of a peripheral region by forming a gate spacer to have a uniform thickness in the peripheral region and reducing a fabrication cost by simplifying a mask process and a method of manufacturing the semiconductor device are provided. The semiconductor device includes a gate disposed over a semiconductor substrate; a first spacer disposed over sidewalls of the gate; an insulating layer pattern disposed over sidewalls of the first spacer; and a second spacer disposed over the first spacer and the insulating pattern.
    Type: Grant
    Filed: February 1, 2011
    Date of Patent: November 12, 2013
    Assignee: Hynix Semiconductor Inc.
    Inventor: Young Man Cho
  • Patent number: 8564048
    Abstract: Embodiments of the invention relate to field effect transistors. The field effect transistor includes a gate electrode for providing a gate field, a first electrode including a conductive material having a low carrier density and a low density of electronic states, a second electrode, and a semiconductor. Contact barrier modulation includes barrier height lowering of a Schottky contact between the first electrode and the semiconductor. In some embodiments of the invention, a vertical field effect transistor employs an electrode comprising a conductive material with a low density of states such that the transistors contact barrier modulation comprises barrier height lowering of the Schottky contact between the electrode with a low density of states and the adjacent semiconductor by a Fermi level shift.
    Type: Grant
    Filed: June 21, 2012
    Date of Patent: October 22, 2013
    Assignee: University of Florida Research Foundation, Inc.
    Inventors: Andrew Gabriel Rinzler, Bo Liu, Mitchell Austin McCarthy, John Robert Reynolds, Franky So
  • Patent number: 8552492
    Abstract: A trench gate transistor whose gate changes the depth thereof intermittently in the gate width direction, has a first offset region and a second offset region formed below the source and drain, respectively. The sum of length measurements of the underlying portion of the second offset region measured from the lower corner of the trench in a direction parallel to the substrate and in a direction perpendicular to the substrate is 0.1 ?m or greater.
    Type: Grant
    Filed: September 22, 2010
    Date of Patent: October 8, 2013
    Assignee: Renesas Electronics Corporation
    Inventors: Kazuhiko Sanada, Hiroshi Kawaguchi
  • Patent number: 8552535
    Abstract: A shielding structure for a semiconductor device includes a plurality of trenches. The trenches include passivation liners and shield electrodes, which are formed therein. In one embodiment, the shielding structure is placed beneath a control pad. In another embodiment, the shielding structure is placed beneath a control runner.
    Type: Grant
    Filed: November 14, 2008
    Date of Patent: October 8, 2013
    Assignee: Semiconductor Components Industries, LLC
    Inventors: Peter A. Burke, Brian Pratt, Prasad Venkatraman
  • Patent number: 8552523
    Abstract: A method for manufacturing a semiconductor device is disclosed. The method includes forming a shallow trench isolation (STI) region extending in a first direction on a semiconductor substrate, forming a mask layer extending in a second direction that intersects with the first direction on the semiconductor substrate and forming a trench on the semiconductor substrate by using the STI region and the mask layer as masks. In addition, the method includes forming a charge storage layer so as to cover the trench and forming a conductive layer on side surfaces of the trench and the mask layer. Word lines are formed from the conductive layer on side surfaces of the trench that oppose in the first direction by etching. The word lines are separated from each other and extend in the second direction.
    Type: Grant
    Filed: August 9, 2011
    Date of Patent: October 8, 2013
    Assignee: Spansion LLC
    Inventors: Fumiaki Toyama, Fumihiko Inoue
  • Patent number: 8541834
    Abstract: According to one embodiment, a semiconductor device includes a first semiconductor region, a second semiconductor region, a third semiconductor region, a control electrode, a first main electrode, an internal electrode, and an insulating region. The control electrode is provided inside a trench. The first main electrode is in conduction with the third semiconductor region. The internal electrode is provided in the trench and in conduction with the first main electrode. The insulating region is provided between an inner wall of the trench and the internal electrode. The internal electrode includes a first internal electrode part included in a first region of the trench and a second internal electrode part included in a second region between the first region and the first main electrode. A spacing between the first internal electrode part and the inner wall is wider than a spacing between the second internal electrode part and the inner wall.
    Type: Grant
    Filed: September 21, 2011
    Date of Patent: September 24, 2013
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Tetsuro Nozu
  • Patent number: 8476701
    Abstract: A semiconductor device includes a transistor that has a trench formed in an element forming region of a substrate, a gate insulating film formed on side faces and a bottom face of the trench, a gate electrode formed on the gate insulating film so as to bury the trench, a source region formed on one side in the gate longitude direction, which is formed on the surface of the substrate, and a drain region formed on the other side in the gate longitude direction. Here, the gate electrode is formed so as to be exposed also on the substrate outside the trench, and the gate electrode is disposed so as to cover upper portions of both ends of the trench and so as to form at least one concave portion having a depth reaching the substrate in a center portion.
    Type: Grant
    Filed: May 18, 2011
    Date of Patent: July 2, 2013
    Assignee: Renesas Electronics Corporation
    Inventors: Takehiro Ueda, Hiroshi Kawaguchi
  • Patent number: 8476133
    Abstract: A trenched field effect transistor is provided that includes (a) a semiconductor substrate, (b) a trench extending a predetermined depth into the semiconductor substrate, (c) a pair of doped source junctions, positioned on opposite sides of the trench, (d) a doped heavy body positioned adjacent each source junction on the opposite side of the source junction from the trench, the deepest portion of the heavy body extending less deeply into said semiconductor substrate than the predetermined depth of the trench, and (e) a doped well surrounding the heavy body beneath the heavy body.
    Type: Grant
    Filed: January 11, 2010
    Date of Patent: July 2, 2013
    Assignee: Fairchild Semiconductor Corporation
    Inventors: Brian Sze-Ki Mo, Duc Chau, Steven Sapp, Izak Bencuya, Dean Edward Probst
  • Patent number: 8467220
    Abstract: The present invention relates to a DRAM device having 4F2 size cells and a method for fabricating the same. The DRAM device comprises plural word lines arranged parallel to each other in one direction, plural bit lines arranged parallel to each other and in an intersecting manner with the word line, and plural memory cells having a transistor and a capacitor connected electrically to a source terminal of the transistor. A gate terminal of the transistor is filling an associated trench between two adjacent memory cells in a bit line direction and simultaneously covering a sidewall of said two adjacent memory cells via a gate insulating film interposed between the gate terminal and said two adjacent memory cells. An interval between the gate terminals in the bit or the word line direction, is more distant than 1F, and the F means minimal processing size.
    Type: Grant
    Filed: August 13, 2010
    Date of Patent: June 18, 2013
    Inventor: Jai Hoon Sim
  • Patent number: 8431988
    Abstract: A lateral trench transistor has a semiconductor body having a source region, a source contact, a body region, a drain region, and a gate trench, in which a gate electrode which is isolated from the semiconductor body is embedded. A heavily doped semiconductor region is provided within the body region or adjacent to it, and is electrically connected to the source contact, and whose dopant type corresponds to that of the body region.
    Type: Grant
    Filed: October 28, 2005
    Date of Patent: April 30, 2013
    Assignee: Infineon Technologies AG
    Inventors: Franz Hirler, Uwe Wahl, Thorsten Meyer, Michael Rüb, Armin Willmeroth, Markus Schmitt, Carolin Tolksdorf, Carsten Schäffer
  • Patent number: 8421149
    Abstract: A fabrication method of trench power semiconductor structure with high switching speed is provided. An epitaxial layer with a first conductivity type is formed on a substrate. Then, gate structures are formed in the epitaxial layer. A shallow doped region with the first conductivity type is formed in the surface layer of the epitaxial layer. After that, a shielding structure is formed on the shallow doped region. Then, wells with a second conductivity type are formed in the epitaxial layer by using the shielding structure as an implantation mask. Finally, a source doped region with the first conductivity type is formed on the surface of the well. The doping concentration of the shallow doped layer is smaller than that of the source doped region and the well. The doping concentration of the shallow doped layer is larger than that of the epitaxial layer.
    Type: Grant
    Filed: May 25, 2011
    Date of Patent: April 16, 2013
    Assignee: Great Power Semiconductor Corp.
    Inventors: Yuan-Shun Chang, Kao-Way Tu
  • Patent number: 8405145
    Abstract: A gate trench 13 is formed in a semiconductor substrate 10. The gate trench 13 is provided with a gate electrode 16 formed over a gate insulating film 14. A portion of the gate electrode 16 protrudes from the semiconductor substrate 10, and a sidewall 24 is formed over a side wall portion of the protruding portion. A body trench 25 is formed in alignment with an adjacent gate electrode 16. A cobalt silicide film 28 is formed over a surface of the gate electrode 16 and over a surface of the body trench 25. A plug 34 is formed using an SAC technique.
    Type: Grant
    Filed: June 3, 2011
    Date of Patent: March 26, 2013
    Assignee: Renesas Electronics Corporation
    Inventors: Hitoshi Matsuura, Yoshito Nakazawa, Tsuyoshi Kachi, Yuji Yatsuda
  • Patent number: 8405089
    Abstract: To provide an active region having first and second diffusion layers positioned at both sides of a gate trench and a third diffusion layer formed on a bottom surface of the gate trench, first and second memory elements connected to the first and second diffusion layers, respectively, a bit line connected to the third diffusion layer, a first gate electrode that covers a first side surface of the gate trench via a gate dielectric film and forms a channel between the first diffusion layer and the third diffusion layer, and a second gate electrode that covers a second side surface of the gate trench via a gate dielectric film and forms a channel between the second diffusion layer and the third diffusion layer. According to the present invention, because separate transistors are formed on both side surfaces of a gate trench, two times of conventional integration can be achieved.
    Type: Grant
    Filed: March 12, 2010
    Date of Patent: March 26, 2013
    Assignee: Elpida Memory, Inc.
    Inventor: Hiroyuki Uchiyama
  • Patent number: 8399915
    Abstract: Provided is a semiconductor device which can reduce on-resistance by improving hole mobility of a channel region. A trench gate type MOSFET (semiconductor device) is provided with a p+-type silicon substrate whose crystal plane of a main surface is a (110) plane; an epitaxial layer formed on the silicon substrate; a trench, which is formed on the epitaxial layer and includes a side wall parallel to the thickness direction (Z direction) of the silicon substrate; a gate electrode formed inside the trench through a gate dielectric film; an n-type channel region formed along the side wall of the trench; and a p+-type source region and a p?-type drain region which are formed to sandwich the channel region in the thickness direction (Z direction) of the silicon substrate. The trench is formed to have the crystal plane of the side wall as a (110) plane.
    Type: Grant
    Filed: April 28, 2008
    Date of Patent: March 19, 2013
    Assignee: Rohm Co., Ltd.
    Inventor: Masaru Takaishi
  • Patent number: 8384151
    Abstract: A semiconductor device is provided. The semiconductor device includes a semiconductor body with a base region and a first electrode arranged on a main horizontal surface of the semiconductor body. The semiconductor body further includes an IGBT-cell with a body region forming a first pn-junction with the base region, and a diode-cell with an anode region forming a second pn-junction with the base region. A source region in ohmic contact with the first electrode and an anti-latch-up region in ohmic contact with the first electrode are, in a vertical cross-section, only formed in the IGBT-cell. The anti-latch-up region has higher maximum doping concentration than the body region. Further a reverse conducting IGBT is provided.
    Type: Grant
    Filed: January 17, 2011
    Date of Patent: February 26, 2013
    Assignee: Infineon Technologies Austria AG
    Inventor: Frank Pfirsch
  • Patent number: 8373226
    Abstract: In Trench-Gate Fin-FET, in order that the advantage which is exerted in Fin-FET can be sufficiently taken even if a transistor becomes finer and, at the same time, decreasing of on-current can be suppressed by saving a sufficiently large contact area in the active region, a fin width 162 of a channel region becomes smaller than a width 161 of an active region.
    Type: Grant
    Filed: August 26, 2010
    Date of Patent: February 12, 2013
    Assignee: Elpida Memory, Inc.
    Inventor: Hiroaki Taketani
  • Patent number: 8361856
    Abstract: A memory cell includes a vertically oriented transistor having an elevationally outer source/drain region, an elevationally inner source/drain region, and a channel region elevationally between the inner and outer source/drain regions. The inner source/drain region has opposing laterally outer sides. One of a pair of data/sense lines is electrically coupled to and against one of the outer sides of the inner source/drain region. The other of the pair of data/sense lines is electrically coupled to and against the other of the outer sides of the inner source/drain region. An access gate line is elevationally outward of the pair of electrically coupled data/sense lines and is operatively adjacent the channel region. A charge storage device is electrically coupled to the outer source/drain region. Other embodiments and additional aspects, including methods, are disclosed.
    Type: Grant
    Filed: November 1, 2010
    Date of Patent: January 29, 2013
    Assignee: Micron Technology, Inc.
    Inventors: Lars Heineck, Jaydip Guha
  • Patent number: 8330200
    Abstract: A semiconductor device includes a P-body layer formed in an N-epitaxial layer; a gate electrode formed in a trench in the P-body and N-epitaxial layer; a top source region formed from the P-body layer next to the gate electrode; a gate insulator disposed along a sidewall of the gate electrode between the gate electrode and the source, between the gate electrode and the P-body and between the gate electrode and the N-epitaxial layer; a cap insulator disposed on top of the gate electrode; and an N+ doped spacer disposed along a sidewall of the source and a sidewall of the gate insulator. The source includes N+ dopants diffused from the spacer. A body contact region containing P-type dopants is formed from the N-epitaxial layer. The contact region touches one or more P-doped regions of the P-body layer and the source. Methods for manufacturing such a device are also disclosed. Embodiments of this invention may also be applied to P-channel devices.
    Type: Grant
    Filed: December 1, 2010
    Date of Patent: December 11, 2012
    Assignee: Alpha and Omega Semiconductor Incorporated
    Inventor: François Hébert
  • Patent number: 8329521
    Abstract: A method includes providing a substrate having a first surface, forming an isolation structure disposed partly in the substrate and having an second surface higher than the first surface by a step height, removing a portion of the isolation structure to form a recess therein having a bottom surface spaced from the first surface by less than the step height, forming a gate structure, and forming a contact engaging the gate structure over the recess. A different aspect involves an apparatus that includes a substrate having a first surface, an isolation structure disposed partly in the substrate and having a second surface higher than the first surface by a step height, a recess extending downwardly from the second surface, the recess having a bottom surface spaced from the first surface by less than the step height, a gate structure, and a contact engaging the gate structure over the recess.
    Type: Grant
    Filed: July 2, 2010
    Date of Patent: December 11, 2012
    Assignee: Taiwan Semiconductor Manufacturing Company. Ltd.
    Inventors: Harry Hak-Lay Chuang, Bao-Ru Young, Sheng-Chen Chung, Kai-Shyang You, Jin-Aun Ng, Wei Cheng Wu, Ming Zhu
  • Patent number: 8310004
    Abstract: A trench gate transistor whose gate changes depth intermittently in the gate width direction, has a first offset region and a second offset region formed below the source and drain, respectively. The first offset region and the second offset region are shallower where they contact the device isolation film than is the device isolation film in those areas. The first and second offset regions nevertheless extend below the bottom of the trench.
    Type: Grant
    Filed: September 22, 2010
    Date of Patent: November 13, 2012
    Assignee: Renesas Electronics Corporation
    Inventor: Hiroshi Kawaguchi