With A Nonplanar Gate Structure (epo) Patents (Class 257/E29.028)
  • Patent number: 8969156
    Abstract: An embodiment is a structure comprising a substrate, a high energy bandgap material, and a high carrier mobility material. The substrate comprises a first isolation region and a second isolation region. Each of first and second isolation regions extends below a first surface of the substrate between the first and second isolation regions. The high energy bandgap material is over the first surface of the substrate and is disposed between the first and second isolation regions. The high carrier mobility material is over the high energy bandgap material. The high carrier mobility material extends higher than respective top surfaces of the first and second isolation regions to form a fin.
    Type: Grant
    Filed: August 14, 2014
    Date of Patent: March 3, 2015
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Cheng-Hsien Wu, Chih-Hsin Ko, Clement Hsingjen Wann
  • Patent number: 8952449
    Abstract: There is known a semiconductor device in which an IGBT structure is provided in an IGBT area and a diode structure is provided in a diode area, the IGBT area and the diode area are both located within a same substrate, and the IGBT area is adjacent to the diode area. In this type of semiconductor device, a phenomenon that carriers accumulated within the IGBT area flow into the diode area when the IGBT structure is turned off. In order to prevent this phenomenon, a region of shortening lifetime of carriers is provided at least in a sub-area that is within said IGBT area and adjacent to said diode area. In the sub-area, emitter of IGBT structure is omitted.
    Type: Grant
    Filed: August 16, 2011
    Date of Patent: February 10, 2015
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Masaki Koyama, Yasushi Ookura, Akitaka Soeno, Tatsuji Nagaoka, Takahide Sugiyama, Sachiko Aoi, Hiroko Iguchi
  • Patent number: 8901659
    Abstract: Non-planar semiconductor devices including at least one semiconductor nanowire having a tapered profile which widens from the source side of the device towards the drain side of the device are provided which have reduced gate to drain coupling and therefore reduced gate induced drain tunneling currents.
    Type: Grant
    Filed: February 9, 2012
    Date of Patent: December 2, 2014
    Assignee: International Business Machines Corporation
    Inventors: Jeffrey W. Sleight, Sarunya Bangsaruntip
  • Patent number: 8901667
    Abstract: A non-planar semiconductor transistor device includes a substrate layer. Conductive channels extend between corresponding source and drain electrodes. A gate stack extending in a direction perpendicular to the conductive channels crosses over the plurality of conductive channels. The gate stack includes a dielectric layer running along the substrate and the plurality of conductive channels and arranged with a substantially uniform layer thickness, a work-function electrode layer covers the dielectric layer and is arranged with a substantially uniform layer thickness, and a metal layer, distinct from the work-function electrode layer, covers the work-function electrode layer and is arranged with a substantially uniform height with respect to the substrate such that the metal layer fills a gap between proximate conductive channels of the plurality of conductive channels.
    Type: Grant
    Filed: November 6, 2013
    Date of Patent: December 2, 2014
    Assignee: International Business Machines Corporation
    Inventors: Hemanth Jagannathan, Sivananda Kanakasabapathy
  • Patent number: 8872260
    Abstract: An apparatus of and method for making a semiconductor structure having a shallow trench isolation (STI) trench with a substantially v-shaped profile, that is the distance between top portions is greater than the distance between bottom portions of shallow trench isolation (STI) structure sidewalls adjacent to the trench, provides for substantially seamless and substantially void-free gate structures. The semiconductor structures are formed by implanting an implantation species into the sidewalls, which allows for the top portions of the sidewalls to be etched away at a greater rate than that of the bottom portions, resulting in the substantially v-shaped profile. And the substantially v-shaped profile allows for subsequent device layers to more easily and smoothly fill in the v-shaped trenches, due to a wider opening toward the tops of the trenches.
    Type: Grant
    Filed: June 5, 2012
    Date of Patent: October 28, 2014
    Assignee: Macronix International Co., Ltd.
    Inventors: Jung-Yi Guo, Chun-Min Cheng
  • Patent number: 8836016
    Abstract: An embodiment is a structure comprising a substrate, a high energy bandgap material, and a high carrier mobility material. The substrate comprises a first isolation region and a second isolation region. Each of first and second isolation regions extends below a first surface of the substrate between the first and second isolation regions. The high energy bandgap material is over the first surface of the substrate and is disposed between the first and second isolation regions. The high carrier mobility material is over the high energy bandgap material. The high carrier mobility material extends higher than respective top surfaces of the first and second isolation regions to form a fin.
    Type: Grant
    Filed: March 8, 2012
    Date of Patent: September 16, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Cheng-Hsien Wu, Chih-Hsin Ko, Clement Hsingjen Wann
  • Patent number: 8772782
    Abstract: A fin structure including a vertical alternating stack of a first isoelectric point material layer having a first isoelectric point and a second isoelectric material layer having a second isoelectric point less than the first isoelectric point is formed. The first and second isoelectric point material layers become oppositely charged in a solution with a pH between the first and second isoelectric points. Negative electrical charges are imparted onto carbon nanotubes by an anionic surfactant to the solution. The electrostatic attraction causes the carbon nanotubes to be selectively attached to the surfaces of the first isoelectric point material layer. Carbon nanotubes are attached to the first isoelectric point material layer in self-alignment along horizontal lengthwise directions of the fin structure. A transistor can be formed, which employs a plurality of vertically aligned horizontal carbon nanotubes as the channel.
    Type: Grant
    Filed: November 23, 2011
    Date of Patent: July 8, 2014
    Assignee: International Business Machines Corporation
    Inventors: Qing Cao, Dechao Guo, Shu-Jen Han, Yu Lu, Keith Kwong Hon Wong
  • Patent number: 8653606
    Abstract: It is intended to provide a semiconductor device capable to improve a controllability of dv/dt by a gate drive circuit during a turn-on switching period, while maintaining a low loss and a high breakdown voltage. Trench gates are disposed so as to have narrow distance regions and wide distance regions, wherein each of the narrow distance regions is provided with a channel region, and each of the wide distance regions is provided with trenches, each trench having an electrode electrically connected to the emitter electrode. In this manner, even if a floating-p layer is removed, it is possible to reduce a feedback capacity and maintain a breakdown voltage.
    Type: Grant
    Filed: June 27, 2013
    Date of Patent: February 18, 2014
    Assignee: Hitachi, Ltd.
    Inventor: Masaki Shiraishi
  • Patent number: 8618598
    Abstract: A semiconductor device includes a source metallization, a source region of a first conductivity type in contact with the source metallization, a body region of a second conductivity type which is adjacent to the source region. The semiconductor device further includes a first field-effect structure including a first insulated gate electrode and a second field-effect structure including a second insulated gate electrode which is electrically connected to the source metallization. The capacitance per unit area between the second insulated gate electrode and the body region is larger than the capacitance per unit area between the first insulated gate electrode and the body region.
    Type: Grant
    Filed: July 15, 2011
    Date of Patent: December 31, 2013
    Assignee: Infineon Technologies Austria AG
    Inventors: Oliver Haeberlen, Joachim Krumrey, Franz Hirler, Walter Rieger
  • Patent number: 8518769
    Abstract: A semiconductor device of an embodiment includes: an insulating film including: a first region extending in a first direction; second and third regions arranged at a distance from each other; and fourth and fifth regions each having a concave shape, the fourth and fifth regions each having a smaller film thickness than a film thickness of each of the first through third regions; a semiconductor layer formed in a direction from the fourth region toward the fifth region, the semiconductor layer having a smaller width than a width of each of source and drain regions, the semiconductor layer being connected to the source and drain regions; a gate electrode placed on the opposite side of a gate insulating film from the semiconductor layer on the first region; and a gate sidewall formed on a side face of the gate electrode.
    Type: Grant
    Filed: March 8, 2012
    Date of Patent: August 27, 2013
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Kensuke Ota, Toshinori Numata, Masumi Saitoh, Chika Tanaka
  • Patent number: 8487348
    Abstract: The present disclosure relates to the field of fabricating microelectronic devices. In at least one embodiment, the present disclosure relates to forming isolation structures in strained semiconductor bodies of non-planar transistors while maintaining strain in the semiconductor bodies.
    Type: Grant
    Filed: August 17, 2012
    Date of Patent: July 16, 2013
    Assignee: Intel Corporation
    Inventors: Stephen M. Cea, Martin D. Giles, Kelin Kuhn, Jack T. Kavalieros, Markus Kuhn
  • Patent number: 8471320
    Abstract: A memory array layout includes an active region array having a plurality of active regions, wherein the active regions are arranged alternatively along a second direction and parts of the side of the adjacent active regions are overlapped along a second direction; a plurality of first doped region, wherein each first doped region is disposed in a middle region; a plurality of second doped region, wherein each second doped region is disposed in a distal end region respectively; a plurality of recessed gate structures; a plurality of word lines electrically connected to each recessed gate structure respectively; a plurality of digit lines electrically connected to the first doped region respectively; and a plurality of capacitors electrically connected to each second doped region respectively.
    Type: Grant
    Filed: January 4, 2012
    Date of Patent: June 25, 2013
    Assignee: Inotera Memories, Inc.
    Inventors: Tzung-Han Lee, Chung-Lin Huang, Ron Fu Chu
  • Patent number: 8471329
    Abstract: A tunnel field-effect transistor (TFET) includes a gate electrode, a source region, and a drain region. The source and drain regions are of opposite conductivity types. A channel region is disposed between the source region and the drain region. A source diffusion barrier is disposed between the channel region and the source region. The source diffusion barrier and the source region are under and overlapping the gate electrode. The source diffusion barrier has a first bandgap greater than second bandgaps of the source region, the drain region, and the channel region.
    Type: Grant
    Filed: November 16, 2011
    Date of Patent: June 25, 2013
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Krishna Kumar Bhuwalka, Gerben Doornbos, Matthias Passlack
  • Patent number: 8274095
    Abstract: A semiconductor device having the present high withstand voltage power device IGBT has at a back surface a p collector layer with boron injected in an amount of approximately 3×1013/cm2 with an energy of approximately 50 KeV to a depth of approximately 0.5 ?m, and an n+ buffer layer with phosphorus injected in an amount of approximately 3×1012/cm2 with an energy of 120 KeV to a depth of approximately 20 ?m. To control lifetime, a semiconductor substrate is exposed to protons at the back surface. Optimally, it is exposed to protons at a dose of approximately 1×1011/cm2 to a depth of approximately 32 ?m as measured from the back surface. Thus snapback phenomenon can be eliminated and an improved low saturation voltage (Vce (sat))-offset voltage (Eoff) tradeoff can be achieved.
    Type: Grant
    Filed: May 31, 2011
    Date of Patent: September 25, 2012
    Assignee: Mitsubishi Electric Corporation
    Inventor: Yoshiaki Hisamoto
  • Patent number: 8269283
    Abstract: The present disclosure relates to the field of fabricating microelectronic devices. In at least one embodiment, the present disclosure relates to forming isolation structures in strained semiconductor bodies of non-planar transistors while maintaining strain in the semiconductor bodies.
    Type: Grant
    Filed: December 21, 2009
    Date of Patent: September 18, 2012
    Assignee: Intel Corporation
    Inventors: Stephen M. Cea, Martin D. Giles, Kelin Kuhn, Jack T. Kavalieros, Markus Kuhn
  • Patent number: 8222681
    Abstract: A trench IGBT is disclosed. One embodiment includes an embedded structure arranged above a collector region and selected from a group consisting of a porous semiconductor region, a cavity, and a semiconductor region including additional scattering centers for holes, the embedded structure being arranged below the body contact region such that the embedded structure and the body contact region overlap in a horizontal projection.
    Type: Grant
    Filed: December 21, 2011
    Date of Patent: July 17, 2012
    Assignee: Infineon Technologies Austria AG
    Inventors: Hans-Joachim Schulze, Francisco Javier Santos Rodriguez
  • Patent number: 8203181
    Abstract: A semiconductor device having a semiconductor body, a source metallization arranged on a first surface of the semiconductor body and a trench including a first trench portion and a second trench portion and extending from the first surface into the semiconductor body is provided. The semiconductor body further includes a pn-junction formed between a first semiconductor region and a second semiconductor region. The first trench portion includes an insulated gate electrode which is connected to the source metallization, and the second trench portion includes a conductive plug which is connected to the source metallization and to the second semiconductor region.
    Type: Grant
    Filed: August 13, 2009
    Date of Patent: June 19, 2012
    Assignee: Infineon Technologies Austria AG
    Inventor: Franz Hirler
  • Patent number: 8120074
    Abstract: A bipolar semiconductor device with a hole current redistributing structure and an n-channel IGBT are provided. The n-channel IGBT has a p-doped body region with a first hole mobility and a sub region which is completely embedded within the body region and has a second hole mobility which is lower than the first hole mobility. Further, a method for forming a bipolar semiconductor device is provided.
    Type: Grant
    Filed: October 29, 2009
    Date of Patent: February 21, 2012
    Assignee: Infineon Technologies Austria AG
    Inventors: Hans-Joachim Schulze, Francisco Javier Santos Rodriguez
  • Patent number: 8105901
    Abstract: A method deposits an undoped silicon layer on a primary layer, deposits a cap layer on the undoped silicon layer, patterns a masking layer on the cap layer, and patterns the undoped silicon layer into silicon mandrels. The method incorporates impurities into sidewalls of the silicon mandrels in a process that leaves sidewall portions of the silicon mandrels doped with impurities and that leaves central portions of at least some of the silicon mandrels undoped. The method removes the cap layer to leave the silicon mandrels standing on the primary layer and performs a selective material removal process to remove the central portions of the silicon mandrels and to leave the sidewall portions of the silicon mandrels standing on the primary layer. The method patterns at least the primary layer using the sidewall portions of the silicon mandrels as a patterning mask and removes the sidewall portions of the silicon mandrels to leave at least the primary layer patterned.
    Type: Grant
    Filed: July 27, 2009
    Date of Patent: January 31, 2012
    Assignee: International Business Machines Corporation
    Inventors: Kangguo Cheng, Bruce B. Doris, Toshiharu Furukawa
  • Patent number: 8097918
    Abstract: A semiconductor arrangement including a load transistor and a sense transistor that are integrated in a semiconductor body. One embodiment provides a number of transistor cells integrated in the semiconductor body, each transistor cell including a first active transistor region. A number of first contact electrodes, each of the contact electrodes contacting the first active transistor regions through contact plugs. A second contact electrode contacts a first group of the first contact electrodes, but not contacting a second group of the first contact electrodes. The transistor cells being contacted by first contact electrodes of the first group form a load transistor, with the second electrode forming a load terminal of the load transistor. The transistor cells being contacted by first contact electrodes of the second group form a sense transistor.
    Type: Grant
    Filed: August 14, 2009
    Date of Patent: January 17, 2012
    Assignee: Infineon Technologies AG
    Inventors: Christoph Kadow, Markus Leicht, Stefan Woehlert
  • Patent number: 8084865
    Abstract: An anchoring structure for a metal structure of a semiconductor device includes an anchoring recess structure having at least one overhanging side wall, the metal structure being at least partly arranged within the anchoring recess structure.
    Type: Grant
    Filed: April 30, 2008
    Date of Patent: December 27, 2011
    Assignee: Infineon Technologies AG
    Inventors: Franz Hirler, Walter Rieger, Uwe Schmalzbauer, Rudolf Zelsacher, Markus Zundel
  • Patent number: 8049273
    Abstract: A power semiconductor device includes a backside metal layer, a substrate formed on the backside metal layer, a semiconductor layer formed on the substrate, and a frontside metal layer. The semiconductor layer includes a first trench structure including a gate oxide layer formed around a first trench with poly-Si implant, a second trench structure including a gate oxide layer formed around a second trench with poly-Si implant, a p-base region formed between the first trench structure and the second trench structure, a plurality of n+ source region formed on the p-base region and between the first trench structure and the second trench structure, a dielectric layer formed on the first trench structure, the second trench structure, and the plurality of n+ source region. The frontside metal layer is formed on the semiconductor layer and filling gaps formed between the plurality of n+ source region on the p-base region.
    Type: Grant
    Filed: February 15, 2009
    Date of Patent: November 1, 2011
    Assignee: Anpec Electronics Corporation
    Inventors: Wei-Chieh Lin, Ho-Tai Chen, Li-Cheng Lin, Jen-Hao Yeh, Hsin-Yen Chiu, Hsin-Yu Hsu, Shih-Chieh Hung
  • Patent number: 8022474
    Abstract: A semiconductor device includes a source metallization, a source region of a first conductivity type in contact with the source metallization, a body region of a second conductivity type which is adjacent to the source region. The semiconductor device further includes a first field-effect structure including a first insulated gate electrode and a second field-effect structure including a second insulated gate electrode which is electrically connected to the source metallization. The capacitance per unit area between the second insulated gate electrode and the body region is larger than the capacitance per unit area between the first insulated gate electrode and the body region.
    Type: Grant
    Filed: September 30, 2008
    Date of Patent: September 20, 2011
    Assignee: Infineon Technologies Austria AG
    Inventors: Oliver Haeberlen, Joachim Krumrey, Franz Hirler, Walter Rieger
  • Patent number: 8017974
    Abstract: A semiconductor device having the present high withstand voltage power device IGBT has at a back surface a p collector layer with boron injected in an amount of approximately 3×1013/cm2 with an energy of approximately 50 KeV to a depth of approximately 0.5 ?m, and an n+ buffer layer with phosphorus injected in an amount of approximately 3×1012/cm2 with an energy of 120 KeV to a depth of approximately 20 ?m. To control lifetime, a semiconductor substrate is exposed to protons at the back surface. Optimally, it is exposed to protons at a dose of approximately 1×1011/cm2 to a depth of approximately 32 ?m as measured from the back surface. Thus snapback phenomenon can be eliminated and an improved low saturation voltage (Vce (sat))-offset voltage (Eoff) tradeoff can be achieved.
    Type: Grant
    Filed: July 17, 2008
    Date of Patent: September 13, 2011
    Assignee: Mitsubishi Electric Corporation
    Inventor: Yoshiaki Hisamoto
  • Patent number: 7960787
    Abstract: A semiconductor power device formed on a semiconductor substrate of a first conductivity type wherein the semiconductor power device includes trench gates surrounded by body regions of a second conductivity type encompassing source regions of the first conductivity type therein. The semiconductor power device further includes trench contact structure having a plurality of trench contacts with trenches extended into the body regions for as source-body contacts and extended into the trench gates as gate contact. The semiconductor power device further includes a termination area wherein a plurality of the trench gate contacts are electrically connected to the source-body contacts.
    Type: Grant
    Filed: November 7, 2008
    Date of Patent: June 14, 2011
    Assignee: Force-MOS Technology Corporation
    Inventor: Fwa-Iuan Hshieh
  • Patent number: 7952166
    Abstract: A semiconductor device with switch electrode and gate electrode and a method for switching a semiconductor device. One embodiment provides a semiconductor substrate with an emitter region, a drift region, a body region and a source region. The drift region is formed between the emitter and the body region while the body region is formed between the drift and the source region. A first trench structure extends from the source region at least partially into the drift region. The first trench structure includes a gate electrode arranged next to the body region and a switch electrode arranged in portions next to the drift region, wherein the switch and gate electrodes are electrically insulated from each other in the trench structure. A first gate driver is electrically connected to the gate electrode while a second gate driver is electrically connected to the switch gate.
    Type: Grant
    Filed: May 22, 2008
    Date of Patent: May 31, 2011
    Assignee: Infineon Technologies Austria AG
    Inventors: Franz Hirler, Thomas Raker
  • Patent number: 7952140
    Abstract: In methods of fabricating a semiconductor device having multiple channel transistors and semiconductor devices fabricated thereby, the semiconductor device includes an isolation region disposed within a semiconductor substrate and defining a first region. A plurality of semiconductor pillars self-aligned with the first region and spaced apart from each other are disposed within the first region, and each of the semiconductor pillars has at least one recessed region therein. At least one gate structure may be disposed across the recessed regions, which crosses the semiconductor pillars and extends onto the isolation region.
    Type: Grant
    Filed: February 12, 2010
    Date of Patent: May 31, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Se-Myeong Jang, Makoto Yoshida, Jae-Rok Kahng, Hyun-Ju Sung, Hui-Jung Kim, Chang-Hoon Jeon
  • Patent number: 7888733
    Abstract: A power semiconductor having a first, second, third, and fourth semiconductor layer on top of each other, two trench gates parallel and adjacent to each other, each having a trench in the fourth semiconductor layer with the a trench bottom portion reaching into the third semiconductor layer, a gate insulation film lining the trench, and a gate electrode filling the trench being lined with the gate insulation film, two first semiconductor region regions provided contiguously bordering on one side of each of the two trench gates, located at the outer sides of each of the two adjacent trench gates, and located in the top side of the fourth semiconductor layer, a first main electrode on the fourth semiconductor layer, and a second main electrode provided on a bottom of the first semiconductor layer.
    Type: Grant
    Filed: May 11, 2007
    Date of Patent: February 15, 2011
    Assignee: Mitsubishi Electric Corporation
    Inventor: Eisuke Suekawa
  • Patent number: 7883971
    Abstract: Disclosed are a gate structure in a trench region of a semiconductor device and a method for manufacturing the same. The semiconductor device includes a pair of drift regions formed in a semiconductor substrate; a trench region formed between the pair of drift regions; an oxide layer spacer on sidewalls of the trench region; a gate formed in the trench region; and a source and a drain formed in the pair of the drift regions, respectively.
    Type: Grant
    Filed: April 28, 2009
    Date of Patent: February 8, 2011
    Assignee: Dongbu Electronics Co., Ltd.
    Inventor: Kwang Young Ko
  • Patent number: 7838915
    Abstract: Provided are a semiconductor device having a mesa-type active region including a plurality of slabs and a method of manufacturing the semiconductor device. The semiconductor device includes a first active region and a second active region. The first active region is formed in a line-and-space pattern on a substrate and includes the slabs, each slab having a first surface, a second surface facing a direction opposite to the first side, and a top surface. The first active region and the second active region are composed of identical or different materials. The second active region contacts at least one end of each of the slabs on the substrate to connect the slabs to one another. The method includes forming a first active region in a line-and-space pattern on the substrate and forming the second active region.
    Type: Grant
    Filed: February 5, 2005
    Date of Patent: November 23, 2010
    Assignee: Samsung Electronics Co.. Ltd.
    Inventors: Jung-a Choi, Jeong-hawan Yang, You-scung Jin
  • Patent number: 7816729
    Abstract: A trenched semiconductor power device that includes a trenched gate disposed in an extended continuous trench surrounding a plurality of transistor cells in an active cell area and extending as trench-gate fingers to intersect with a trenched gate under the gate metal runner at a termination area. At least one of the trench-gate fingers intersects with the trenched gate under the gate metal runner near the termination area having trench intersection regions vulnerable to have a polysilicon void and seam developed therein.
    Type: Grant
    Filed: September 10, 2006
    Date of Patent: October 19, 2010
    Inventor: Fwu-Iuan Hshieh
  • Patent number: 7808057
    Abstract: In manufacturing a PMOS transistor, a semiconductor substrate having an active region and a field region is formed with a hard mask layer, which covers a center portion of the active region on the substrate in a lengthwise direction of a channel. The hard mask layer exposes the center portion of the active region in a widthwise direction of the channel and covers both edges of the substrate and the field region adjacent to the both edges. The substrate is etched to a predetermined depth using the hard mask layer as an etching barrier. The hard mask layer is then removed. A gate covering the center portion of the active region is formed on the lengthwise direction of the channel. Source and drain regions are formed at both edges of the gate.
    Type: Grant
    Filed: November 17, 2008
    Date of Patent: October 5, 2010
    Assignee: Hynix Semiconductor Inc.
    Inventor: Jin Yul Lee
  • Publication number: 20100171173
    Abstract: A trench MOSFET with improved source-body contact structure is disclosed. The improved contact structure can enlarge the P+ area below to wrap the sidewalls and bottom of source-body contact within P-body region to further enhance the avalanche capability. On the other hand, one of the embodiments disclosed a wider tungsten plug structure to connect source metal, which helps to further reduce the source contact resistance.
    Type: Application
    Filed: January 8, 2009
    Publication date: July 8, 2010
    Applicant: FORCE MOS TECHNOLOGY CO. LTD.
    Inventor: FU-YUAN HSIEH
  • Patent number: 7659574
    Abstract: A power MISFET, which has a desired gate breakdown voltage, can be manufactured will controlling an increase in parasitic capacitance. After depositing a polycrystalline silicon film on a substrate and embedding groove portions in the polycrystalline silicon film by patterning the polycrystalline silicon film in an active cell area, a gate electrode is formed within the groove portion, and the inside of the groove portion is embedded in a gate wiring area. Extending to the outside of the groove portion continuously out of the groove portion, there is a gate drawing electrode electrically connected to the gate electrode. Slits extending from the end portion of the gate drawing electrode are formed in the gate drawing electrode outside of the groove portion. Then, a silicon oxide film and a BPSG film are deposited on the substrate.
    Type: Grant
    Filed: August 31, 2007
    Date of Patent: February 9, 2010
    Assignee: Renesas Technology Corp.
    Inventors: Sakae Kubo, Yoshito Nakazawa
  • Patent number: 7598566
    Abstract: The present invention provides a technique for accumulating minority carriers in the body region, that is, the intermediate region interposed between the top region and the deep region, and thus increasing the concentration of minority carriers in the intermediate region. A semiconductor device has a top region (34) of a second conductivity type, a deep region (26) of the second conductivity type, and an intermediate region (28) of a first conductivity type for isolating the top region and the deep region. The semiconductor device further has a trench gate (32) facing a portion of the intermediate region via an insulating layer (33). The portion facing the trench gate isolates the top region and the deep region. The trench gate extends along a longitudinal direction. The width of the trench gate is not uniform along the longitudinal direction; instead the width of the trench gate varies along the longitudinal direction.
    Type: Grant
    Filed: November 5, 2004
    Date of Patent: October 6, 2009
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Koji Hotta, Sachiko Kawaji, Masanori Usui, Takahide Sugiyama
  • Patent number: 7563698
    Abstract: Method for manufacturing a semiconductor device including a transistor having a grooved gate structure and a transistor having a planar gate structure on the same substrate, in which, even when the semiconductor device is configured as a dual gate structure in which a gate electrode structure is a poly-metal gate structure, and a grooved gate and a planar gate are made in different conductivity types, then sufficient dopant is injected into polysilicon in the grooved gate to prevent depletion, and impurity ions do not pass through a gate insulating film even when the planar gate is formed also polysilicon having the same film thickness. The method includes: injecting ions into an amorphous silicon layer for the grooved gate; subsequently, turning it into polysilicon once; injecting ions once again to amorphousize a surface layer of the polysilicon layer and injecting ions of a different conductivity type for the planar gate.
    Type: Grant
    Filed: February 28, 2008
    Date of Patent: July 21, 2009
    Assignee: Elpida Memory Inc.
    Inventor: Tetsuya Taguwa
  • Patent number: 7557394
    Abstract: A lateral high-voltage depletion-mode device structure in which fingers of semiconductor material are interdigitated with trench gates. Since the effective channel area is proportional to the depth of the trenches, a large amount of active channel area can be achieved for a given surface area.
    Type: Grant
    Filed: November 9, 2005
    Date of Patent: July 7, 2009
    Assignee: Bourns, Inc.
    Inventors: Richard A. Blanchard, Françoise Hébert
  • Patent number: 7554165
    Abstract: In one aspect of the present invention, a semiconductor device may include a plurality of fins disposed substantially parallel to each other at predetermined intervals on a semiconductor substrate, a gate electrode formed to partially sandwich therein the both side surfaces, in the longitudinal direction, of each of the plurality of fins with an insulating film interposed between the gate electrode and each of the side surfaces of each fin, and a semiconductor layer formed on each of at least some of side surfaces of the plurality of fins, wherein the semiconductor layer in a region located on an outer side surface, in the longitudinal direction, of each of two fins which are located at both ends of the line of the plurality of fins is thinner than the semiconductor layer in a region located on each of side surfaces, in the longitudinal direction and other than the outer surfaces of the two fins, of the plurality of fins.
    Type: Grant
    Filed: April 28, 2008
    Date of Patent: June 30, 2009
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Akira Hokazono
  • Publication number: 20090140330
    Abstract: The semiconductor device according to the present invention includes a semiconductor layer, a trench formed by digging the semiconductor layer from the surface thereof, a gate insulating film formed on the inner surface of the trench, and a gate electrode made of silicon embedded in the trench through the gate insulating film. The gate electrode has a high-conductivity portion formed to cover the gate insulating film with a relatively high conductivity and a low-conductivity portion formed on a region inside the high-conductivity portion with a relatively low conductivity.
    Type: Application
    Filed: December 3, 2008
    Publication date: June 4, 2009
    Applicant: ROHM CO., LTD.
    Inventors: Ryotaro Yagi, Isamu Nishimura, Takahisa Yamaha
  • Patent number: 7538350
    Abstract: It is a problem to provide a semiconductor device production system using a laser crystallization method capable of preventing grain boundaries from forming in a TFT channel region and further preventing conspicuous lowering in TFT mobility due to grain boundaries, on-current decrease or off-current increase. An insulation film is formed on a substrate, and a semiconductor film is formed on the insulation film. Due to this, preferentially formed is a region in the semiconductor film to be concentratedly applied by stress during crystallization with laser light. Specifically, a stripe-formed or rectangular concavo-convex is formed on the semiconductor film. Continuous-oscillation laser light is irradiated along the striped concavo-convex or along a direction of a longer or shorter axis of rectangle.
    Type: Grant
    Filed: January 29, 2007
    Date of Patent: May 26, 2009
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Atsuo Isobe, Koji Dairiki, Hiroshi Shibata, Chiho Kokubo, Tatsuya Arao, Masahiko Hayakawa, Hidekazu Miyairi, Akihisa Shimomura, Koichiro Tanaka, Shunpei Yamazaki, Mai Akiba
  • Patent number: 7534677
    Abstract: A method of fabricating a dual gate oxide of a semiconductor device includes forming a first gate insulation layer over an entire surface of a substrate, removing a portion of the first gate insulation layer to selectively expose a first region of the substrate using a first mask and performing an ion implantation on the selectively exposed first region of the substrate using the first mask, and forming a second gate insulation layer on the first gate insulation layer and the exposed first region of the substrate to form a resultant gate insulation layer having a first thickness over the first region of the substrate and a second thickness over a remaining region of the substrate, the first thickness and the second thickness being different.
    Type: Grant
    Filed: January 14, 2005
    Date of Patent: May 19, 2009
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Hyae-ryoung Lee, Su-gon Bae
  • Patent number: 7479678
    Abstract: A semiconductor element is provided, comprising a first semiconductor layer of the first conduction type; and a pillar layer including first semiconductor pillars of the first conduction type and second semiconductor pillars of the second conduction type arranged periodically and alternately on the first semiconductor layer. A semiconductor base layer of the second conduction type is formed on the upper surface of the pillar layer, And a second semiconductor layer of the first conduction type is formed on the upper surface of the semiconductor base layer. A control electrode of the trench gate type is formed in a trench, which is formed in depth through the semiconductor base layer to the first semiconductor pillar. The control electrode is tapered such that the width thereof decreases with the distance from a second main electrode toward a first main electrode and the tip thereof locates almost at the center of the first semiconductor pillar.
    Type: Grant
    Filed: July 13, 2006
    Date of Patent: January 20, 2009
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Syotaro Ono, Wataru Saito, Yusuke Kawaguchi, Yoshihiro Yamaguchi
  • Patent number: 7468301
    Abstract: In manufacturing a PMOS transistor, a semiconductor substrate having an active region and a field region is formed with a hard mask layer, which covers a center portion of the active region on the substrate in a lengthwise direction of a channel. The hard mask layer exposes the center portion of the active region in a widthwise direction of the channel and covers both edges of the substrate and the field region adjacent to the both edges. The substrate is etched to a predetermined depth using the hard mask layer as an etching barrier. The hard mask layer is then removed. A gate covering the center portion of the active region is formed on the lengthwise direction of the channel. Source and drain regions are formed at both edges of the gate.
    Type: Grant
    Filed: December 12, 2005
    Date of Patent: December 23, 2008
    Assignee: Hynix Semiconductor Inc.
    Inventor: Jin Yul Lee
  • Patent number: 7456484
    Abstract: A semiconductor device includes: a semiconductor substrate having first and second semiconductor layers; an IGBT having a collector region, a base region in the first semiconductor layer, an emitter region in the base region, and a channel region in the base region between the emitter region and the first semiconductor layer; a diode having an anode region in the first semiconductor layer and a cathode electrode on the first semiconductor layer; and a resistive region. The collector region and the second semiconductor layer are disposed on the first semiconductor layer. The resistive region for increasing a resistance of the second semiconductor layer is disposed in a current path between the channel region and the cathode electrode through the first semiconductor layer and the second semiconductor layer with bypassing the collector region.
    Type: Grant
    Filed: January 3, 2007
    Date of Patent: November 25, 2008
    Assignee: Denso Corporation
    Inventors: Yoshihiko Ozeki, Norihito Tokura, Yukio Tsuzuki
  • Patent number: 7317230
    Abstract: A fin FET structure employs a negative word line scheme. A gate electrode of a fin FET employs an electrode doped with n+ impurity, and a channel doping for a control of threshold voltage is not executed, or the channel doping is executed by a low density, thereby remarkably improving characteristics of the fin FET. A semiconductor substrate is formed in a first conductive type, and a fin active region of a first conductive type is projected from an upper surface of the semiconductor substrate and is connected to the semiconductor substrate. An insulation layer is formed on the semiconductor substrate, and a gate insulation layer is formed in upper part and sidewall of the fin active region. A gate electrode is formed on the insulation layer and the gate insulation layer. Source and drain are formed in the fin active region of both sides of the gate electrode.
    Type: Grant
    Filed: January 21, 2005
    Date of Patent: January 8, 2008
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Choong-Ho Lee, Dong-Gun Park, Jae-Man Youn, Chul Lee
  • Patent number: 7265059
    Abstract: A FinFET includes a plurality of semiconductor fins. Over a semiconductor layer, patterned features (e.g. of minimum photolithographic size and spacing) are formed. In one example of fin formation, a first set of sidewall spacers are formed adjacent to the sides of these patterned features. A second set of sidewall spacers of a different material are formed adjacent to the sides of the first set of sidewall spacers. The first set of sidewall spacers are removed leaving the second set of sidewall spacers spaced from the patterned features. Both the second set of sidewall spacers and the patterned features are used as a mask to an etch that leaves semiconductor fins patterned as per the second set of sidewall spacers and the patterned features. These resulting semiconductor fins, which have sub-lithographic spacings, are then used for channels of a FinFET transistor.
    Type: Grant
    Filed: September 30, 2005
    Date of Patent: September 4, 2007
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Rajesh A. Rao, Leo Mathew
  • Publication number: 20070132014
    Abstract: The invention relates to a trench MOSPET with drain (8), sub-channel region (10) body (12) and source (14). The sub-channel region is doped to be the same conductivity type as the body (12), but of lower doping density. A field plate electrode (34) is provided adjacent to the sub-channel region (10) 10 and a gate electrode (32) next to the body (12).
    Type: Application
    Filed: November 26, 2004
    Publication date: June 14, 2007
    Applicant: KONINKLIJKE PHILIPS ELECTRONICS N.V.
    Inventor: Raymond Hueting
  • Publication number: 20070023846
    Abstract: In a first aspect, there is provided a field effect transistor comprising a gate having a modified shape having sharply defined geometric patterns or indents of a dimension that creates de Broglie wave interference. According to a second aspect of the present invention, there is provided a spin transistor comprising a first region defining an emitter, a second region defining a semiconductor base, and a third region defining a collector, wherein: the emitter includes a spin polarizer for spin-polarizing charge carriers to be injected from the emitter to the base; and the collector includes a spin filter for spin-filtering charge carriers received at the collector from the base; characterized in that the emitter further includes a tunneling barrier arranged to tunnel inject the spin-polarized charge carriers into the semiconductor base having a modified shape comprising sharply defined geometric patterns or indents of a dimension that creates de Broglie wave interference.
    Type: Application
    Filed: July 28, 2006
    Publication date: February 1, 2007
    Inventor: Isaiah Cox
  • Patent number: 7170118
    Abstract: Within both a field effect transistor (FET) device and a method for fabricating the field effect transistor (FET) device there is provided: (1) a semiconductor substrate; (2) a gate electrode formed over the semiconductor substrate and covering a channel region within the semiconductor substrate; and (3) a pair of source/drain regions formed within the semiconductor substrate and separated by the channel region within the semiconductor substrate. Within both the field effect transistor (FET) device and the method for fabricating the field effect transistor (FET) device, at least one of: (1) an interface of the channel region covered by the gate electrode; and (2) an upper surface of the gate electrode, is corrugated.
    Type: Grant
    Filed: August 1, 2003
    Date of Patent: January 30, 2007
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventor: Fu-Liang Yang
  • Patent number: 7145191
    Abstract: The source/drain zones (140 and 142 or 160 and 162) of a p-channel IGFET (120 or 122) are provided with graded-junction characteristics to reduce junction capacitance, thereby increasing switching speed. Each source/drain zone contains a main portion (140M, 142M, 160M, or 162M) and a more lightly doped lower portion (140L, 142L, 160L, or 162L) underlying, and vertically continuous with, the main portion.
    Type: Grant
    Filed: August 18, 2004
    Date of Patent: December 5, 2006
    Assignee: National Semiconductor Corporation
    Inventors: Chih Sieh Teng, Constantin Bulucea, Chin-Miin Shyu, Fu-Cheng Wang, Prasad Chaparala