Surface Layout Of Mos Gated Device (e.g., Dmosfet Or Igbt) (epo) Patents (Class 257/E29.027)
  • Patent number: 9911840
    Abstract: A transistor device includes a doped semiconductor substrate having one or more electrically insulated gate electrodes formed in trenches in the substrate. One or more body regions are formed in a top portion of the substrate proximate each gate trench. One or more source regions are formed in a self-aligned fashion in a top portion of the body regions proximate each gate trench. One or more thick insulator portions are formed over the gate electrodes on a top surface of the substrate with spaces between adjacent thick insulator portions. A metal is formed on top of the substrate over the thick insulator portions. The metal forms a self-aligned contact to the substrate through the spaces between the thick insulator portions. An integrated diode is formed under the self-aligned contact.
    Type: Grant
    Filed: March 2, 2015
    Date of Patent: March 6, 2018
    Assignee: ALPHA AND OMEGA SEMICONDUCTOR INCORPORATED
    Inventors: Sik Lui, Anup Bhalla
  • Patent number: 9018700
    Abstract: In a general aspect, an apparatus can include a semiconductor layer of a first conductivity type, the semiconductor layer having a top-side surface. The apparatus can also include a well region of a second conductivity type opposite the first conductivity type, the well region being disposed in an upper portion of the semiconductor layer. The apparatus can further include a gate trench disposed in the semiconductor layer, the gate trench extending through the well region, and a drain contact disposed, at least in part, on the top-side surface of the semiconductor layer, the drain contact being adjacent to the well region. The apparatus can still further include an isolation trench disposed between the drain contact and the gate trench in the semiconductor layer, the isolation trench extending through the well region.
    Type: Grant
    Filed: February 5, 2014
    Date of Patent: April 28, 2015
    Assignee: Fairchild Semiconductor Corporation
    Inventor: Ashok Challa
  • Patent number: 9018049
    Abstract: A method for manufacturing an IGBT includes: forming oxide layers on the surfaces of the front and the back of an N-type substrate; forming a buffer layer in the surface of the back of the N-type substrate; forming protection layers on the surfaces of the oxide layers; removing the protection layer and the oxide layer overlying the front of the N-type substrate while reserving the oxide layer and the protection layer on the back of the N-type substrate for protection of the back of the N-type substrate; forming a front IGBT structure and applying a protection film on the surface of the front IGBT structure for protection of the front IGBT structure; removing the protection layer and the oxide layer overlying the back of the N-type substrate; forming a back IGBT structure and a back metal layer; and removing the protection film overlying the surface of the front IGBT structure.
    Type: Grant
    Filed: November 29, 2013
    Date of Patent: April 28, 2015
    Assignees: Peking University Founder Group Co., Ltd., Founder Microelectronics International Co., Ltd.
    Inventor: Guangran Pan
  • Patent number: 9006839
    Abstract: In a semiconductor substrate of a semiconductor device, a drift layer, a body layer, an emitter layer, and a trench gate electrode are formed. When the semiconductor substrate is viewed in a plane manner, the semiconductor substrate is divided into a first region covered with a heat dissipation member, and a second region not covered with the heat dissipation member. A density of trench gate electrodes in the first region is equal to a density of trench gate electrodes in the second region. A value obtained by dividing an effective carrier amount of channel parts formed in the first region by an area of the first region is larger than a value obtained by dividing an effective carrier amount of channel parts formed in the second region by an area of the second region.
    Type: Grant
    Filed: April 25, 2014
    Date of Patent: April 14, 2015
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Tadashi Misumi
  • Patent number: 9000479
    Abstract: According to one embodiment, a semiconductor device includes a base layer, a second conductivity type semiconductor layer, a first insulating film, and a first electrode. The first insulating film is provided on an inner wall of a plurality of first trenches extending from a surface of the second conductivity type semiconductor layer toward the base layer side, but not reaching the base layer. The first electrode is provided in the first trench via the first insulating film, and provided in contact with a surface of the second conductivity type semiconductor layer. The second conductivity type semiconductor layer includes a first second conductivity type region, and a second second conductivity type region. The first second conductivity type region is provided between the first trenches. The second second conductivity type region is provided between the first second conductivity type region and the base layer, and between a bottom part of the first trench and the base layer.
    Type: Grant
    Filed: March 12, 2014
    Date of Patent: April 7, 2015
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Mitsuhiko Kitagawa
  • Patent number: 9000478
    Abstract: A semiconductor apparatus includes a substrate having a device region and a peripheral region located around the device region. A first semiconductor region is formed within the device region, is of a first conductivity type, and is exposed at an upper surface of the substrate. Second-fourth semiconductor regions are formed within the peripheral region. The second semiconductor region is of the first conductivity type, has a lower concentration of the first conductivity type of impurities, is exposed at the upper surface, and is consecutive with the first semiconductor region directly or indirectly. The third semiconductor region is of a second conductivity type, is in contact with the second semiconductor region from an underside, and is an epitaxial layer. The fourth semiconductor region is of the second conductivity type, has a lower concentration of the second conductivity type of impurities, and is in contact with the third semiconductor region from an underside.
    Type: Grant
    Filed: May 24, 2012
    Date of Patent: April 7, 2015
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Masaru Senoo
  • Patent number: 9000516
    Abstract: A super-junction device including a unit region is disclosed. The unit region includes a heavily doped substrate; a first epitaxial layer over the heavily doped substrate; a second epitaxial layer over the first epitaxial layer; a plurality of first trenches in the second epitaxial layer; an oxide film in each of the plurality of first trenches; and a pair of first films on both sides of each of the plurality of first trenches, thereby forming a sandwich structure between every two adjacent ones of the plurality of first trenches, the sandwich structure including two first films and a second film sandwiched therebetween, the second film being formed of a portion of the second epitaxial layer between the two first films of a sandwich structure. A method of forming a super-junction device is also disclosed.
    Type: Grant
    Filed: September 5, 2013
    Date of Patent: April 7, 2015
    Assignee: Shanghai Hua Hong NEC Electronics Co., Ltd.
    Inventor: Shengan Xiao
  • Patent number: 8981476
    Abstract: A semiconductor device includes: first and second n-type wells formed in p-type semiconductor substrate, the second n-type well being deeper than the first n-type well; first and second p-type backgate regions formed in the first and second n-type wells; first and second n-type source regions formed in the first and second p-type backgate regions; first and second n-type drain regions formed in the first and second n-type wells, at positions opposed to the first and second n-type source regions, sandwiching the first and the second p-type backgate regions; and field insulation films formed on the substrate, at positions between the first and second p-type backgate regions and the first and second n-type drain regions; whereby first transistor is formed in the first n-type well, and second transistor is formed in the second n-type well with a higher reverse voltage durability than the first transistor.
    Type: Grant
    Filed: December 11, 2012
    Date of Patent: March 17, 2015
    Assignee: Fujitsu Semiconductor Limited
    Inventor: Kazuhiko Takada
  • Patent number: 8975690
    Abstract: According to one embodiment, a semiconductor device includes a first semiconductor region of a first conductivity type, a second semiconductor region of the first conductivity type, a third semiconductor region of a second conductivity type, a fourth semiconductor region of the first conductivity type, a fifth semiconductor region of the second conductivity type, a first electrode, a second electrode, and a third electrode. The first electrode is provided together with the first region in a first direction, provided together with the third region in a second direction, and has an end portion of the first region side located nearer to the first semiconductor side than a boundary between the second region and the third region. The second electrode is provided between the first electrode and the first region and is in electrical continuity with the fourth region. The third electrode contacts with the fourth region.
    Type: Grant
    Filed: August 19, 2013
    Date of Patent: March 10, 2015
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Mitsuhiko Kitagawa
  • Patent number: 8951901
    Abstract: In sophisticated semiconductor devices, the encapsulation of sensitive gate materials, such as a high-k dielectric material and a metal-containing electrode material, which are provided in an early manufacturing stage may be achieved by forming an undercut gate configuration. To this end, a wet chemical etch sequence is applied after the basic patterning of the gate layer stack, wherein at least ozone-based and hydrofluoric acid-based process steps are performed in an alternating manner, thereby achieving a substantially self-limiting removal behavior.
    Type: Grant
    Filed: July 22, 2011
    Date of Patent: February 10, 2015
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Sven Beyer, Berthold Reimer, Falk Graetsch
  • Patent number: 8933483
    Abstract: Provided is a semiconductor device capable of reducing a temperature-dependent variation of a current sense ratio and accurately detecting current In the semiconductor device, at least one of an impurity concentration and a thickness of each semiconductor layer is adjusted such that a value calculated by a following equation is less than a predetermined value: [ ? i = 1 n ? ( R Mi × k Mi ) - ? i = 1 n ? ( R Si × k Si ) ] / ? i = 1 n ? ( R Mi × k Mi ) where a temperature-dependent resistance changing rate of an i-th semiconductor layer (i=1 to n) of the main element domain is RMi; a resistance ratio of the i-th semiconductor layer of the main element domain relative to the entire main element domain is kMi; a temperature-dependent resistance changing rate of the i-th semiconductor layer of the sense element domain is RSi; and a resistance ratio of the i-th semiconductor layer of the sense element domain to the entire sense element domain is kSi.
    Type: Grant
    Filed: November 7, 2013
    Date of Patent: January 13, 2015
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Hidefumi Takaya, Kimimori Hamada, Yuji Nishibe
  • Patent number: 8907405
    Abstract: Semiconductor structures with dual trench regions and methods of manufacturing the semiconductor structures are provided herein. The method includes forming a gate structure on an active region and high-k dielectric material formed in one or more trenches adjacent to the active region. The method further includes forming a sacrificial material over the active region and portions of the high-k dielectric material adjacent sidewalls of the active region. The method further includes removing unprotected portions of the high-k dielectric material, leaving behind a liner of high-k dielectric material on the sidewalls of the active region. The method further includes removing the sacrificial material and forming a raised source and drain region adjacent to sidewalls of the gate structure.
    Type: Grant
    Filed: April 18, 2011
    Date of Patent: December 9, 2014
    Assignee: International Business Machines Corporation
    Inventors: Reinaldo A. Vega, Hongwen Yan
  • Patent number: 8878295
    Abstract: A DMOS transistor with a lower on-state drain-to-source resistance and a higher breakdown voltage utilizes a slanted super junction drift structure that lies along the side wall of an opening with the drain region at the bottom of the opening and the source region near the top of the opening.
    Type: Grant
    Filed: April 13, 2011
    Date of Patent: November 4, 2014
    Assignee: National Semiconductor Corporation
    Inventors: Peter J. Hopper, Alexei Sadovnikov, William French, Erika Mazotti, Richard Wendell Foote, Jr., Punit Bhola, Vladislav Vashchenko
  • Patent number: 8828810
    Abstract: A method for producing a semiconductor component structure in a semiconductor body. In one embodiment, the method includes producing two differently doped semiconductor zones of the same conduction type, and carrying out a first implantation, implanting dopant atoms of a first conduction type into the semiconductor body via one of the sides over the whole area. A mask is produced on the one side, partly leaving free the one side. A second implantation is carried out, implanting dopant atoms of the first conduction type into the region left free by the mask proceeding from the one of the sides.
    Type: Grant
    Filed: April 17, 2012
    Date of Patent: September 9, 2014
    Assignee: Infineon Technologies Austria AG
    Inventors: Hans-Joachim Schulze, Manfred Pfaffenlehner
  • Patent number: 8816445
    Abstract: A power MOSFET device includes at least one MOSFET unit disposed over a substrate, wherein the MOSFET unit includes a plurality of cells and a boundary surrounding the cells. In one embodiment of the present invention, the cell is configured to provide a unit current, and comprises at least one source pillar and at least one drain pillar, a gate conductor surrounding the source pillar and the drain pillar, and an insulating structure electrically separating the gate conductor from the source pillar and the drain pillar, wherein the gate conductor extends from the cell to the boundary.
    Type: Grant
    Filed: January 14, 2013
    Date of Patent: August 26, 2014
    Assignee: Ptek Technology Co., Ltd.
    Inventors: Ming Tang, Shih Ping Chiao
  • Patent number: 8809986
    Abstract: Provided is a semiconductor device capable of reducing a temperature-dependent variation of a current sense ratio and accurately detecting current. In the semiconductor device, at least one of an impurity concentration and a thickness of each semiconductor layer is adjusted such that a value calculated by a following equation is less than a predetermined value: [ ? i = 1 n ? ( R Mi × k Mi ) - ? i = 1 n ? ( R Si × k Si ) ] / ? i = 1 n ? ( R Mi × k Mi ) where a temperature-dependent resistance changing rate of an i-th semiconductor layer (i=1 to n) of the main element domain is RMi; a resistance ratio of the i-th semiconductor layer of the main element domain relative to the entire main element domain is kMi; a temperature-dependent resistance changing rate of the i-th semiconductor layer of the sense element domain is RSi; and a resistance ratio of the i-th semiconductor layer of the sense element domain to the entire sense element domain is kSi.
    Type: Grant
    Filed: May 29, 2009
    Date of Patent: August 19, 2014
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Hidefumi Takaya, Kimimori Hamada, Yuji Nishibe
  • Patent number: 8785997
    Abstract: A semiconductor device includes a semiconductor body including a first surface. The semiconductor device further includes a continuous silicate glass structure over the first surface. A first part of the continuous glass structure over an active area of the semiconductor body includes a first composition of dopants that differs from a second composition of dopants in a second part of the continuous glass structure over an area of the semiconductor body outside of the active area.
    Type: Grant
    Filed: May 16, 2012
    Date of Patent: July 22, 2014
    Assignee: Infineon Technologies AG
    Inventors: Hans-Joachim Schulze, Alexander Susiti, Markus Zundel, Reinhard Ploss
  • Patent number: 8772838
    Abstract: A semiconductor layout structure includes multiple active blocks which are disposed on a substrate, parallel with one another and extending along a first direction, multiple first shallow trench isolations which are disposed on a substrate, parallel with one another and respectively disposed on the multiple active blocks, and multiple second shallow trench isolations which are disposed on a substrate, cutting through multiple active blocks and extending along a second direction. The first direction has an angle about 1 degree to about 53 degrees to the second direction.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: July 8, 2014
    Assignee: Inotera Memories, Inc.
    Inventors: Tzung-Han Lee, Chung-Yuan Lee
  • Patent number: 8759911
    Abstract: Plural island-form emitter cells (22) having a p-base region (23) and an n+ emitter region (24) are provided, distanced from each other, on a main surface of an n? layer (21). A trench (25) deeper than the p-base region (23) is formed on either side of the emitter cell (22). A first gate electrode (26) is embedded in the trench (25) across a first gate insulating film (41). A second gate electrode (27) that electrically connects first gate electrodes (26) is provided, across a second gate insulating film (40), on a surface of a region of the p-base region (23) sandwiched by the n+ emitter region (24). A conductive region (28) that electrically connects second gate electrodes (27) is provided, across a third gate insulating film (42), on a surface of the n? layer (21). A contact region (29) that is isolated from the second gate electrode (27), and that short circuits the n+ emitter region (24) and p-base region (23), is provided.
    Type: Grant
    Filed: December 18, 2009
    Date of Patent: June 24, 2014
    Assignee: Fuji Electric Co., Ltd.
    Inventor: Hong-fei Lu
  • Patent number: 8754442
    Abstract: A silicon on insulator N type semiconductor device, includes a N type drift region, a P type deep well, an N type buffer well, a P type drain region, an N type source region and a P type body contact region; a field oxide layer and a gate oxide layer arranged on a silicon surface, and a polysilicon lattice arranged on the gate oxide layer; and an N type triode drift region, a P type deep well, an N type triode buffer well, a P type emitting region, an N type base region, an N type source region and a P type body contact region; a field oxide layer and a gate oxide layer arranged on a silicon surface, and a polysilicon lattice arranged on the gate oxide layer.
    Type: Grant
    Filed: July 11, 2011
    Date of Patent: June 17, 2014
    Assignee: Southeast University
    Inventors: Longxing Shi, Qinsong Qian, Changlong Huo, Weifeng Sun, Shengli Lu
  • Patent number: 8735997
    Abstract: A transistor structure that improves ESD withstand voltages is offered. A high impurity concentration drain layer is formed in a surface of an intermediate impurity concentration drain layer at a location separated from a drain-side end of a gate electrode. And a P-type impurity layer is formed in a surface of a substrate between the gate electrode and the high impurity concentration drain layer so as to surround the high impurity concentration drain layer. When a parasitic bipolar transistor is turned on by an abnormal surge, electrons travel from a source electrode to a drain electrode. Here, electrons travel dispersed in the manner to avoid a vicinity X of the surface of the substrate and travel through a deeper path to the drain electrode as indicated by arrows in FIG. 4.
    Type: Grant
    Filed: September 17, 2007
    Date of Patent: May 27, 2014
    Assignee: Semiconductor Components Industries, LLC
    Inventors: Toshihiro Hachiyanagi, Masafumi Uehara, Katsuyoshi Anzai
  • Patent number: 8710542
    Abstract: A semiconductor device includes a base layer, a second conductivity type semiconductor layer, a first insulating film, and a first electrode. The first insulating film is provided on an inner wall of a plurality of first trenches extending from a surface of the second conductivity type semiconductor layer toward the base layer side, but not reaching the base layer. The first electrode is provided in the first trench via the first insulating film, and provided in contact with a surface of the second conductivity type semiconductor layer. The second conductivity type semiconductor layer includes first and second regions. The first region is provided between the first trenches. The second region is provided between the first second conductivity type region and the base layer, and between a bottom part of the first trench and the base layer. The second region has less second conductivity type impurities than the first region.
    Type: Grant
    Filed: September 21, 2011
    Date of Patent: April 29, 2014
    Assignee: Kabushiki Kaisha Tosiba
    Inventor: Mitsuhiko Kitagawa
  • Patent number: 8704298
    Abstract: A MOS diode includes a substrate with a mesa, a P-type semiconductor region with etched shallow trench surrounding the mesa, that cause an increasing metal contact area to reduce Vf value, a gate oxide layer arranged on the mesa, a polysilicon layer arranged on the gate oxide layer, and a shielding oxide layer arranged on the polysilicon layer. The termination structure includes a trench, an oxide layer arranged at least within the trench, at least one sidewall polysilicon layer arranged on the oxide layer within the trench. In the MOS diode, the shielding oxide layer is thicker than the gate oxide layer to prevent leaking current. The oxide layer and the sidewall polysilicon layer can enhance the reverse voltage tolerance of the MOS diode. A metal layer covers the polysilicon region, shielding oxide layer, semiconductor regions with etched shallow trench, termination region and some parts outside the termination region.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: April 22, 2014
    Assignee: PFC Device Corp.
    Inventors: Kuo-Liang Chao, Mei-Ling Chen, Lung-Ching Kao, Hung-Hsin Kuo
  • Patent number: 8704328
    Abstract: A high-voltage integrated circuit device has formed therein a high-voltage junction terminating region that is configured by a breakdown voltage region formed of an n-well region, a ground potential region formed of a p-region, a first contact region and a second contact region. An opposition section of the high-voltage junction terminating region, whose distance to an intermediate-potential region formed of a p-drain region is shorter than those of other sections, is provided with a resistance higher than those of the other sections. Accordingly, a cathode resistance of a parasitic diode formed of the p-region and the n-well region increases, locally reducing the amount of electron holes injected at the time of the input of a negative-voltage surge. As a result, an erroneous operation or destruction of a logic part of a high-side circuit can be prevented when the negative-voltage surge is applied to an H-VDD terminal or a Vs terminal.
    Type: Grant
    Filed: September 12, 2011
    Date of Patent: April 22, 2014
    Assignee: Fuji Electric Co., Ltd.
    Inventor: Masaharu Yamaji
  • Patent number: 8692350
    Abstract: A semiconductor device, and method of manufacturing the device, having a p type diffusion layer; a V-groove including a bottom surface parallel to the rear surface and exposing the p type diffusion layer and a tapered side surface rising from the bottom surface; a p type semiconductor layer on the rear surface surrounded by the tapered side surface of the V-groove; and a p type isolation layer formed on the side surface and electrically connecting the p type diffusion layer on the front surface and the p type semiconductor layer on the rear surface. The V-groove has a chamfered configuration around the intersection between a corner part of the side surface and the bottom surface of the V-groove. An object is to prevent performance degradation due to stress concentration at the corner part of a recessed part caused by thermal history in soldering.
    Type: Grant
    Filed: October 19, 2011
    Date of Patent: April 8, 2014
    Assignee: Fuji Electric Co., Ltd.
    Inventors: Haruo Nakazawa, Takahito Harada, Fumio Shigeta, Kyohei Fukuda
  • Patent number: 8664727
    Abstract: Provided is a semiconductor integrated circuit device capable of realizing an analog circuit required to have a high-precision relative ratio between adjacent transistors, which is reduced in size and cost. A single MOS transistor is provided within each of well regions. A plurality of the MOS transistors is combined to serve as an analog circuit block. Since distances between the well regions and channel regions may be made equal to one another, a high-precision semiconductor integrated circuit device can be obtained.
    Type: Grant
    Filed: November 5, 2009
    Date of Patent: March 4, 2014
    Assignee: Seiko Instruments Inc.
    Inventor: Hirofumi Harada
  • Patent number: 8659079
    Abstract: Provided is a transistor device including at least a vertical transistor structure. The vertical transistor structure includes a substrate, a dielectric layer, a gate, a first doped region, a second doped region, a third doped region, and a fourth doped region. The dielectric layer is disposed in a trench of the substrate. The gate is disposed in the dielectric layer. The gate defines, at both sides thereof, a first channel region and a second channel region in the substrate. The first doped region and the third doped region are disposed in the substrate and located below the first channel region and the second channel region, respectively. The second doped region and the fourth doped region are disposed in the substrate and located above the first channel region and the second channel region, respectively.
    Type: Grant
    Filed: May 29, 2012
    Date of Patent: February 25, 2014
    Assignee: Nanya Technology Corporation
    Inventors: Wei-Ming Liao, Tieh-Chiang Wu
  • Patent number: 8643136
    Abstract: The present invention discloses a high voltage device and a manufacturing method thereof. The high voltage device includes: a first conductive type substrate in which isolation regions are formed for defining a device region; a gate formed on the first conductive type substrate; a source and a drain formed in the device region and located at both sides of the gate respectively, and doped with second conductive type impurities; a second conductive type well, which is formed in the first conductive type substrate, and surrounds the drain from top view; and a first deep trench isolation structure, which is formed in the first conductive type substrate, and is located in the second conductive type well between the source and the drain from top view, wherein the depth of the first deep trench isolation structure is deeper than the second conductive type well from the cross-sectional view.
    Type: Grant
    Filed: March 1, 2011
    Date of Patent: February 4, 2014
    Assignee: Richtek Technology Corporation
    Inventors: Tsung-Yi Huang, Kuo-Hsuan Lo
  • Patent number: 8637955
    Abstract: A semiconductor structure is formed with a NFET device and a PFET device. The NFET device is formed by masking the PFET device regions of a substrate, forming a screen layer through epitaxial growth and in-situ doping, and forming an undoped channel layer on the screen layer through epitaxial growth. The PFET device is similarly formed by masking the NFET regions of a substrate, forming a screen layer through epitaxial growth and in-situ doping, and forming an undoped channel layer on the screen layer through epitaxial growth. An isolation region is formed between the NFET and the PFET device areas to remove any facets occurring during the separate epitaxial growth phases. By forming the screen layer through in-situ doped epitaxial growth, a reduction in junction leakage is achieved versus forming the screen layer using ion, implantation.
    Type: Grant
    Filed: August 31, 2012
    Date of Patent: January 28, 2014
    Assignee: SuVolta, Inc.
    Inventors: Lingquan Wang, Teymur Bakhishev, Dalong Zhao, Pushkar Ranade, Sameer Pradhan, Thomas Hoffmann, Lucian Shifren, Lance Scudder
  • Patent number: 8637928
    Abstract: According to one embodiment, a semiconductor device includes a base region of a second conductivity type, a drift region of a first conductivity type, an insulating layer, a drain region of the first conductivity type, a gate oxide film, a gate electrode, a first main electrode, and a second main electrode. The base region includes a source region of the first conductivity type. The drift region is adjacent to the base region. The insulating layer is provided from a surface to inside of the drift region. The drain region is provided in the surface of the drift region and opposed to the source region across the base region and the insulating layer. The gate oxide film is provided on a surface of the base region. The gate electrode is provided on the gate oxide film. The first main electrode is connected to the source region. The second main electrode is connected to the drain region.
    Type: Grant
    Filed: March 21, 2011
    Date of Patent: January 28, 2014
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Manji Obatake, Tomoko Matsudai
  • Patent number: 8614490
    Abstract: A semiconductor device of the present invention includes: transistor Tr1 arranged on a semiconductor substrate; transistor Tr2 arranged such that a carrier drift direction thereof viewed on the semiconductor substrate is identical to a carrier drift direction of transistor Tr1; diffusion layer 51c connecting diffusion layers 51a and 51b on carrier supply sides of transistors Tr1 and Tr2; and contact plug 61 that is connected to a surface of diffusion layers 51a and 51b on the carrier supply sides of transistors Tr1 and Tr2 or that is connected to a surface of diffusion layer 51c connecting the diffusion layers to each other, and that supplies diffusion layers 51a and 51b with electricity.
    Type: Grant
    Filed: September 2, 2011
    Date of Patent: December 24, 2013
    Assignee: Elpida Memory, Inc.
    Inventor: Masaki Yoshimura
  • Patent number: 8592904
    Abstract: In a non-insulated DC-DC converter having a circuit in which a power MOS•FET high-side switch and a power MOS•FET low-side switch are connected in series, the power MOS•FET low-side switch and a Schottky barrier diode to be connected in parallel with the power MOS•FET low-side switch are formed within one semiconductor chip. The formation region SDR of the Schottky barrier diode is disposed in the center in the shorter direction of the semiconductor chip, and on both sides thereof, the formation regions of the power MOS•FET low-side switch are disposed. From the gate finger in the vicinity of both long sides on the main surface of the semiconductor chip toward the formation region SDR of the Schottky barrier diode, a plurality of gate fingers are disposed so as to interpose the formation region SDR between them.
    Type: Grant
    Filed: August 17, 2012
    Date of Patent: November 26, 2013
    Assignee: Renesas Electronics Corporation
    Inventors: Masaki Shiraishi, Tomoaki Uno, Nobuyoshi Matsuura
  • Publication number: 20130307018
    Abstract: A semiconductor device includes a first semiconductor region including a first semiconductor material. The semiconductor device further includes a second semiconductor region adjoining the first semiconductor region. The second semiconductor region includes a second semiconductor material different from the first semiconductor material. The semiconductor device further includes a drift or base zone in the first semiconductor region. The semiconductor device further includes an emitter region in the second semiconductor region. The second semiconductor region includes at least one type of deep-level dopant. A solubility of the at least one type of deep-level dopant is higher in the second semiconductor region than in the first semiconductor region.
    Type: Application
    Filed: May 18, 2012
    Publication date: November 21, 2013
    Applicant: INFINEON TECHNOLOGIES AG
    Inventors: Stephan Voss, Franz-Josef Niedernostheide, Hans-Joachim Schulze
  • Patent number: 8587057
    Abstract: A metal oxide semiconductor field transistor including a source region, a drain region, a gate and a gate dielectric layer is provided. The drain region is located in a substrate. The drain region has an elliptical spiral shape and a starting portion of the drain region is strip or water drop or has a curvature of 0.02 to 0.0025 [1/um]. The source region located in the substrate is around the drain region. The gate is located above the substrate and between the source region and the drain region. The gate dielectric layer is located between the gate and the substrate.
    Type: Grant
    Filed: May 15, 2012
    Date of Patent: November 19, 2013
    Assignee: Nuvoton Technology Corporation
    Inventors: Po-An Chen, Chin-Han Pan
  • Patent number: 8575694
    Abstract: A high voltage metal-oxide-semiconductor laterally diffused device (HV LDMOS), particularly an insulated gate bipolar junction transistor (IGBT), and a method of making it are provided in this disclosure. The device includes a semiconductor substrate, a gate structure formed on the substrate, a source and a drain formed in the substrate on either side of the gate structure, a first doped well formed in the substrate, and a second doped well formed in the first well. The gate, source, second doped well, a portion of the first well, and a portion of the drain structure are surrounded by a deep trench isolation feature and an implanted oxygen layer in the silicon substrate.
    Type: Grant
    Filed: February 13, 2012
    Date of Patent: November 5, 2013
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Ker Hsiao Huo, Chih-Chang Cheng, Ru-Yi Su, Jen-Hao Yeh, Fu-Chih Yang, Chun Lin Tsai
  • Patent number: 8558287
    Abstract: An apparatus including a first electrode portion configured to inject charge carriers; a second electrode portion configured to collect charge carriers and provide an output signal; a third electrode portion configured to collect charge carriers and provide an output signal; a monolithic semiconductor, providing a first channel for the transport of injected charge carriers between the first electrode portion and the second electrode portion and providing a second channel for the transport of injected charge carriers between the first electrode portion and the third electrode portion, wherein the first channel is configured such that a charge carrier injected at the first electrode portion will reach the second electrode portion via the first channel after a first transport time and the second channel is configured such that a charge carrier injected at the first electrode portion will reach the third electrode portion via the second channel after a second transport time greater than the first transport time;
    Type: Grant
    Filed: May 13, 2011
    Date of Patent: October 15, 2013
    Assignee: Nokia Corporation
    Inventors: Vladimir Alexsandrovich Ermolov, Meri Sari Helle, Pirjo Marjaana Pasanen, Markku Anttoni Oksanen, Eira Tuulia Seppala
  • Patent number: 8546878
    Abstract: A semiconductor device includes a semiconductor layer of a first conductivity type and a semiconductor layer of a second conductivity type formed thereon. The semiconductor layer of the second conductivity type is characterized by a first thickness. The semiconductor device includes a set of trenches having a predetermined depth and extending into the semiconductor layer of the second conductivity type, thereby defining interfacial regions disposed between the semiconductor layer of the second conductivity type and each of the trenches. The trenches comprises a distal portion consisting essentially of a dielectric material disposed therein and a proximal portion comprising the dielectric material and a gate material disposed interior to the dielectric material in the proximal portion of the trench. The semiconductor device further includes a source region coupled to the semiconductor layer of the second conductivity type.
    Type: Grant
    Filed: June 9, 2011
    Date of Patent: October 1, 2013
    Assignee: MaxPower Semiconductor, Inc.
    Inventor: Mohamed N. Darwish
  • Patent number: 8507988
    Abstract: A high voltage (HV) device includes a gate dielectric structure over a substrate. The gate dielectric structure has a first portion and a second portion. The first portion has a first thickness and is over a first well region of a first dopant type in the substrate. The second portion has a second thickness and is over a second well region of a second dopant type. The first thickness is larger than the second thickness. A gate electrode is disposed over the gate dielectric structure. A metallic layer is over and coupled with the gate electrode. The metallic layer extends along a direction of a channel under the gate dielectric structure. At least one source/drain (S/D) region is disposed within the first well region of the first dopant type.
    Type: Grant
    Filed: June 2, 2010
    Date of Patent: August 13, 2013
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chih-Wen Yao, Robert S. J. Pan, Ruey-Hsin Liu, Hsueh-Liang Chou, Puo-Yu Chiang, Chi-Chih Chen, Hsiao Chin Tuan
  • Patent number: 8501561
    Abstract: Disclosed is a semiconductor component arrangement and a method for producing a semiconductor component arrangement. The method comprises producing a trench transistor structure with at least one trench disposed in the semiconductor body and with at least an gate electrode disposed in the at least one trench. An electrode structure is disposed in at least one further trench and comprises at least one electrode. The at least one trench of the transistor structure and the at least one further trench are produced by common process steps. Furthermore, the at least one electrode of the electrode structure and the gate electrode are produced by common process steps.
    Type: Grant
    Filed: January 10, 2011
    Date of Patent: August 6, 2013
    Assignee: Infineon Technologies AG
    Inventors: Markus Zundel, Franz Hirler, Norbert Krischke
  • Patent number: 8487375
    Abstract: A semiconductor device includes a compound semiconductor layer provided over a substrate, a plurality of source electrodes and a plurality of drain electrodes provided over the compound semiconductor layer, a plurality of first vias each of which is configured to pass through the compound semiconductor layer and be coupled to a corresponding one of the plurality of source electrodes, a plurality of second vias each of which is configured to pass through the compound semiconductor layer and be coupled to a corresponding one of the plurality of drain electrodes, a common source wiring line configured to be coupled to the plurality of first vias and be buried in the substrate, and a common drain wiring line configured to be coupled to the plurality of second vias and be buried in the substrate.
    Type: Grant
    Filed: October 25, 2010
    Date of Patent: July 16, 2013
    Assignee: Fujitsu Limited
    Inventor: Naoya Okamoto
  • Patent number: 8471320
    Abstract: A memory array layout includes an active region array having a plurality of active regions, wherein the active regions are arranged alternatively along a second direction and parts of the side of the adjacent active regions are overlapped along a second direction; a plurality of first doped region, wherein each first doped region is disposed in a middle region; a plurality of second doped region, wherein each second doped region is disposed in a distal end region respectively; a plurality of recessed gate structures; a plurality of word lines electrically connected to each recessed gate structure respectively; a plurality of digit lines electrically connected to the first doped region respectively; and a plurality of capacitors electrically connected to each second doped region respectively.
    Type: Grant
    Filed: January 4, 2012
    Date of Patent: June 25, 2013
    Assignee: Inotera Memories, Inc.
    Inventors: Tzung-Han Lee, Chung-Lin Huang, Ron Fu Chu
  • Patent number: 8471329
    Abstract: A tunnel field-effect transistor (TFET) includes a gate electrode, a source region, and a drain region. The source and drain regions are of opposite conductivity types. A channel region is disposed between the source region and the drain region. A source diffusion barrier is disposed between the channel region and the source region. The source diffusion barrier and the source region are under and overlapping the gate electrode. The source diffusion barrier has a first bandgap greater than second bandgaps of the source region, the drain region, and the channel region.
    Type: Grant
    Filed: November 16, 2011
    Date of Patent: June 25, 2013
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Krishna Kumar Bhuwalka, Gerben Doornbos, Matthias Passlack
  • Patent number: 8450793
    Abstract: A controlled-punch-through semiconductor device with a four-layer structure is disclosed which includes layers of different conductivity types, a collector on a collector side, and an emitter on an emitter side which lies opposite the collector side. The semiconductor device can be produced by a method performed in the following order: producing layers on the emitter side of wafer of a first conductivity type; thinning the wafer on a second side; applying particles of the first conductivity type to the wafer on the collector side for forming a first buffer layer having a first peak doping concentration in a first depth, which is higher than doping of the wafer; applying particles of a second conductivity type to the wafer on the second side for forming a collector layer on the collector side; and forming a collector metallization on the second side.
    Type: Grant
    Filed: April 2, 2010
    Date of Patent: May 28, 2013
    Assignee: ABB Technology AG
    Inventors: Munaf Rahimo, Jan Vobecky, Wolfgang Janisch, Arnost Kopta, Frank Ritchie
  • Patent number: 8421157
    Abstract: A horizontal semiconductor device includes a semiconductor substrate of a first conductivity type and a semiconductor region of a second conductivity type on the semiconductor substrate. The device includes a collector layer of the first conductivity type within the semiconductor region, an endless base layer of the first conductivity type within the semiconductor region, and an endless first emitter layer of the second conductivity type in the endless base layer. The endless base layer is off the collector layer but surrounds the collector layer. A movement of carriers between the endless first emitter layer and the collector layer is controlled in a channel region formed in the endless base layer. An insulation film is disposed between the semiconductor substrate and the semiconductor region. A region of the first conductivity type is disposed in the semiconductor region to contact with a surface of the endless base layer nearest the semiconductor substrate.
    Type: Grant
    Filed: September 28, 2010
    Date of Patent: April 16, 2013
    Assignee: Mitsubishi Electric Corporation
    Inventor: Kazunari Hatade
  • Patent number: 8378428
    Abstract: The applications discloses a semiconductor device comprising a substrate having a first active region, a second active region, and an isolation region having a first width interposed between the first and second active regions; a P-metal gate electrode over the first active region and extending over at least ? of the first width of the isolation region; and an N-metal gate electrode over the second active region and extending over no more than ? of the first width. The N-metal gate electrode is electrically connected to the P-metal gate electrode over the isolation region.
    Type: Grant
    Filed: September 29, 2010
    Date of Patent: February 19, 2013
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Han-Guan Chew, Lee-Wee Teo, Ming Zhu, Bao-Ru Young, Harry-Hak-Lay Chuang
  • Patent number: 8377755
    Abstract: A method of manufacturing a SOI high voltage power chip with trenches is disclosed. The method comprises: forming a cave and trenches at a SOI substrate; filling oxide in the cave; oxidizing the trenches, forming oxide isolation regions for separating low voltage devices at the same time; filling oxide in the oxidized trenches; and then forming drain regions, source regions and gate regions for a high voltage power device and low voltage devices. The process involves depositing an oxide layer overlapping the cave of the SOI substrate. A SOI high voltage power chip thus made will withstand at least above 700V voltage.
    Type: Grant
    Filed: September 7, 2010
    Date of Patent: February 19, 2013
    Assignee: Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences
    Inventors: Xinhong Cheng, Zhongjian Wang, Yuehui Yu, Dawei He, Dawei Xu, Chao Xia
  • Patent number: 8367532
    Abstract: A semiconductor device in one embodiment has a first connection region, a second connection region and a semiconductor volume arranged between the first and second connection regions. Provision is made, within the semiconductor volume, in the vicinity of the second connection region, of a field stop zone for spatially delimiting a space charge zone that can be formed in the semiconductor volume, and of an anode region adjoining the first connection region. The dopant concentration profile within the semiconductor volume is configured such that the integral of the ionized dopant charge over the semiconductor volume, proceeding from an interface of the anode region which faces the second connection region, in the direction of the second connection region, reaches a quantity of charge corresponding to the breakdown charge of the semiconductor device only near the interface of the field stop zone which faces the second connection region.
    Type: Grant
    Filed: July 26, 2012
    Date of Patent: February 5, 2013
    Assignee: Infineon Technologies AG
    Inventors: Anton Mauder, Hans-Joachim Schulze, Frank Hille, Holger Schulze, Manfred Pfaffenlehner, Carsten Schäffer, Franz-Josef Niedernostheide
  • Patent number: 8362575
    Abstract: An integrated circuit structure includes a fin field-effect transistor (FinFET) including a semiconductor fin over and adjacent to insulation regions; and a source/drain region over the insulation regions. The source/drain region includes a first and a second semiconductor region. The first semiconductor region includes silicon and an element selected from the group consisting of germanium and carbon, wherein the element has a first atomic percentage in the first semiconductor region. The first semiconductor region has an up-slant facet and a down-slant facet. The second semiconductor region includes silicon and the element. The element has a second atomic percentage lower than the first atomic percentage. The second semiconductor region has a first portion on the up-slant facet and has a first thickness. A second portion of the second semiconductor region, if any, on the down-slant facet has a second thickness smaller than the first thickness.
    Type: Grant
    Filed: July 7, 2010
    Date of Patent: January 29, 2013
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Tsz-Mei Kwok, Chien-Chang Su, Kuan-Yu Chen, Hsueh-Chang Sung, Hsien-Hsin Lin
  • Patent number: 8343862
    Abstract: Embodiments discussed herein relate to processes of producing a field stop zone within a semiconductor substrate by implanting dopant atoms into the substrate to form a field stop zone between a channel region and a surface of the substrate, at least some of the dopant atoms having energy levels of at least 0.15 eV below the energy level of the conduction band edge of semiconductor substrate; and laser annealing the field stop zone.
    Type: Grant
    Filed: May 9, 2011
    Date of Patent: January 1, 2013
    Assignee: Infineon Technologies Austria AG
    Inventors: Hans-Joachim Schulze, Frank Pfirsch, Stephan Voss, Franz-Josef Niedernostheide
  • Patent number: 8324669
    Abstract: A process for manufacturing a MOS device includes forming a semiconductor layer having a first type of conductivity; forming an insulated gate structure having an electrode region, above the semiconductor layer; forming body regions having a second type of conductivity, within the semiconductor layer, laterally and partially underneath the insulated gate structure; forming source regions having the first type of conductivity, within the body regions; and forming a first enrichment region, in a surface portion of the semiconductor layer underneath the insulated gate structure. The first enrichment region has the first type of conductivity and is set at a distance from the body regions. In order to form the first enrichment region, a first enrichment window is defined within the insulated gate structure, and first dopant species of the first type of conductivity are introduced through the first enrichment window and in a way self-aligned thereto.
    Type: Grant
    Filed: November 8, 2011
    Date of Patent: December 4, 2012
    Assignee: STMicroelectronics S.r.l.
    Inventor: Giuseppe Curro