Including Two Or More Of Elements From Fourth Group Of Periodic System (epo) Patents (Class 257/E29.084)
  • Publication number: 20110169015
    Abstract: Disclosed is a bipolar semiconductor device which is capable of reducing the surface state density of a bipolar transistor and increasing the current gain of the transistor, thereby improving the transistor performance. A bipolar semiconductor device (100) has a surface protective film (30) on the surface of a semiconductor element. The surface protective film is composed of a thermal oxide film (31) formed on the surface of the semiconductor element, and a deposited oxide film (32) formed on the thermal oxide film. The deposited oxide film contains at least one of hydrogen element and nitrogen element in an amount of not less than 1018 cm?3.
    Type: Application
    Filed: August 25, 2009
    Publication date: July 14, 2011
    Applicants: HONDA MOTOR CO., LTD., SHINDENGEN ELECTRIC MANUFACTURING CO., LTD.
    Inventors: Yuki Negoro, Akihiko Horiuchi, Kensuke Iwanaga, Seiichi Yokoyama, Hideki Hashimoto, Kenichi Nonaka, Yusuke Maeyama, Masashi Sato, Masaaki Shimizu
  • Publication number: 20110147766
    Abstract: A method of manufacturing a silicon carbide semiconductor device is provided that includes a step of forming in a surface of a silicon carbide wafer of first conductivity type a first region of second conductivity type having a predetermined space thereinside by ion-implanting aluminum as a first impurity and boron as a second impurity; a step of forming a JTE region in the surface of the silicon carbide wafer from the first region by diffusing the boron ion-implanted in the first region toward its neighboring zones by an activation annealing treatment; a step of forming a first electrode on the surface of the silicon carbide wafer at the space inside the first region and at an inner part of the first region; and a step of forming a second electrode on the opposite surface of the silicon carbide wafer. Thereby, a JTE region can be formed that has a wide range of impurity concentration and a desired breakdown voltage without increasing the number of steps of the manufacturing process.
    Type: Application
    Filed: February 28, 2011
    Publication date: June 23, 2011
    Applicant: MITSUBISHI ELECTRIC CORPORATION
    Inventor: Yoichiro TARUI
  • Publication number: 20110140102
    Abstract: A semiconductor device according to the embodiment includes a growth substrate; a first buffer layer having a compositional formula of RexSiy (0?x?2, 0?y?2) over the growth substrate; and a group III nitride-based epitaxial semiconductor layer having a compositional formula of InxAlyGa1-x-yN (0?x, 0?y, x+y?1) over the first buffer layer.
    Type: Application
    Filed: May 4, 2009
    Publication date: June 16, 2011
    Inventor: June O Song
  • Publication number: 20110133211
    Abstract: A wide band gap semiconductor device having a JFET, a MESFET, or a MOSFET mainly includes a semiconductor substrate, a first conductivity type semiconductor layer, and a first conductivity type channel layer. The semiconductor layer is formed on a main surface of the substrate. A recess is formed in the semiconductor layer in such a manner that the semiconductor layer is divided into a source region and a drain region. The recess has a bottom defined by the main surface of the substrate and a side wall defined by the semiconductor layer. The channel layer has an impurity concentration lower than an impurity concentration of the semiconductor layer. The channel layer is formed on the bottom and the side wall of the recess by epitaxial growth.
    Type: Application
    Filed: November 30, 2010
    Publication date: June 9, 2011
    Applicant: DENSO CORPORATION
    Inventors: Rajesh Kumar MALHAN, Naohiro Sugiyama, Yuuichi Takeuchi
  • Publication number: 20110127544
    Abstract: A templated substate includes a base layer, and a template layer disposed on the base layer and having a composition including a single-crystal Group Ill nitride. The template layer includes a continuous sublayer on the base layer and a nanocolumnar sublayer on the first sublayer, wherein the nanocolumnar sublayer includes a plurality of nano-scale columns.
    Type: Application
    Filed: May 6, 2009
    Publication date: June 2, 2011
    Applicant: KYMA TECHNOLOGIES
    Inventors: Tanya Paskova, Edward A. Preble, Terry L. Clites, Andrew D. Hanser, Keith R. Evans
  • Publication number: 20110127545
    Abstract: A compound semiconductor device includes a compound semiconductor substrate; epitaxially grown layers formed over the compound semiconductor substrate and including a channel layer and a resistance lowering cap layer above the channel layer; source and drain electrodes in ohmic contact with the channel layer; recess formed by removing the cap layer between the source and drain electrodes; a first insulating film formed on an upper surface of the cap layer and having side edges at positions retracted from edges, or at same positions as the edges of the cap layer in a direction of departing from the recess; a second insulating film having gate electrode opening and formed covering a semiconductor surface in the recess and the first insulating film; and a gate electrode formed on the recess via the gate electrode opening.
    Type: Application
    Filed: February 8, 2011
    Publication date: June 2, 2011
    Applicant: FUJITSU LIMITED
    Inventors: Kozo Makiyama, Tsuyoshi Takahashi
  • Publication number: 20110121316
    Abstract: The area of each body region is minimized, and the gate oxide films at the bottoms of the trenches are more effectively protected by depletion layers extending from the body regions. According to the present invention, an n?-type drift layer and a p-type base region are stacked on an n+-type silicon carbide substrate, and an n+-type source region is formed in a predetermined region of a surface portion in the base region. A gate trench is formed in a trench groove that reaches the drift layer. A p-type body region is formed at a deeper location than the gate trench. The p-type body region is adjacent to the gate trench but is not in contact with the gate trench. When viewed from above, the gate trench having a hexagonal shape surrounds the p-type body region. The side faces of the gate trench are formed only by {11-20} planes of silicon carbide.
    Type: Application
    Filed: October 29, 2010
    Publication date: May 26, 2011
    Applicant: NATIONAL INSTITUTE OF ADVANCED INDUSTRIAL SCIENCE AND TECHNOLOGY
    Inventor: Shinsuke Harada
  • Publication number: 20110121317
    Abstract: In an atmosphere in which a silicon carbide (SiC) substrate implanted with impurities is annealed to activate the impurities, by setting a partial pressure of H2O to be not larger than 10?2 Pa, preferably not larger than 10?3 Pa, surface irregularity of the silicon carbide (SiC) substrate is controlled to be not greater than 2 nm, more preferably not greater than 1 nm in RMS value.
    Type: Application
    Filed: January 19, 2011
    Publication date: May 26, 2011
    Applicant: CANON ANELVA CORPORATION
    Inventors: Masami Shibagaki, Akihiro Egami
  • Publication number: 20110101418
    Abstract: An embodiment of the invention reduces the external resistance of a transistor by utilizing a silicon germanium alloy for the source and drain regions and a nickel silicon germanium self-aligned silicide (i.e., salicide) layer to form the contact surface of the source and drain regions. The interface of the silicon germanium and the nickel silicon germanium silicide has a lower specific contact resistivity based on a decreased metal-semiconductor work function between the silicon germanium and the silicide and the increased carrier mobility in silicon germanium versus silicon. The silicon germanium may be doped to further tune its electrical properties. A reduction of the external resistance of a transistor equates to increased transistor performance both in switching speed and power consumption.
    Type: Application
    Filed: December 29, 2009
    Publication date: May 5, 2011
    Inventors: Anand Murthy, Boyan Boyanov, Glenn A. Glass, Thomas Hoffmann
  • Publication number: 20110101377
    Abstract: A method is disclosed for forming a high electron mobility transistor. The method includes the steps of implanting a Group III nitride layer at a defined position with ions that when implanted produce an improved ohmic contact between the layer and contact metals, with the implantation being carried out at a temperature higher than room temperature and hot enough to reduce the amount of damage done to the Group III nitride layer, but below a temperature at which surface problems causing leakage at the gate or epitaxial layer dissociation would occur. An ohmic contact selected from the group consisting of titanium, aluminum, nickel and alloys thereof is added to the implanted defined position on the Group III nitride layer.
    Type: Application
    Filed: January 3, 2011
    Publication date: May 5, 2011
    Applicant: CREE, INC.
    Inventors: Alexander Suvorov, Scott T. Sheppard
  • Patent number: 7928443
    Abstract: A semiconductor device includes a semiconductor substrate having at least one gap, extending under a portion of the semiconductor substrate. A gate stack is on the semiconductor substrate. A strain layer is formed in at least a portion of the at least one gap. The strain layer is formed only under at least one of a source region and a drain region of the semiconductor device.
    Type: Grant
    Filed: January 11, 2010
    Date of Patent: April 19, 2011
    Assignee: International Business Machines Corporation
    Inventors: An L. Steegen, Haining S. Yang, Ying Zhang
  • Publication number: 20110049530
    Abstract: A metal-insulator-semiconductor field-effect transistor (MISFET) includes a SiC layer with source and drain regions of a first conductivity type spaced apart therein. A first gate insulation layer is on the SiC layer and has a net charge along an interface with the SiC layer that is the same polarity as majority carriers of the source region. A gate contact is on the first gate insulation layer over a channel region of the SiC layer between the source and drain regions. The net charge along the interface between the first gate insulation layer and the SiC layer may deplete majority carriers from an adjacent portion of the channel region between the source and drain regions in the SiC layer, which may increase the threshold voltage of the MISFET and/or increase the electron mobility therein.
    Type: Application
    Filed: August 27, 2009
    Publication date: March 3, 2011
    Inventors: Sarit Dhar, Sei-Hyung Ryu
  • Patent number: 7898028
    Abstract: A process for fabricating a MOSFET device featuring a channel region comprised with a silicon-germanium component is provided. The process features employ an angled ion implantation procedure to place germanium ions in a region of a semiconductor substrate underlying a conductive gate structure. The presence of raised silicon shapes used as a diffusion source for a subsequent heavily-doped source/drain region, the presence of a conductive gate structure, and the removal of dummy insulator previously located on the conductive gate structure allow the angled implantation procedure to place germanium ions in a portion of the semiconductor substrate to be used for the MOSFET channel region. An anneal procedure results in the formation of the desired silicon-germanium component in the portion of semiconductor substrate to be used for the MOSFET channel region.
    Type: Grant
    Filed: August 23, 2007
    Date of Patent: March 1, 2011
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Sun-Jay Chang, Shien-Yang Wu
  • Publication number: 20110031503
    Abstract: An FET device is disclosed which contains a source and a drain that are each provided with an extension. The source and the drain, and their extensions, are composed of epitaxial materials containing Ge or C. The epitaxial materials and the Si substrate have differing lattice constants, consequently the source and the drain and their extensions are imparting a state of stress onto the channel. For a PFET device the epitaxial material may be SiGe, or Ge, and the channel may be in a compressive state of stress. For an NFET device the epitaxial material may be SiC and the channel may be in a tensile state of stress. A method for fabricating an FET device is also disclosed. One may form a first recession in the Si substrate to a first depth on opposing sides of the gate. The first recession is filled epitaxially with a first epitaxial material. Then, a second recession may be formed in the Si substrate to a second depth, which is greater than the first depth.
    Type: Application
    Filed: August 10, 2009
    Publication date: February 10, 2011
    Applicant: International Business Machines Corporation
    Inventors: Bruce B. Doris, Johnathan E. Faltermeier, Lahir S. Adam, Balasubramanian S. Haran
  • Publication number: 20110001167
    Abstract: A semiconductor-on-insulator hetero-structure and a method for fabricating the semiconductor-on-insulator hetero-structure include a crystalline substrate and a dielectric layer located thereupon having an aperture that exposes the crystalline substrate. The semiconductor-on-insulator hetero-structure and the method for fabricating the semiconductor-on-insulator hetero-structure also include a semiconductor layer of composition different than the crystalline substrate located within the aperture and upon the dielectric layer. A portion of the semiconductor layer located aligned over the aperture includes a defect. A portion of the semiconductor layer located aligned over the dielectric layer does not include a defect. Upon removing the portion of the semiconductor layer located aligned over the aperture a reduced defect semiconductor-on-insulator hetero-structure is formed.
    Type: Application
    Filed: July 1, 2009
    Publication date: January 6, 2011
    Applicant: International Business Machines Corporation
    Inventors: Stephen W. Bedell, Jeehwan Kim, Alexander Reznicek, Devendra K. Sadana
  • Patent number: 7816688
    Abstract: An upper part of a SIC substrate 1 is oxidized at a temperature of 800 to 1400° C., inclusive, in an oxygen atmosphere at 1.4×102 Pa or less, thereby forming a first insulating film 2 which is a thermal oxide film of 20 nm or less in thickness. Thereafter, annealing is performed, and then a first cap layer 3, which is a nitride film of about 5 nm in thickness, is formed thereon by CVD. A second insulating film 4, which is an oxide film of about 130 nm in thickness, is deposited thereon by CVD. A second cap layer 5, which is a nitride film of about 10 nm in thickness, is formed thereon. In this manner, a gate insulating film 6 made of the first insulating film 2 through the second cap layer 5 is formed, thus obtaining a low-loss highly-reliable semiconductor device.
    Type: Grant
    Filed: November 27, 2002
    Date of Patent: October 19, 2010
    Assignee: Panasonic Corporation
    Inventors: Kenya Yamashita, Makoto Kitabatake, Kunimasa Takahashi, Osamu Kusumoto, Masao Uchida, Ryoko Miyanaga
  • Publication number: 20100244198
    Abstract: Silicon germanium (SiGe) is epitaxially grown on a silicon channel above nFET and pFET regions of a substrate. SiGe is removed above the nFET regions. A device includes a silicon channel above the nFET regions and a SiGe channel above the pFET regions.
    Type: Application
    Filed: March 30, 2009
    Publication date: September 30, 2010
    Applicant: International Business Machines Corporation
    Inventors: Daniel J. Jaeger, Michael ` V. Aquilino, Christopher V. Baiocco
  • Publication number: 20100244047
    Abstract: A method of forming a semiconductor device may include forming a terminal region of a first conductivity type within a semiconductor layer of the first conductivity type. A well region of a second conductivity type may be formed within the semiconductor layer wherein the well region is adjacent at least portions of the terminal region within the semiconductor layer, a depth of the well region into the semiconductor layer may be greater than a depth of the terminal region into the semiconductor layer, and the first and second conductivity types may be different. An epitaxial semiconductor layer may be formed on the semiconductor layer, and a terminal contact region of the first conductivity type may be formed in the epitaxial semiconductor layer with the terminal contact region providing electrical contact with the terminal region. In addition, an ohmic contact may be formed on the terminal contact region. Related structures are also discussed.
    Type: Application
    Filed: March 27, 2009
    Publication date: September 30, 2010
    Inventors: Brett Adam Hull, Qingchun Zhang
  • Publication number: 20100200896
    Abstract: A method for growing an epitaxial layer on a substrate wherein the substrate includes a surface having a Miller index of (110) for the beneficial properties. The method comprises using a direct silicon bonded wafer with a substrate having a first Miller index and a surface having a second Miller index. An element such as a gate for a PFET may be deposited onto the surface. The area not under the gate may then be etched away to expose the substrate. An epitaxial layer may then be grown on the surface providing optimal growth patterns. The Miller index of the substrate may be (100). In an alternative embodiment the surface may have a Miller index of (100) and the surface is etched where an element such as a gate for a PFET may be placed.
    Type: Application
    Filed: February 9, 2009
    Publication date: August 12, 2010
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Thomas N. Adam, Jinghong Li, Thomas A. Wallner, Haizhou Yin
  • Patent number: 7759208
    Abstract: Embodiments of the present invention provide a method that cools a substrate to a temperature below 10° C. and then implants ions into the substrate while the temperature of the substrate is below 10° C. The implanting causes damage to a first depth of the substrate to create an amorphized region in the substrate. The method forms a layer of metal on the substrate and heats the substrate until the metal reacts with the substrate and forms a silicide region within the amorphized region of the substrate. The depth of the silicide region is at least as deep as the first depth.
    Type: Grant
    Filed: March 27, 2009
    Date of Patent: July 20, 2010
    Assignee: International Business Machines Corporation
    Inventors: Asa Frye, Christian Lavoie, Ahmet S. Ozcan, Donald R. Wall
  • Publication number: 20100148187
    Abstract: A semiconductor device according to an embodiment includes a transistor including a gate electrode formed on a semiconductor substrate of a predetermined crystal via a gate insulating film and a source-drain region formed in the semiconductor substrate so as to have a convex portion in a direction of a gate width and in which an epitaxial crystal having a lattice constant different from that of the predetermined crystal is embedded, and a contact plug formed on the source-drain region other than the convex portion.
    Type: Application
    Filed: December 10, 2009
    Publication date: June 17, 2010
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventor: Hisashi Aikawa
  • Publication number: 20100127278
    Abstract: A method for fabricating a semiconductor device includes the steps of forming a SiC film, forming trenches at a surface of the SiC film, heat-treating the SiC film with silicon supplied to the surface of the SiC film, and obtaining a plurality of macrosteps to constitute channels, at the surface of the SiC film by the step of heat-treating. Taking the length of one cycle of the trenches as L and the height of the trenches as h, a relation L=h(cot ?+cot ?) (where ? and ? are variables that satisfy the relations 0.5??,?,?45) holds between the length L and the height h. Consequently, the semiconductor device can be improved in property.
    Type: Application
    Filed: March 10, 2008
    Publication date: May 27, 2010
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventor: Takeyoshi Masuda
  • Patent number: 7700936
    Abstract: In one embodiment, a method of producing an optoelectronic nanostructure includes preparing a substrate; providing a quantum well layer on the substrate; etching a volume of the substrate to produce a photonic crystal. The quantum dots are produced at multiple intersections of the quantum well layer within the photonic crystal. Multiple quantum well layers may also be provided so as to form multiple vertically aligned quantum dots. In another embodiment, an optoelectronic nanostructure includes a photonic crystal having a plurality of voids and interconnecting veins; a plurality of quantum dots arranged between the plurality of voids, wherein an electrical connection is provided to one or more of the plurality of quantum dots through an associated interconnecting vein.
    Type: Grant
    Filed: June 30, 2006
    Date of Patent: April 20, 2010
    Assignee: University of Delaware
    Inventors: Janusz Murakowski, Garrett Schneider, Dennis W. Prather
  • Patent number: 7700951
    Abstract: A semiconductor device includes a semiconductor substrate having at least one gap, extending under a portion of the semiconductor substrate. A gate stack is on the semiconductor substrate. A strain layer is formed in at least a portion of the at least one gap. The strain layer is formed only under at least one of a source region and a drain region of the semiconductor device.
    Type: Grant
    Filed: July 15, 2008
    Date of Patent: April 20, 2010
    Assignee: International Business Machines Corporation
    Inventors: An L. Steegen, Haining S. Yang, Ying Zhang
  • Publication number: 20100078653
    Abstract: In a manufacturing flow for adapting the band gap of the semiconductor material with respect to the work function of a metal-containing gate electrode material, a strain-inducing material may be deposited to provide an additional strain component in the channel region. For instance, a layer stack with silicon/carbon, silicon and silicon/germanium may be used for providing the desired threshold voltage for a metal gate while also providing compressive strain in the channel region.
    Type: Application
    Filed: September 2, 2009
    Publication date: April 1, 2010
    Inventors: Uwe Griebenow, Jan Hoentschel, Kai Frohberg
  • Publication number: 20100078654
    Abstract: A semiconductor device according to one embodiment includes: a first transistor comprising a first gate electrode formed on a semiconductor substrate via a first gate insulating film, a first channel region formed in the semiconductor substrate under the first gate insulating film, and first epitaxial crystal layers formed on both sides of the first channel region in the semiconductor substrate, the first epitaxial crystal layers comprising a first crystal; and a second transistor comprising a second gate electrode formed on the semiconductor substrate via a second gate insulating film, a second channel region formed in the semiconductor substrate under the second gate insulating film, second epitaxial crystal layers formed on both sides of the second channel region in the semiconductor substrate, and third epitaxial crystal layers formed on the second epitaxial crystal layers, the second epitaxial crystal layers comprising a second crystal, the third epitaxial crystal layers comprising the first crystal, the
    Type: Application
    Filed: September 14, 2009
    Publication date: April 1, 2010
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventor: Shintaro OKAMOTO
  • Publication number: 20100065857
    Abstract: A silicon carbide semiconductor device having excellent performance characteristics and a method of manufacturing the same are obtained. A coating film made of Si is formed on an initial growth layer on a 4H—SiC substrate, and an extended terrace surface is formed in a region covered with the coating film. Next, the coating film is removed, and a new growth layer is epitaxially grown on the initial growth layer. A 3C—SiC portion made of 3C—SiC crystals having a polytype stable at a low temperature is grown on the extended terrace surface of the initial growth layer. A channel region of a MOSFET or the like is provided in the 3C—SiC portion having a narrow band gap. As a result, the channel mobility is improved because of a reduction in an interface state, and a silicon carbide semiconductor device having excellent performance characteristics is obtained.
    Type: Application
    Filed: November 7, 2007
    Publication date: March 18, 2010
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Shin Harada, Takeyoshi Masuda
  • Publication number: 20100044836
    Abstract: The invention relates to a process for making at least one GeOI structure by germanium condensation of a SiGe layer supported by a layer of silicon oxide. The layer of silicon oxide is doped with germanium, the concentration of germanium in the layer of silicon oxide being such that it lowers the flow temperature of the layer of silicon oxide below the oxidation temperature allowing germanium condensation of the SiGe layer.
    Type: Application
    Filed: August 12, 2009
    Publication date: February 25, 2010
    Applicant: Commissariat A L'Energie Atomique
    Inventors: Jean-François Damlencourt, Benjamin Vincent
  • Publication number: 20100032684
    Abstract: A method for fabricating substantially relaxed SiGe alloy layers with a reduced planar defect density is disclosed The method of the present invention includes forming a strained Ge-containing layer on a surface of a Si-containing substrate; implanting ions at or below the Ge-containing layer/Si-containing substrate interface and heating to form a substantially relaxed SiGe alloy layer that has a reduced planar defect density. A substantially relaxed SiGe-on-insulator substrate material having a SiGe layer with a reduced planar defect density as well as heterostructures containing the same are also provided.
    Type: Application
    Filed: August 11, 2009
    Publication date: February 11, 2010
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Stephen W. Bedell, Huajie Chen, Keith E. Fogel, Devendra K. Sadana, Ghavam G. Shahidi
  • Publication number: 20100032812
    Abstract: A method is provided for controlling the average stress and the strain gradient in structural silicon germanium layers as used in micromachined devices. The method comprises depositing a single silicon germanium layer on a substrate and annealing a predetermined part of the deposited silicon germanium layer. The process parameters of the depositing and/or annealing steps are selected such that a predetermined average stress and a predetermined strain gradient are obtained in the predetermined part of the silicon germanium layer. Preferably a plasma assisted deposition technique is used for depositing the silicon germanium layer, and a pulsed excimer laser is used for local annealing, with a limited thermal penetration depth. Structural silicon germanium layers for surface micromachined structures can be formed at temperatures substantially below 400° C., which offers the possibility of post-processing micromachined structures on top of a substrate comprising electronic circuitry such as CMOS circuitry.
    Type: Application
    Filed: December 21, 2006
    Publication date: February 11, 2010
    Applicants: INTERUNIVERSITAIR MICROELEKTRONICA CENTRUM (IMEC), AMERICAN UNIVERSITY CAIRO
    Inventors: Sherif Sedky, Ann Witvrouw
  • Publication number: 20100006860
    Abstract: A method of manufacturing a semiconductor device based on a SiC substrate (12), comprising the steps of forming (201) an oxide layer (14) on a Si-terminated face of the SiC substrate (12) at an oxidation rate sufficiently high to achieve a near interface trap density below 5×1011 cm?2; and annealing (202) the oxidized SiC substrate in a hydrogen-containing environment, in order to passivate deep traps formed in the oxide-forming step, thereby enabling manufacturing of a SiC-based MOSFET (10) having improved inversion layer mobility and reduced threshold voltage. It has been found by the present inventors that the density of DTs increases while the density of NITs decreases when the Si-face of the SiC substrate is subject to rapid oxidation. According to the present invention, the deep traps formed during the rapid oxidation can be passivated by hydrogen annealing, thus leading to a significantly decreased threshold voltage for a semiconductor device formed on the oxide.
    Type: Application
    Filed: August 29, 2007
    Publication date: January 14, 2010
    Applicant: NXP, B.V.
    Inventors: Thomas C. Roedle, Elnar O. Sveinbjornsson, Halldor O. Olafsson, Gudjon I. Gudjonsson, Carl F. Allerstam
  • Publication number: 20090289264
    Abstract: An SiC semiconductor device includes a substrate, a drift layer disposed on a first surface of the substrate, a base region disposed above the drift layer, a source region disposed above the base region, a trench penetrating the source region and the base region to the drift layer, a gate insulating layer disposed on a surface of the trench, a gate electrode disposed on a surface of the gate insulating layer, a first electrode electrically coupled with the source region and the base region, a second electrode disposed on the second surface of the substrate, and a second conductivity-type layer disposed at a portion of the base region located under the source region. The second conductivity-type layer has the second conductivity type and has an impurity concentration higher than the base region.
    Type: Application
    Filed: May 14, 2009
    Publication date: November 26, 2009
    Applicant: DENSO CORPORATION
    Inventors: Hideo Matsuki, Eiichi Okuno, Naohiro Suzuki
  • Publication number: 20090283761
    Abstract: A method of dividing single crystals, particularly of plates of parts thereof, is proposed, which can comprise: pre-adjusting the crystallographic cleavage plane (2?) relative to the cleavage device, setting a tensional intensity (K) by means of tensional fields (3?, 4?), determining an energy release rate G(?) in dependence from a possible deflection angle (?) from the cleavage plane (2?) upon crack propagation, controlling the tensional fields (3?, 4?) such that the crack further propagates in the single crystal, wherein G(0)?2?e(0) and simultaneously at least one of the following conditions is satisfied: ? ? G ? ? ? ? = 0 ? 2 ? ? e h ? ? if ? ? ? 2 ? G ? ? 2 ? 0 ? ? or ( 2.1 ) ? ? G ? ? ? ? 2 ? ? e h ? ? ? ? : ? ? 1 < ? < ? 2 , ( 2.
    Type: Application
    Filed: November 14, 2008
    Publication date: November 19, 2009
    Inventors: Ralf HAMMER, Manfred Jurisch
  • Publication number: 20090272983
    Abstract: A silicon carbide semiconductor device includes: a semiconductor substrate having a silicon carbide substrate, a first semiconductor layer, a second semiconductor layer, and a third semiconductor layer; a trench penetrating the second and the third semiconductor layers to reach the first semiconductor layer; a channel layer on a sidewall and a bottom of the trench; an oxide film on the channel layer; a gate electrode on the oxide film; a first electrode connecting to the third semiconductor layer; and a second electrode connecting to the silicon carbide substrate. A position of a boundary between the first semiconductor layer and the second semiconductor layer is disposed lower than an utmost lowest position of the oxide film.
    Type: Application
    Filed: July 9, 2009
    Publication date: November 5, 2009
    Applicant: DENSO CORPORATION
    Inventors: Malhan Rajesh Kumar, Yuichi Takeuchi
  • Patent number: 7608515
    Abstract: A diffusion layer for semiconductor devices is provided. In accordance with embodiments of the present invention, a semiconductor device, such as a transistor, comprises doped regions surrounded by a diffusion barrier. The diffusion barrier may be formed by recessing regions of the substrate and implanting fluorine or carbon ions. A silicon layer may be epitaxially grown over the diffusion barrier in the recessed regions. Thereafter, the recessed regions may be filled and doped with a semiconductor or semiconductor alloy material. In an embodiment, a semiconductor alloy material, such as silicon carbon, is selected to induce a tensile stress in the channel region for an NMOS device, and a semiconductor alloy material, such as silicon germanium, is selected to induce a compressive stress in the channel region for a PMOS device.
    Type: Grant
    Filed: February 14, 2006
    Date of Patent: October 27, 2009
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Hao-Yu Chen, Shui-Ming Cheng
  • Publication number: 20090236612
    Abstract: A silicon carbide MOS semiconductor device is disclosed which suppresses degradation of efficiency percentage yield with respect to a breakdown voltage even when a surface region with a high impurity concentration is formed by ion implantation with such a high dose as required for attaining a good ohmic contact.
    Type: Application
    Filed: March 24, 2009
    Publication date: September 24, 2009
    Applicant: FUJI ELECTRIC DEVICE TECHNOLOGY CO., LTD.
    Inventors: Shun-ichi Nakamura, Yoshiyuki Yonezawa, Masahide Gotoh
  • Publication number: 20090236696
    Abstract: A multilayer semiconductor wafer has a substrate wafer having a first side and a second side; a fully or partially relaxed heteroepitaxial layer deposited on the first side of the substrate wafer; and a stress compensating layer deposited on the second side of the substrate wafer. The multilayer semiconductor wafer is produced by a method including depositing on a first side of a substrate a fully or partially relaxed heteroepitaxial layer at a deposition temperature; and at the same temperature or before significantly cooling the wafer from the deposition temperature, providing a stress compensating layer on a second side of the substrate.
    Type: Application
    Filed: March 18, 2009
    Publication date: September 24, 2009
    Applicant: SILTRONIC AG
    Inventors: Peter Storck, Martin Vorderwestner
  • Publication number: 20090230404
    Abstract: MOSFET (30) is provided with SiC film (11). SiC film (11) has a facet on its surface, and the length of one period of the facet is 100 nm or more, and the facet is used as channel (16). Further, a manufacturing method of MOSFET (30) includes: a step of forming SiC film (11); a heat treatment step of heat-treating SiC film (11) in a state where Si is supplied on the surface of SiC film (11); and a step of forming the facet obtained on the surface of SiC film (11) by the heat treatment step into a channel (16). Thereby, it is possible to sufficiently improve the characteristics.
    Type: Application
    Filed: October 26, 2006
    Publication date: September 17, 2009
    Applicant: Sumitomo Electric Industries, Ltd.
    Inventors: Takeyoshi Masuda, Shinji Matsukawa
  • Publication number: 20090225578
    Abstract: The present invention provides a semiconductor device and an electric apparatus each of which can realize both high-speed switching operation and energy loss reduction and excels in resistance to current concentration based on a counter electromotive voltage generated by, for example, an inductance load of the electric apparatus.
    Type: Application
    Filed: July 7, 2006
    Publication date: September 10, 2009
    Inventor: Makoto Kitabatake
  • Patent number: 7538352
    Abstract: In a semiconductor device that uses a silicon carbide semiconductor substrate having p type, n type impurity semiconductor regions formed by ion implantation, the electrical characteristics of the end semiconductor device can be improved by decreasing the roughness of the silicon carbide semiconductor substrate surface. The semiconductor device of this invention is a Schottky barrier diode or a p-n type diode comprising at least one of a p type semiconductor region and n type semiconductor region selectively formed in a silicon carbide semiconductor region having an outermost surface layer surface that is a (000-1) surface or a surface inclined at an angle to the (000-1) surface, and a metal electrode formed on the outermost surface layer surface, that controls a direction in which electric current flows in a direction perpendicular to the outermost surface layer surface from application of a voltage to the metal electrode.
    Type: Grant
    Filed: November 25, 2003
    Date of Patent: May 26, 2009
    Assignee: National Institute of Advanced Industrial Science and Technology
    Inventors: Kenji Fukuda, Ryoji Kosugi, Junji Senzaki, Shinsuke Harada
  • Publication number: 20090026495
    Abstract: A method for forming strained Si or SiGe on relaxed SiGe on insulator (SGOI) or a SiGe on Si heterostructure is described incorporating growing epitaxial Si1-yGey layers on a semiconductor substrate, smoothing surfaces by Chemo-Mechanical Polishing, bonding two substrates together via thermal treatments and transferring the SiGe layer from one substrate to the other via highly selective etching using SiGe itself as the etch-stop. The transferred SiGe layer may have its upper surface smoothed by CMP for epitaxial deposition of relaxed Si1-yGey, and strained Si1-yGey depending upon composition, strained Si, strained SiC, strained Ge, strained GeC, and strained Si1-yGeyC or a heavily doped layer to make electrical contacts for the SiGe/Si heterojunction diodes.
    Type: Application
    Filed: July 29, 2008
    Publication date: January 29, 2009
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Jack Oon Chu, David R. DiMilia, Lijuan Huang
  • Publication number: 20090026582
    Abstract: In deposited silicon, n-type dopants such as phosphorus and arsenic tend to seek the surface of the silicon, rising as the layer is deposited. When a second undoped or p-doped silicon layer is deposited on n-doped silicon with no n-type dopant provided, a first thickness of this second silicon layer nonetheless tends to include unwanted n-type dopant which has diffused up from lower levels. This surface-seeking behavior diminishes when germanium is alloyed with the silicon. In some devices, it may not be advantageous for the second layer to have significant germanium content. In the present invention, a first heavily n-doped semiconductor layer (preferably at least 10 at % germanium) is deposited, followed by a silicon-germanium capping layer with little or no n-type dopant, followed by a layer with little or no n-type dopant and less than 10 at % germanium. The germanium in the first layer and the capping layer minimizes diffusion of n-type dopant into the germanium-poor layer above.
    Type: Application
    Filed: July 28, 2008
    Publication date: January 29, 2009
    Applicant: SANDISK 3D LLC
    Inventor: S. Brad Herner
  • Publication number: 20080303061
    Abstract: A process for the manufacture of a substrate having a top layer of a first material and an underlying layer of a second material whose lattice parameter is different from that of the first material. The process includes the steps of conducting an amorphization of the top layer to create an amorphous region in the top layer lying between an exposed surface and an amorphization interface, with that portion of the top layer below the interface being shielded from the amorphization and remaining as a crystalline structure; recrystallizing the amorphous region while also creating a network of defects at the interface, wherein the network forms a boundary for dislocations from the crystalline structure of the top layer, and containing the dislocations in the portion of the top layer that is located below the interface. Also, the substrates obtained by the method.
    Type: Application
    Filed: March 29, 2006
    Publication date: December 11, 2008
    Inventors: Konstantin Bourdelle, Carlos Mazure
  • Publication number: 20080246120
    Abstract: A method that solves the increased nucleation temperature that is exhibited during the formation of cobalt disilicides in the presence of Ge atoms is provided. The reduction in silicide formation temperature is achieved by first providing a structure including a Co layer including at least Ni, as an additive element, on top of a SiGe containing substrate. Next, the structure is subjected to a self-aligned silicide process which includes a first anneal, a selective etching step and a second anneal to form a solid solution of (Co, Ni) disilicide on the SiGe containing substrate. The Co layer including at least Ni can comprise an alloy layer of Co and Ni, a stack of Ni/Co or a stack of Co/Ni. A semiconductor structure including the solid solution of (Co, Ni) disilicide on the SiGe containing substrate is also provided.
    Type: Application
    Filed: May 15, 2008
    Publication date: October 9, 2008
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Cyril Cabral, Roy A. Carruthers, Jia Chen, Christophe Detavernier, James M. Harper, Christian Lavoie
  • Patent number: 7429752
    Abstract: A semiconductor device includes a semiconductor substrate having at least one gap, extending under a portion of the semiconductor substrate. A gate stack is on the semiconductor substrate. A strain layer is formed in at least a portion of the at least one gap. The strain layer is formed only under at least one of a source region and a drain region of the semiconductor device.
    Type: Grant
    Filed: September 22, 2006
    Date of Patent: September 30, 2008
    Assignee: International Business Machines Corporation
    Inventors: An L Steegen, Haining S. Yang, Ying Zhang
  • Publication number: 20080211054
    Abstract: A semiconductor structure that includes a monocrystalline germanium-containing layer, preferably substantially pure germanium, a substrate, and a buried insulator layer separating the germanium-containing layer from the substrate. A porous layer, which may be porous silicon, is formed on a substrate and a germanium-containing layer is formed on the porous silicon layer. The porous layer may be converted to a layer of oxide, which provides the buried insulator layer. Alternatively, the germanium-containing layer may be transferred from the porous layer to an insulating layer on another substrate. After the transfer, the insulating layer is buried between the latter substrate and the germanium-containing layer.
    Type: Application
    Filed: May 14, 2008
    Publication date: September 4, 2008
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Kangguo Cheng, Brian Joseph Greene, Jack Allan Mandelman
  • Publication number: 20080203400
    Abstract: A semiconductor device and a method of manufacturing the device using a (000-1)-faced silicon carbide substrate are provided. A SiC semiconductor device having a high blocking voltage and high channel mobility is manufactured by optimizing the heat-treatment method used following the gate oxidation. The method of manufacturing a semiconductor device includes the steps of forming a gate insulation layer on a semiconductor region formed of silicon carbide having a (000-1) face orientation, forming a gate electrode on the gate insulation layer, forming an electrode on the semiconductor region, cleaning the semiconductor region surface. The gate insulation layer is formed in an atmosphere containing 1% or more H2O (water) vapor at a temperature of from 800° C. to 1150° C. to reduce the interface trap density of the interface between the gate insulation layer and the semiconductor region.
    Type: Application
    Filed: February 4, 2008
    Publication date: August 28, 2008
    Applicant: National Institute of Advanced Indust. Sci & Tech
    Inventors: Kenji Fukuda, Junji Senzaki, Shinsuke Harada, Makoto Kato, Tsutomu Yatsuo, Mitsuo Okamoto
  • Publication number: 20080061338
    Abstract: A method is used for processing a structure of a semiconductor component. The structure has at least one partial structure to be etched, in particular a sublithographic partial structure. The at least one partial structure has at least one structure to be etched with at least one lateral etch stop to which at least one mask is applied in such a way that at least one lateral etch stop is covered by the mask and afterward at least one of the structures to be etched is etched away isotropically as far as at least one etch stop using the mask. The at least one mask and the at least one etch stop are then removed.
    Type: Application
    Filed: September 6, 2007
    Publication date: March 13, 2008
    Inventors: Ludovic Lattard, Christoph Noelscher, Martin Verhoeven
  • Publication number: 20080048210
    Abstract: In a MOS-type semiconductor device in which, on a Si substrate (201), a SiGe layer (202) having a valence band edge energy value smaller than a valence band edge energy value of the first semiconductor layer and a mobility larger than a mobility of the first semiconductor layer, a Si cap layer (203), and an insulating layer (204) are sequentially laminated, the problem of the shift of the absolute value of the threshold voltage toward a smaller value caused by negative fixed charges formed in or near the interface between the Si cap layer (203) and the insulting film (204) by diffusion of Ge is overcome by neutralizing the negative fixed charges by positive charges induced in and near the interface between the Si cap layer and the insulating film along with addition of nitrogen atoms to the semiconductor device surface by NO gas annealing and thereby shifting the threshold voltage toward a larger value.
    Type: Application
    Filed: September 11, 2007
    Publication date: February 28, 2008
    Applicant: FUJITSU LIMITED
    Inventor: Masashi SHIMA
  • Publication number: 20070161196
    Abstract: Oxidation methods, which avoid consuming undesirably large amounts of surface material in Si/SiGe heterostructure-based wafers, replace various intermediate CMOS thermal oxidation steps. First, by using oxide deposition methods, arbitrarily thick oxides may be formed with little or no consumption of surface silicon. These oxides, such as screening oxide and pad oxide, are formed by deposition onto, rather than reaction with and consumption of the surface layer. Alternatively, oxide deposition is preceded by a thermal oxidation step of short duration, e.g., rapid thermal oxidation. Here, the short thermal oxidation consumes little surface Si, and the Si/oxide interface is of high quality. The oxide may then be thickened to a desired final thickness by deposition. Furthermore, the thin thermal oxide may act as a barrier layer to prevent contamination associated with subsequent oxide deposition.
    Type: Application
    Filed: February 6, 2007
    Publication date: July 12, 2007
    Applicant: AmberWare Systems
    Inventors: Matthew Currie, Anthony Lochtefeld