With Direct Single Heterostructure (i.e., With Wide Bandgap Layer Formed On Top Of Active Layer (e.g., Direct Single Heterostructure Mis-like Hemt)) (epo) Patents (Class 257/E29.252)
  • Patent number: 8384130
    Abstract: Provided is a nitride semiconductor device including: a nitride semiconductor layer over a substrate wherein the nitride semiconductor has a two-dimensional electron gas (2DEG) channel inside; a drain electrode in ohmic contact with the nitride semiconductor layer; a source electrode spaced apart from the drain electrode, in Schottky contact with the nitride semiconductor layer, and having an ohmic pattern in ohmic contact with the nitride semiconductor layer inside; a dielectric layer formed on the nitride semiconductor layer between the drain electrode and the source electrode and on at least a portion of the source electrode; and a gate electrode disposed on the dielectric layer to be spaced apart from the drain electrode, wherein a portion of the gate electrode is formed over a drain-side edge portion of the source electrode with the dielectric layer interposed therebetween, and a manufacturing method thereof.
    Type: Grant
    Filed: August 3, 2011
    Date of Patent: February 26, 2013
    Assignee: Samsung Electro-Mechanics Co., Ltd.
    Inventors: Woo Chul Jeon, Ki Yeol Park, Young Hwan Park
  • Patent number: 8378334
    Abstract: Embodiments of the invention relate to apparatus, system and method for use of a memory cell having improved power consumption characteristics, using a low-bandgap material quantum well structure together with a floating body cell.
    Type: Grant
    Filed: March 22, 2011
    Date of Patent: February 19, 2013
    Assignee: Intel Corporation
    Inventors: Titash Rakshit, Gilbert Dewey, Ravi Pillarisetty
  • Publication number: 20130032818
    Abstract: A semiconductor device includes a buffer layer that is disposed over a substrate, a high-resistance layer that is disposed over the buffer layer, the high-resistance layer being doped with a transition metal for achieving high resistance, a low-resistance region that is disposed in a portion of the high-resistance layer or over the high-resistance layer, the low-resistance region being doped with an impurity element for achieving low resistance, an electron travel layer that is disposed over the high-resistance layer including the low-resistance region, an electron supply layer that is disposed over the electron travel layer, a gate electrode that is disposed over the electron supply layer, and a source electrode and a drain electrode that are disposed over the electron supply layer.
    Type: Application
    Filed: July 19, 2012
    Publication date: February 7, 2013
    Applicant: FUJITSU LIMITED
    Inventors: Masato Nishimori, Toshihide Kikkawa
  • Patent number: 8362552
    Abstract: A semiconductor device includes a drain, an epitaxial layer overlaying the drain, and an active region. The active region includes a body disposed in the epitaxial layer, a source embedded in the body, a gate trench extending into the epitaxial layer, a gate disposed in the gate trench, a contact trench extending through the source and at least part of the body, a contact electrode disposed in the contact trench, and an epitaxial enhancement portion disposed below the contact trench, wherein the epitaxial enhancement portion has the same carrier type as the epitaxial layer.
    Type: Grant
    Filed: December 23, 2008
    Date of Patent: January 29, 2013
    Assignee: Alpha and Omega Semiconductor Incorporated
    Inventors: Ji Pan, Anup Bhalla
  • Patent number: 8350293
    Abstract: A p-type nitride compound semiconductor layer is formed on a buffer formed on a substrate. An n-type contact region is formed by ion implantation under a source electrode and a drain electrode. An electric-field reducing layer made of an n-type nitride compound semiconductor is formed on the p-type nitride compound semiconductor layer. A carrier density of the electric-field reducing layer is lower than that of the n-type contact region. A first end portion of the electric-field reducing layer contacts with the n-type contact region, and a second end portion of the electric-field reducing layer overlaps with a gate electrode.
    Type: Grant
    Filed: December 29, 2009
    Date of Patent: January 8, 2013
    Assignee: Furukawa Electric Co., Ltd.
    Inventors: Tat-Sing Paul Chow, Takehiko Nomura, Yuki Niiyama, Hiroshi Kambayashi, Seikoh Yoshida
  • Patent number: 8350296
    Abstract: An enhancement mode III-Nitride device has a floating gate spaced from a drain electrode which is programmed by charges injected into the floating gate to form a permanent depletion region which interrupts the 2-DEG layer beneath the floating gate. A conventional gate is formed atop the floating gate and is insulated therefrom by a further dielectric layer. The device is a normally off E mode device and is turned on by applying a positive voltage to the floating gate to modify the depletion layer and reinstate the 2-DEG layer. The device is formed by conventional semiconductor fabrication techniques.
    Type: Grant
    Filed: August 21, 2008
    Date of Patent: January 8, 2013
    Assignee: International Rectifier Corporation
    Inventor: Hamid Tony Bahramian
  • Patent number: 8344424
    Abstract: Enhancement mode III-nitride devices are described. The 2DEG is depleted in the gate region so that the device is unable to conduct current when no bias is applied at the gate. Both gallium face and nitride face devices formed as enhancement mode devices.
    Type: Grant
    Filed: February 28, 2012
    Date of Patent: January 1, 2013
    Assignee: Transphorm Inc.
    Inventors: Chang Soo Suh, Umesh Mishra
  • Publication number: 20120313106
    Abstract: According to one disclosed embodiment, an enhancement mode high electron mobility transistor (HEMT) comprises a heterojunction including a group III-V barrier layer situated over a group III-V semiconductor body, and a gate structure formed over the group III-V barrier layer and including a P type group III-V gate layer. The P type group III-V gate layer prevents a two dimensional electron gas (2DEG) from being formed under the gate structure. One embodiment of a method for fabricating such an enhancement mode HEMT comprises providing a substrate, forming a group III-V semiconductor body over the substrate, forming a group III-V barrier layer over the group III-V semiconductor body, and forming a gate structure including the P type group III-V gate layer over the group III-V barrier layer.
    Type: Application
    Filed: June 10, 2011
    Publication date: December 13, 2012
    Applicant: INTERNATIONAL RECTIFIER CORPORATION
    Inventor: Zhi He
  • Publication number: 20120299011
    Abstract: An AlN buffer layer, an undoped GaN layer, an undoped AlGaN layer, a p-type GaN layer and a heavily doped p-type GaN layer are formed in this order. A gate electrode forms an Ohmic contact with the heavily doped p-type GaN layer. A source electrode and a drain electrode are provided on the undoped AlGaN layer. A pn junction is formed in a gate region by a two dimensional electron gas generated at an interface between the undoped AlGaN layer and the undoped GaN layer and the p-type GaN layer, so that a gate voltage can be increased.
    Type: Application
    Filed: August 7, 2012
    Publication date: November 29, 2012
    Inventors: Masahiro HIKITA, Tetsuzo Ueda, Manabu Yanagihara, Yasuhiro Uemoto, Tsuyoshi Tanaka
  • Publication number: 20120223327
    Abstract: A III-nitride semiconductor device which includes a charged gate insulation body.
    Type: Application
    Filed: May 15, 2012
    Publication date: September 6, 2012
    Inventor: Michael A. Briere
  • Publication number: 20120175631
    Abstract: Enhancement-mode GaN devices having a gate spacer, a gate metal material and a gate compound that are self-aligned, and a methods of forming the same. The materials are patterned and etched using a single photo mask, which reduces manufacturing costs. An interface of the gate spacer and the gate compound has lower leakage than the interface of a dielectric film and the gate compound, thereby reducing gate leakage. In addition, an ohmic contact metal layer is used as a field plate to relieve the electric field at a doped III-V gate compound corner towards the drain contact, which leads to lower gate leakage current and improved gate reliability.
    Type: Application
    Filed: February 23, 2012
    Publication date: July 12, 2012
    Inventors: Alexander Lidow, Robert Beach, Alana Nakata, Jianjun Cao, Guang Yuan Zhao, Robert Strittmatter, Fang Chang Liu
  • Patent number: 8193562
    Abstract: Enhancement mode III-nitride devices are described. The 2DEG is depleted in the gate region so that the device is unable to conduct current when no bias is applied at the gate. Both gallium face and nitride face devices formed as enhancement mode devices.
    Type: Grant
    Filed: February 1, 2011
    Date of Patent: June 5, 2012
    Assignee: Tansphorm Inc.
    Inventors: Chang Soo Suh, Umesh Mishra
  • Patent number: 8183595
    Abstract: A III-nitride semiconductor device which includes a charged gate insulation body.
    Type: Grant
    Filed: July 28, 2006
    Date of Patent: May 22, 2012
    Assignee: International Rectifier Corporation
    Inventor: Michael A. Briere
  • Patent number: 8174048
    Abstract: A III-nitride device includes a recessed electrode to produce a nominally off, or an enhancement mode, device. By providing a recessed electrode, a conduction channel formed at the interface of two III-nitride materials is interrupted when the electrode contact is inactive to prevent current flow in the device. The electrode can be a schottky contact or an insulated metal contact. Two ohmic contacts can be provided to form a rectifier device with nominally off characteristics. The recesses formed with the electrode can have sloped sides. The electrode can be formed in a number of geometries in conjunction with current carrying electrodes of the device. A nominally on device, or pinch resistor, is formed when the electrode is not recessed. A diode is also formed by providing non-recessed ohmic and schottky contacts through an insulator to an AlGaN layer.
    Type: Grant
    Filed: January 21, 2005
    Date of Patent: May 8, 2012
    Assignee: International Rectifier Corporation
    Inventor: Robert Beach
  • Patent number: 8125004
    Abstract: A heterojunction field-effect semiconductor device has a main semiconductor region comprising two layers of dissimilar materials such that a two-dimensional electron gas layer is generated along the heterojunction between the two layers. A source and a drain electrode are placed in spaced positions on a major surface of the main semiconductor region and electrically coupled to the 2DEG layer. Between these electrodes, a gate electrode is received in a recess in the major surface of the main semiconductor region via a p-type metal oxide semiconductor film and insulating film, whereby a depletion zone is normally created in the 2DEG layer, making the device normally off. The p-type metal oxide semiconductor film of high hole concentration serves for the normally-off performance of the device with low gate leak current, and the insulating film for further reduction of gate leak current.
    Type: Grant
    Filed: December 22, 2009
    Date of Patent: February 28, 2012
    Assignee: Sanken Electric Co., Ltd.
    Inventor: Nobuo Kaneko
  • Patent number: 8115235
    Abstract: A quantum well (QW) layer is provided in a semiconductive device. The QW layer is provided with a beryllium-doped halo layer in a barrier structure below the QW layer. The semiconductive device includes InGaAs bottom and top barrier layers respectively below and above the QW layer. The semiconductive device also includes a high-k gate dielectric layer that sits on the InP spacer first layer in a gate recess. A process of forming the QW layer includes using an off-cut semiconductive substrate.
    Type: Grant
    Filed: February 20, 2009
    Date of Patent: February 14, 2012
    Assignee: Intel Corporation
    Inventors: Ravi Pillarisetty, Titash Rakshit, Mantu Hudait, Marko Radosavljevic, Gilbert Dewey, Benjamin Chu-Kung
  • Publication number: 20110284869
    Abstract: A high voltage durability III-nitride semiconductor device comprises a support substrate including a first silicon body, an insulator body over the first silicon body, and a second silicon body over the insulator body. The high voltage durability III-nitride semiconductor device further comprises a III-nitride semiconductor body characterized by a majority charge carrier conductivity type, formed over the second silicon body. The second silicon body has a conductivity type opposite the majority charge carrier conductivity type. In one embodiment, the high voltage durability III-nitride semiconductor device is a high electron mobility transistor (HEMT) comprising a support substrate including a <100> silicon layer, an insulator layer over the <100> silicon layer, and a P type conductivity <111> silicon layer over the insulator layer.
    Type: Application
    Filed: August 3, 2011
    Publication date: November 24, 2011
    Inventor: Michael A. Briere
  • Patent number: 8043906
    Abstract: A III-nitride device includes a recessed electrode to produce a nominally off, or an enhancement mode, device. By providing a recessed electrode, a conduction channel formed at the interface of two III-nitride materials is interrupted when the electrode contact is inactive to prevent current flow in the device. The electrode can be a schottky contact or an insulated metal contact. Two ohmic contacts can be provided to form a rectifier device with nominally off characteristics. The recesses formed with the electrode can have sloped sides. The electrode can be formed in a number of geometries in conjunction with current carrying electrodes of the device. A nominally on device, or pinch resistor, is formed when the electrode is not recessed. A diode is also formed by providing non-recessed ohmic and schottky contacts through an insulator to an AlGaN layer.
    Type: Grant
    Filed: November 21, 2006
    Date of Patent: October 25, 2011
    Assignee: International Rectifier Corporation
    Inventor: Robert Beach
  • Patent number: 8035130
    Abstract: The objective of the present invention is to provide a semiconductor device of a hetero-junction field effect transistor that is capable of obtaining a high output and a high breakdown voltage and a manufacturing method of the same. The present invention is a semiconductor device of a hetero-junction field effect transistor provided with an AlxGa1-xN channel layer with a composition ratio of Al being x (0<x<1) formed on a substrate, an AlyGa1-yN barrier layer with a composition of Al being y (0<y?1) formed on the channel layer, and source/drain electrodes and a gate electrode formed on the barrier layer, wherein the composition ratio y is larger than the composition ratio x.
    Type: Grant
    Filed: March 25, 2008
    Date of Patent: October 11, 2011
    Assignee: Mitsubishi Electric Corporation
    Inventors: Takuma Nanjo, Muneyoshi Suita, Yuji Abe, Toshiyuki Oishi, Yasunori Tokuda
  • Publication number: 20110241074
    Abstract: A GaN layer and an n-type AlGaN layer are formed over an insulating substrate, and thereafter, a gate electrode, a source electrode and a drain electrode are formed on them. Next, an opening reaching at least a surface of the insulating substrate is formed in the source electrode, the GaN layer and the n-type AlGaN layer. Then, a nickel (Ni) layer is formed in the opening. Thereafter, by conducting dry etching from the back side while making the nickel (Ni) layer serve as an etching stopper, a via hole reaching the nickel (Ni) layer is formed in the insulating substrate. Then, a via wiring is formed extending from an inside the via hole to the back surface of the insulating substrate.
    Type: Application
    Filed: June 13, 2011
    Publication date: October 6, 2011
    Applicant: FUJITSU LIMITED
    Inventor: Naoya OKAMOTO
  • Patent number: 7999286
    Abstract: The MIS field-effect transistor includes: a substrate; a nitride semiconductor multilayer structure portion formed on the substrate, including a first group III-V nitride semiconductor layer of a first conductivity type, a second group III-V nitride semiconductor layer of a second conductivity type stacked thereon and a third group III-V nitride semiconductor layer of the first conductivity type stacked thereon; a gate insulating film formed on a wall surface formed over the first, second and third group III-V nitride semiconductor layers to extend over these first, second and third group III-V nitride semiconductor layers; a gate electrode made of a conductive material formed as being opposed to the second group III-V nitride semiconductor layer via the gate insulating film; a drawn portion electrically connected to the first group III-V nitride semiconductor layer and drawn from the nitride semiconductor multilayer structure portion in a direction parallel to the substrate; a drain electrode formed in conta
    Type: Grant
    Filed: August 22, 2007
    Date of Patent: August 16, 2011
    Assignee: Rohm Co., Ltd.
    Inventors: Hiroaki Ohta, Hidemi Takasu
  • Patent number: 7968865
    Abstract: A heterostructure having a heterojunction comprising: a diamond layer; and a boron aluminum nitride (B(x)Al(1-x)N) layer disposed in contact with a surface of the diamond layer, where x is between 0 and 1.
    Type: Grant
    Filed: July 6, 2009
    Date of Patent: June 28, 2011
    Assignee: Raytheon Company
    Inventors: Jeffrey R. LaRoche, William E. Hoke, Steven D. Bernstein, Ralph Korenstein
  • Patent number: 7964866
    Abstract: Embodiments of the invention relate to apparatus, system and method for use of a memory cell having improved power consumption characteristics, using a low-bandgap material quantum well structure together with a floating body cell.
    Type: Grant
    Filed: May 12, 2008
    Date of Patent: June 21, 2011
    Assignee: Intel Corporation
    Inventors: Titash Rakshit, Gilbert Dewey, Ravi Pillarisetty
  • Patent number: 7956383
    Abstract: A field effect transistor includes: a first nitride semiconductor layer having a plane perpendicular to a (0001) plane or a plane tilted with respect to the (0001) plane as a main surface; a second nitride semiconductor layer formed on the first nitride semiconductor layer and having a wider bandgap than the first nitride semiconductor layer; a third nitride semiconductor layer formed on the second nitride semiconductor layer; and a source electrode and a drain electrode formed so as to contact at least a part of the second nitride semiconductor layer or the third nitride semiconductor layer. A recess that exposes a part of the second nitride semiconductor layer is formed between the source electrode and the drain electrode in the third nitride semiconductor layer. A gate electrode is formed in the recess and an insulating film is formed between the third nitride semiconductor layer and the gate electrode.
    Type: Grant
    Filed: April 1, 2008
    Date of Patent: June 7, 2011
    Assignee: Panasonic Corporation
    Inventors: Masayuki Kuroda, Tetsuzo Ueda
  • Publication number: 20110127604
    Abstract: A semiconductor device having a field plate structure shows a high electric field relaxation effect.
    Type: Application
    Filed: November 16, 2010
    Publication date: June 2, 2011
    Inventor: Ken SATO
  • Patent number: 7915643
    Abstract: Enhancement mode III-nitride devices are described. The 2DEG is depleted in the gate region so that the device is unable to conduct current when no bias is applied at the gate. Both gallium face and nitride face devices formed as enhancement mode devices.
    Type: Grant
    Filed: September 17, 2007
    Date of Patent: March 29, 2011
    Assignee: Transphorm Inc.
    Inventors: Chang Soo Suh, Umesh Mishra
  • Patent number: 7915646
    Abstract: The nitride semiconductor material according to the present invention includes a group III nitride semiconductor and a group IV nitride formed on the group III nitride semiconductor, where an interface between the group III nitride semiconductor and the group IV nitride has a regular atomic arrangement. Moreover, an arrangement of nitrogen atoms of the group IV nitride in the interface and an arrangement of group III atoms of the group III nitride semiconductor in the interface may be substantially identical.
    Type: Grant
    Filed: April 23, 2007
    Date of Patent: March 29, 2011
    Assignee: Panasonic Corporation
    Inventors: Toshiyuki Takizawa, Tetsuzo Ueda
  • Patent number: 7858964
    Abstract: A semiconductor device includes a substrate that includes a first layer and a recrystallized layer on the first layer. The first layer has a first intrinsic stress and the recrystallized layer has a second intrinsic stress. A transistor is formed in the recrystallized layer. The transistor includes a source region, a drain region, and a charge carrier channel between the source and drain regions. The second intrinsic stress is aligned substantially parallel to the charge carrier channel.
    Type: Grant
    Filed: February 9, 2009
    Date of Patent: December 28, 2010
    Assignee: Infineon Technologies AG
    Inventors: Roman Knoefler, Armin Tilke
  • Patent number: 7825434
    Abstract: A nitride semiconductor device includes: a first semiconductor layer made of first nitride semiconductor; a second semiconductor layer formed on a principal surface of the first semiconductor layer and made of second nitride semiconductor having a bandgap wider than that of the first nitride semiconductor; a control layer selectively formed on, or above, an upper portion of the second semiconductor layer and made of third nitride semiconductor having a p-type conductivity; source and drain electrodes formed on the second semiconductor layer at respective sides of the control layer; a gate electrode formed on the control layer; and a fourth semiconductor layer formed on a surface of the first semiconductor layer opposite to the principal surface, having a potential barrier in a valence band with respect to the first nitride semiconductor and made of fourth nitride semiconductor containing aluminum.
    Type: Grant
    Filed: December 29, 2006
    Date of Patent: November 2, 2010
    Assignee: Panasonic Corporation
    Inventors: Hiroaki Ueno, Manabu Yanagihara, Tetsuzo Ueda, Yasuhiro Uemoto, Tsuyoshi Tanaka, Daisuke Ueda
  • Patent number: 7821032
    Abstract: An enhancement mode III-nitride power semiconductor device that includes normally-off channels along the sidewalls of a recess and a process for fabricating the same, the device including a first power electrode, a second power electrode, and a gate disposed between the first power electrode and the second power electrode over at least a sidewall of the recess.
    Type: Grant
    Filed: January 26, 2007
    Date of Patent: October 26, 2010
    Assignee: International Rectifier Corporation
    Inventor: Daniel M Kinzer
  • Patent number: 7800130
    Abstract: A semiconductor device 10 comprises a heterojunction between a lower semiconductor layer 26 made of p-type gallium nitride and an upper semiconductor layer 28 made of n-type AlGaN, wherein the upper semiconductor layer 28 has a larger band gap than the lower semiconductor layer 26. The semiconductor device 10 further comprises a drain electrode 32 formed on a portion of a top surface of the upper semiconductor layer 28, a source electrode 34 formed on a different portion of the top surface of the upper semiconductor layer 28, and a gate electrode 36 electrically connected to the lower semiconductor layer 26. The semiconductor device 10 can operate as normally-off.
    Type: Grant
    Filed: January 20, 2006
    Date of Patent: September 21, 2010
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Masahiro Sugimoto, Tetsu Kachi, Tsutomu Uesugi, Hiroyuki Ueda, Narumasa Soejima
  • Patent number: 7786509
    Abstract: A field-effect transistor is composed of a substrate, an electron transport layer and an electron supply layer formed sequentially on the substrate, wherein the electron transport layer and the electron supply layer are formed of a nitride semiconductor, a gate electrode, a source electrode and a drain electrode formed on the electron supply layer; and two high impurity concentration regions located in a depth direction directly below the source electrode and the drain electrode, respectively, the two high impurity concentration regions being formed to sandwich a two-dimensional electron gas layer formed between the electron transport layer and the electron supply layer. The two high impurity concentration regions each have a higher impurity concentration than the electron transport layer and the electron supply layer located directly below the gate electrode.
    Type: Grant
    Filed: September 26, 2007
    Date of Patent: August 31, 2010
    Assignee: Hitachi Cable, Ltd.
    Inventors: Tomoyoshi Mishima, Toru Nakamura, Masataka Sato, Kazutaka Nomoto
  • Patent number: 7777254
    Abstract: After creating an electron transit layer on a substrate, a baffle is formed on midpart of the surface of the electron transit layer, the surface having a pair of spaced-apart parts left on both sides of the baffle. A semiconducting material different from that of the electron transit layer is deposited on its surface thereby conjointly fabricating an electron supply layer grown continuously on the pair of spaced-apart parts of the electron transit layer surface, and a discontinuous growth layer on the baffle in the midpart of the electron transit layer surface. When no voltage is being impressed to the gate electrode on the discontinuous growth layer, this layer creates a hiatus in the two-dimensional electron gas layer generated along the heterojunction between the electron supply layer and electron transit layer. The hiatus is closed upon voltage application to the gate electrode.
    Type: Grant
    Filed: June 9, 2008
    Date of Patent: August 17, 2010
    Assignee: Sanken Electric Co., Ltd.
    Inventor: Ken Sato
  • Patent number: 7759699
    Abstract: A III-nitride power semiconductor device that includes a nitrogen polar active heterojunction having a two-dimensional electron gas and including a first III-nitride semiconductor body by one band gap and a second III-nitride body having another band gap over the first III-nitride semiconductor body, a gate arrangement, a gate barrier under the gate arrangement thereof, a first power electrode and a second power electrode, and a method for fabricating the device.
    Type: Grant
    Filed: July 6, 2006
    Date of Patent: July 20, 2010
    Assignee: International Rectifier Corporation
    Inventor: Robert Beach
  • Patent number: 7750381
    Abstract: In one aspect of the present invention, a semiconductor device may include a Si substrate, a gate electrode provided on the semiconductor via a gate dielectric layer, a first epitaxially grown layer provided on the Si substrate, a channel region provided in the Si substrate below the gate electrode, a source/drain region provided in the first epitaxially grown layer sandwiching the channel region, and having a first conductivity type impurity, a second epitaxially grown layer provided between the channel region and the first epitaxially grown layer, and provided below the gate electrode, and having a second conductivity type impurity opposite to the first conductivity type.
    Type: Grant
    Filed: March 20, 2008
    Date of Patent: July 6, 2010
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Akira Hokazono, Satoshi Inaba
  • Patent number: 7700973
    Abstract: A dispersion-free high electron mobility transistor (HEMT), comprised of a substrate; a semi-insulating buffer layer, comprised of gallium nitride (GaN) or aluminum gallium nitride (AlGaN), deposited on the substrate, an AlGaN barrier layer, with an aluminum (Al) mole fraction larger than that of the semi-insulating buffer layer, deposited on the semi-insulating buffer layer, an n-type doped graded AlGaN layer deposited on the AlGaN barrier layer, wherein an Al mole fraction is decreased from a bottom of the n-type doped graded AlGaN layer to a top of the n-type doped graded AlGaN layer, and a cap layer, comprised of GaN or AlGaN with an Al mole fraction smaller than that of the AlGaN barrier layer, deposited on the n-type doped graded AlGaN layer.
    Type: Grant
    Filed: October 12, 2004
    Date of Patent: April 20, 2010
    Assignee: The Regents of the University of California
    Inventors: Likun Shen, Sten Johan Heikman, Umesh Kumar Mishra
  • Patent number: 7700975
    Abstract: Metal-Semiconductor-Metal (“MSM”) photodetectors and methods to fabricate thereof are described. The MSM photodetector includes a thin heavily doped (“delta doped”) layer deposited at an interface between metal contacts and a semiconductor layer to reduce a dark current of the MSM photodetector. In one embodiment, the semiconductor layer is an intrinsic semiconductor layer. In one embodiment, the thickness of the delta doped layer is less than 100 nanometers. In one embodiment, the delta doped layer has a dopant concentration of at least 1×1018 cm?3. A delta doped layer is formed on portions of a semiconductor layer over a substrate. Metal contacts are formed on the delta doped layer. A buffer layer may be formed between the substrate and the semiconductor layer. In one embodiment, the substrate includes silicon, and the semiconductor layer includes germanium.
    Type: Grant
    Filed: March 31, 2006
    Date of Patent: April 20, 2010
    Assignee: Intel Corporation
    Inventors: Titash Rakshit, Miriam Reshotko
  • Patent number: 7683400
    Abstract: A Si(1-x)MxC material for heterostructures on SiC can be grown by CVD, PVD and MOCVD. SIC doped with a metal such as Al modifies the bandgap and hence the heterostructure. Growth of SiC Si(1-x)MxC heterojunctions using SiC and metal sources permits the fabrication of improved HFMTs (high frequency mobility transistors), HBTs (heterojunction bipolar transistors), and HEMTs (high electron mobility transistors).
    Type: Grant
    Filed: June 26, 2006
    Date of Patent: March 23, 2010
    Assignee: Northrop Grumman Systems Corporation
    Inventors: Narsingh B. Singh, Brian P. Wagner, David J. Knuteson, Michael E. Aumer, Andre Berghmans, Darren Thomson, David Kahler
  • Patent number: 7652311
    Abstract: A III-nitride based field effect transistor obtains improved performance characteristics through manipulation of the relationship between the in-plane lattice constant of the interface of material layers. A high mobility two dimensional electron gas generated at the interface of the III-nitride materials permits high current conduction with low ON resistance, and is controllable through the manipulation of spontaneous polarization fields obtained according to the characteristics of the III-nitride material. The field effect transistor produced can be made to be a nominally on device where the in-plane lattice constants of the material forming the interface match. A nominally off device may be produced where one of the material layers has an in-plane lattice constant that is larger than that of the other layer material. The layer materials are preferably InAlGaN/GaN layers that are particularly tailored to the characteristics of the present invention.
    Type: Grant
    Filed: October 4, 2007
    Date of Patent: January 26, 2010
    Assignee: International Rectifier Corporation
    Inventor: Robert Beach
  • Patent number: 7649215
    Abstract: An embodiment of a III-nitride semiconductor device and method for making the same may include a low resistive passivation layer that permits the formation of device contacts without damage to the III-nitride material during high temperature processing. The passivation layer may be used to passivate the entire device. The passivation layer may also be provided in between contacts and active layers of the device to provide a low resistive path for current conduction. The passivation process may be used with any type of device, including FETs, rectifiers, schottky diodes and so forth, to improve breakdown voltage and prevent field crowding effects near contact junctions. The passivation layer may be activated with a low temperature anneal that does not impact the III-nitride device regarding outdiffusion.
    Type: Grant
    Filed: December 3, 2004
    Date of Patent: January 19, 2010
    Assignee: International Rectifier Corporation
    Inventor: Robert Beach
  • Patent number: 7642567
    Abstract: A low-cost field-effect transistor with a moisture-resistant gate covered by a thick moisture-resistant insulating film which suppresses an increase in gate capacitance, and a method of manufacturing the field-effect transistor. The field-effect transistor has one of a T-shaped gate electrode and ?-shaped gate electrode, a drain electrode, and a source electrode, the source electrode and the drain electrode being electrically connected through an n-doped semiconductor region. The gate, source, and drain electrodes are located on a semiconductor layer which includes an insulating film having a thickness of 50 nm or less and covering a surface of the gate electrode and a surface of the semiconductor layer. A silicon nitride film, deposited by catalytic CVD, covers the insulating film and includes a void volume located between a portion of the gate electrode corresponding to a canopy of an open umbrella and the semiconductor layer.
    Type: Grant
    Filed: March 22, 2007
    Date of Patent: January 5, 2010
    Assignee: Mitsubishi Electric Corporation
    Inventors: Hirotaka Amasuga, Masahiro Totsuka
  • Patent number: 7518165
    Abstract: A metamorphic high electron mobility transistor having a plurality of high electron mobility transistor layers, a semi-insulating substrate, a ternary metamorphic buffer layer positioned between the semi-insulating substrate and the plurality of high electron mobility transistor layers, the ternary metamorphic buffer layer being Al1-xGaxSb such that x is greater than or equal to 0.2 but less than 0.3, a stabilizing layer positioned between the ternary metamorphic buffer layer and the plurality of high electron mobility transistor layers, the stabilizing layer being Al1-yGaySb such that y is greater than 0.2 but less than or equal to 0.3 and y is greater than x, and a nucleation layer interposed between the semi-insulating substrate and the ternary metamorphic buffer layer.
    Type: Grant
    Filed: September 14, 2006
    Date of Patent: April 14, 2009
    Assignee: Teledyne Licensing, LLC
    Inventors: Joshua I. Bergman, Berinder Brar, Amal Ikhlassi, Gabor Nagy, Gerard J. Sullivan
  • Patent number: 7498618
    Abstract: A nitride semiconductor device comprises: a substrate body including a conductive substrate portion and a high resistance portion; a first semiconductor layer of a nitride semiconductor provided on the substrate body; a second semiconductor layer provided on the first semiconductor layer; a first main electrode provided on the second semiconductor layer; a second main electrode provided on the second semiconductor layer; and a control electrode provided on the second semiconductor layer between the first main electrode and the second main electrode. The second semiconductor layer is made of a nondoped or n-type nitride semiconductor having a wider bandgap than the first semiconductor layer. The first main electrode is provided above the conductive portion and the second main electrode is provided above the high resistance portion.
    Type: Grant
    Filed: August 22, 2006
    Date of Patent: March 3, 2009
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Wataru Saito, Masaaki Onomura, Akira Tanaka, Koichi Tachibana, Masahiko Kuraguchi, Takao Noda, Tomohiro Nitta, Akira Yoshioka
  • Patent number: 7476918
    Abstract: A semiconductor integrated circuit device includes a HFET formed on part of a substrate made of sapphire and including a Group III-V nitride semiconductor layer, a dielectric film formed on the substrate to cover the top and side surfaces and upper corners of the Group III-V nitride semiconductor layer, a microstrip line formed with the dielectric film interposed between the substrate and the microstrip line, and a drain lead which is formed on part of the dielectric film and through which the HFET is electrically connected to the microstrip line.
    Type: Grant
    Filed: November 22, 2005
    Date of Patent: January 13, 2009
    Assignee: Panasonic Corporation
    Inventors: Masaaki Nishijima, Daisuke Ueda
  • Patent number: 7439555
    Abstract: A III-nitride trench device has a vertical conduction region with an interrupted conduction channel when the device is not on, providing an enhancement mode device. The trench structure may be used in a vertical conduction or horizontal conduction device. A gate dielectric provides improved performance for the device by being capable of withstanding higher electric field or manipulating the charge in the conduction channel. A passivation of the III-nitride material decouples the dielectric from the device to permit lower dielectric constant materials to be used in high power applications.
    Type: Grant
    Filed: December 3, 2004
    Date of Patent: October 21, 2008
    Assignee: International Rectifier Corporation
    Inventors: Robert Beach, Paul Bridger
  • Patent number: 7432538
    Abstract: A field-effect transistor includes a channel layer having a channel and a carrier supply layer, disposed on the channel layer, containing a semiconductor represented by the formula AlxGa1-xN, wherein x is greater than 0.04 and less than 0.45. The channel is formed near the interface between the channel layer and the carrier supply layer or depleted, the carrier supply layer has a band gap energy greater than that of the channel layer, and x in the formula AlxGa1-xN decreases monotonically with an increase in the distance from the interface. The channel layer may be crystalline of gallium nitride. The channel layer may be undoped. X of the formula AlxGa1-xN of the carrier supply layer is greater than or equal to 0.15 and less than or equal to 0.40 at the interface.
    Type: Grant
    Filed: September 19, 2006
    Date of Patent: October 7, 2008
    Assignee: Toyoda Gosei Co., Ltd.
    Inventors: Masayoshi Kosaki, Koji Hirata
  • Publication number: 20080237641
    Abstract: An elongate stacked semiconductor structure is formed on a substrate. The stacked semiconductor structure includes a second semiconductor material region disposed on a first semiconductor material region. The first semiconductor material region is selectively doped to produce spaced-apart impurity-doped first semiconductor material regions and a lower dopant concentration first semiconductor material region therebetween. Etching exposes a portion of the second semiconductor material region between the impurity-doped first semiconductor material regions. The etching removes at least a portion of the lower dopant concentration first semiconductor material region to form a hollow between the substrate and the portion of the second semiconductor material region between the impurity-doped first semiconductor material regions. An insulation layer that surrounds the exposed portion of the second semiconductor material region between the impurity-doped first semiconductor material regions is formed.
    Type: Application
    Filed: June 11, 2008
    Publication date: October 2, 2008
    Inventors: Chang-Woo Oh, Dong-Gun Park, Dong-Won Kim, Sung-Young Lee
  • Publication number: 20080230805
    Abstract: In one aspect of the present invention, a semiconductor device may include a Si substrate, a gate electrode provided on the semiconductor via a gate dielectric layer, a first epitaxially grown layer provided on the Si substrate, a channel region provided in the Si substrate below the gate electrode, a source/drain region provided in the first epitaxially grown layer sandwiching the channel region, and having a first conductivity type impurity, a second epitaxially grown layer provided between the channel region and the first epitaxially grown layer, and provided below the gate electrode, and having a second conductivity type impurity opposite to the first conductivity type.
    Type: Application
    Filed: March 20, 2008
    Publication date: September 25, 2008
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Akira Hokazono, Satoshi Inaba
  • Patent number: 7400001
    Abstract: A nitride based hetero-junction field effect transistor includes a high resistance nitride semiconductor layer formed on a substrate, an Al-doped GaN layer formed on the high resistance nitride semiconductor layer and having an Al content of 0.1˜1%, an undoped GaN layer formed on the Al-doped GaN layer, and an AlGaN layer formed on the undoped GaN layer such that a two-dimensional electron gas (2DEG) layer is formed at an interface of the undoped GaN layer.
    Type: Grant
    Filed: November 30, 2004
    Date of Patent: July 15, 2008
    Assignee: Samsung Electro-Mechanics Co., Ltd.
    Inventors: Jae Hoon Lee, Jung Hee Lee
  • Publication number: 20080149964
    Abstract: A semiconductor device 10 comprises a heterojunction between a lower semiconductor layer 26 made of p-type gallium nitride and an upper semiconductor layer 28 made of n-type AlGaN, wherein the upper semiconductor layer 28 has a larger band gap than the lower semiconductor layer 26. The semiconductor device 10 further comprises a drain electrode 32 formed on a portion of a top surface of the upper semiconductor layer 28, a source electrode 34 formed on a different portion of the top surface of the upper semiconductor layer 28, and a gate electrode 36 electrically connected to the lower semiconductor layer 26. The semiconductor device 10 can operate as normally-off.
    Type: Application
    Filed: January 20, 2006
    Publication date: June 26, 2008
    Inventors: Masahiro Sugimoto, Tetsu Kachi, Tsutomu Uesugi, Hiroyuki Ueda, Narumasa Soejima