With Overlap Between Lightly Doped Extension And Gate Electrode (epo) Patents (Class 257/E29.269)
  • Patent number: 12154789
    Abstract: A method for precise plasma etching of micropatterns on a silicon substrate containing silicon or additionally having a silicon oxide film. An etching method for plasma-etching a silicon substrate having silicon or a silicon oxide film using a halogen fluoride having a nitrogen (N2) content of 1 vol % or less as an etching gas. Also disclosed is a method for producing a semiconductor using the etching method.
    Type: Grant
    Filed: December 9, 2019
    Date of Patent: November 26, 2024
    Assignee: Resonac Corporation
    Inventor: Atsushi Suzuki
  • Patent number: 8994107
    Abstract: Semiconductor devices and methods of forming semiconductor devices are provided herein. In an embodiment, a semiconductor device includes a semiconductor substrate. A source region and a drain region are disposed in the semiconductor substrate. A channel region is defined in the semiconductor substrate between the source region and the drain region. A gate dielectric layer overlies the channel region of the semiconductor substrate, and a gate electrode overlies the gate dielectric layer. The channel region includes a first carbon-containing layer, a doped layer overlying the first carbon-containing layer, a second carbon-containing layer overlying the doped layer, and an intrinsic semiconductor layer overlying the second carbon-containing layer. The doped layer includes a dopant that is different than carbon.
    Type: Grant
    Filed: August 27, 2012
    Date of Patent: March 31, 2015
    Assignee: GLOBALFOUNDRIES, Inc.
    Inventors: El Mehdi Bazizi, Francis Benistant
  • Patent number: 8907432
    Abstract: An isolated device is formed in a substrate in which is formed a high voltage device. The isolated device includes: an isolated well formed in the substrate by a lithography process and an ion implantation process used in forming the high voltage device; a gate formed on the substrate; a source and a drain, which are located in the isolated well at both sides of the gate respectively; a drift-drain region formed beneath the substrate surface, wherein the gate and the drain are separated by the drift-drain region, and the drain is in the drift-drain region; and a mitigation region, which is formed in the substrate and has a shallowest portion located at least below 90% of a depth of the drift-drain region as measured from the substrate surface, wherein the mitigation region and the drift-drain region are defined by a same lithography process.
    Type: Grant
    Filed: February 10, 2012
    Date of Patent: December 9, 2014
    Assignee: Richtek Technology Corporation
    Inventors: Tsung-Yi Huang, Chien-Wei Chiu
  • Patent number: 8877596
    Abstract: a method comprises forming a hardmask over one or more gate structures. The method further comprises forming a photoresist over the hardmask. The method further comprises forming an opening in the photoresist over at least one of the gate structures. The method further comprises stripping the hardmask that is exposed in the opening and which is over the at least one of the gate structures. The method further comprises removing the photoresist. The method further comprises providing a halo implant on a side of the at least one of the gate structures.
    Type: Grant
    Filed: June 24, 2010
    Date of Patent: November 4, 2014
    Assignee: International Business Machines Corporation
    Inventors: Darshana N. Bhagat, Thomas J. Dunbar, Yen Li Lim, Jed H. Rankin, Eva A. Shah
  • Patent number: 8802517
    Abstract: A CMOS device includes a PMOS transistor with a first quantum well structure and an NMOS device with a second quantum well structure. The PMOS and NMOS transistors are formed on a substrate.
    Type: Grant
    Filed: August 8, 2013
    Date of Patent: August 12, 2014
    Assignee: Intel Corporation
    Inventors: Suman Datta, Mantu K. Hudait, Mark L. Doczy, Jack T. Kavalieros, Majumdar Amian, Justin K. Brask, Been-Yih Jin, Matthew V. Metz, Robert S. Chau
  • Patent number: 8753944
    Abstract: A method of fabricating a Metal-Oxide Semiconductor (MOS) transistor includes providing a substrate having a substrate surface doped with a second dopant type and a gate stack over the substrate surface, and a masking pattern on the substrate surface which exposes a portion of the substrate surface for ion implantation. A first pocket implantation uses the second dopant type with the masking pattern on the substrate surface. At least one retrograde gate edge diode leakage (GDL) reduction pocket implantation uses the first dopant type with the masking pattern on the substrate surface. The first pocket implant and retrograde GDL reduction pocket implant are annealed. After annealing, the first pocket implant provides first pocket regions and the retrograde GDL reduction pocket implant provides an overlap with the first pocket regions to form a first counterdoped pocket portion within the first pocket regions.
    Type: Grant
    Filed: February 14, 2013
    Date of Patent: June 17, 2014
    Assignee: Texas Instruments Incorporated
    Inventors: Mahalingam Nandakumar, Brian Hornung, Terry James Bordelon, Jr., Amitava Chatterjee
  • Patent number: 8686501
    Abstract: A semiconductor device includes: a p-type active region; a gate electrode traversing the active region; an n-type LDD region having a first impurity concentration and formed from a drain side region to a region under the gate electrode; a p-type channel region having a second impurity concentration and formed from a source side region to a region under the gate electrode to form an overlap region with the LDD region under the gate electrode, the channel region being shallower than the LDD region; an n-type source region formed outside the gate electrode; and an n+-type drain region having a third impurity concentration higher than the first impurity concentration formed outside and spaced from the gate electrode, wherein an n-type effective impurity concentration of an intermediate region between the gate electrode and the n+-type drain region is higher than an n-type effective impurity concentration of the overlap region.
    Type: Grant
    Filed: September 29, 2010
    Date of Patent: April 1, 2014
    Assignee: Fujitsu Semiconductor Limited
    Inventor: Masashi Shima
  • Patent number: 8674442
    Abstract: A high voltage/power semiconductor device using a low voltage logic well is provided. The semiconductor device includes a substrate, a first well region formed by being doped in a first location on a surface of the substrate, a second well region formed by being doped with impurity different from the first well region's in a second location on a surface of the substrate, an overlapping region between the first well region and the second well region where the first well region and the second well region substantially coexist, a gate insulating layer formed on the surface of the first and the second well regions and the surface of the overlapping region, a gate electrode formed on the gate insulating layer, a source region formed on an upper portion of the first well region, and a drain region formed on an upper portion of the second well region.
    Type: Grant
    Filed: November 16, 2010
    Date of Patent: March 18, 2014
    Assignee: Magnachip Semiconductor, Ltd.
    Inventors: Yon-sup Pang, Jun-ho Lee
  • Patent number: 8674438
    Abstract: Apparatus for semiconductor device structures and related fabrication methods are provided. One method for fabricating a semiconductor device structure involves forming a gate structure overlying a region of semiconductor material, wherein the width of the gate structure is aligned with a <100> crystal direction of the semiconductor material. The method continues by forming recesses about the gate structure and forming a stress-inducing semiconductor material in the recesses.
    Type: Grant
    Filed: February 12, 2013
    Date of Patent: March 18, 2014
    Assignee: GLOBALFOUNDRIES, Inc.
    Inventors: Bin Yang, Man Fai Ng
  • Patent number: 8629434
    Abstract: A display device includes a first wiring functioning as a gate electrode formed over a substrate, a gate insulating film formed over the first wiring, a second wiring and an electrode layer provided over the gate insulating film, and a high-resistance oxide semiconductor layer formed between the second wiring and the electrode layer are included. In the structure, the second wiring is formed using a stack of a low-resistance oxide semiconductor layer and a conductive layer over the low-resistance oxide semiconductor layer, and the electrode layer is formed using a stack of the low-resistance oxide semiconductor layer and the conductive layer which is stacked so that a region functioning as a pixel electrode of the low-resistance oxide semiconductor layer is exposed.
    Type: Grant
    Filed: May 2, 2013
    Date of Patent: January 14, 2014
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Yasuyuki Arai
  • Patent number: 8592902
    Abstract: Gate cross diffusion in a semiconductor structure is substantially reduced or eliminated by forming multiple n-type gate regions with different dopant concentrations and multiple p-type gate regions with different dopant concentrations so that the n-type gate region with the lowest dopant concentration touches the p-type gate region with the lowest dopant concentration.
    Type: Grant
    Filed: September 21, 2012
    Date of Patent: November 26, 2013
    Assignee: Texas Instrument Incorporated
    Inventor: Manoj Mehrotra
  • Patent number: 8564062
    Abstract: In an extended drain MOS device used in high voltage applications, switching characteristics are improved by providing for at least one base contact in the active region in the extended drain space.
    Type: Grant
    Filed: June 18, 2008
    Date of Patent: October 22, 2013
    Assignee: National Semiconductor Corporation
    Inventor: Vladislav Vashchenko
  • Patent number: 8530973
    Abstract: It is an object to form a conductive region in an insulating film without forming contact holes in the insulating film. A method is provided, in which an insulating film is formed over a first electrode over a substrate, a first region having many defects is formed at a first depth in the insulating film by adding first ions into the insulating film at a first accelerating voltage; a second region having many defects is formed at a second depth which is different from the first depth in the insulating film by adding second ions into the insulating film at a second accelerating voltage, a conductive material containing a metal element is formed over the first and second regions; and a conductive region which electrically connects the first electrode and the conductive material is formed in the insulating film by diffusing the metal element into the first and second regions.
    Type: Grant
    Filed: July 12, 2012
    Date of Patent: September 10, 2013
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Kazuya Hanaoka, Miki Suzuki
  • Patent number: 8518768
    Abstract: A CMOS device includes a PMOS transistor with a first quantum well structure and an NMOS device with a second quantum well structure. The PMOS and NMOS transistors are formed on a substrate.
    Type: Grant
    Filed: April 18, 2012
    Date of Patent: August 27, 2013
    Assignee: Intel Corporation
    Inventors: Suman Datta, Mantu K. Hudait, Mark L. Doczy, Jack T. Kavalieros, Majumdar Amian, Justin K. Brask, Been-Yih Jin, Matthew V. Metz, Robert S. Chau
  • Patent number: 8482058
    Abstract: In a high frequency amplifying MOSFET having a drain offset region, the size is reduced and the on-resistance is decreased by providing conductor plugs 13 (P1) for leading out electrodes on a source region 10, a drain region 9 and leach-through layers 3 (4), to which a first layer wirings 11a, 11d (M1) are connected and, further, backing second layer wirings 12a to 12d are connected on the conductor plugs 13 (P1) to the first layer wirings 11s, 11d (M1).
    Type: Grant
    Filed: June 1, 2012
    Date of Patent: July 9, 2013
    Assignee: Renesas Electronics Corporation
    Inventors: Yutaka Hoshino, Shuji Ikeda, Isao Yoshida, Shiro Kamohara, Megumi Kawakami, Tomoyuki Miyake, Masatoshi Morikawa
  • Patent number: 8410553
    Abstract: A high voltage device includes a substrate with a device region defined thereon. A gate stack is disposed on the substrate in the device region. A channel region is located in the substrate beneath the gate stack, while a first diffusion region is located in the substrate on a first side of the gate stack. A first isolation structure in the substrate, located on the first side of the gate stack, separates the channel and the first diffusion region. The high voltage device also includes a first drift region in the substrate coupling the channel to the first diffusion region, wherein the first drift region comprises a non-uniform depth profile conforming to a profile of the first isolation structure.
    Type: Grant
    Filed: December 10, 2010
    Date of Patent: April 2, 2013
    Assignee: GLOBALFOUNDRIES Singapore Pte. Ltd.
    Inventors: Jeoung Mo Koo, Purakh Raj Verma, Sanford Chu, Chunlin Zhu, Yisuo Li
  • Patent number: 8319316
    Abstract: A semiconductor memory device includes a first transistor. The first transistor includes a gate electrode, a channel region, a source region, a source region, an overlapping region, a contact region, and an impurity diffusion region. The channel region has a first impurity concentration. The source and drain regions have a second impurity concentration. The overlapping region is formed in the semiconductor layer where the channel region overlaps the source region and the drain region, and has a third impurity concentration. The contact region has a fourth impurity concentration. The impurity diffusion region has a fifth impurity concentration higher than the second impurity concentration and lower than the fourth impurity concentration. The impurity diffusion region is in contact with the contact region and away from the overlapping region and positioned at least in a region between the contact region and the overlapping region.
    Type: Grant
    Filed: May 27, 2010
    Date of Patent: November 27, 2012
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Hiroyuki Kutsukake, Kenji Gomikawa, Yoshiko Kato, Mitsuhiro Noguchi, Masato Endo
  • Patent number: 8288830
    Abstract: A semiconductor device includes: an active region defined by a device isolation layer on and/or over a substrate; a second conductive well on and/or over the active region; an extended drain formed at one side of the second conductive well; a gate electrode on and/or over the second conductive well and the extended drain; and a source and a drain formed at both sides of the gate electrode, in which extended regions are formed at the corners of the second conductive well under the gate electrode.
    Type: Grant
    Filed: December 28, 2009
    Date of Patent: October 16, 2012
    Assignee: Dongbu HiTek Co., Ltd.
    Inventors: Jong-Min Kim, Jae-Hyun Yoo, Chan-Ho Park
  • Patent number: 8253197
    Abstract: An integrated circuit with a transistor advantageously embodied in a laterally diffused metal oxide semiconductor device having a gate located over a channel region recessed into a semiconductor substrate and a method of forming the same. In one embodiment, the transistor includes a source/drain including a lightly or heavily doped region adjacent the channel region, and an oppositely doped well extending under the channel region and a portion of the lightly or heavily doped region of the source/drain. The transistor also includes a channel extension, within the oppositely doped well, under the channel region and extending under a portion of the lightly or heavily doped region of the source/drain.
    Type: Grant
    Filed: August 28, 2009
    Date of Patent: August 28, 2012
    Assignee: Enpirion, Inc.
    Inventors: Ashraf W. Lotfi, William W. Troutman, Douglas Dean Lopata, Tanya Nigam
  • Patent number: 8198683
    Abstract: A TFT formed on an insulating substrate source, drain and channel regions, a gate insulating film formed on at least the channel region and a gate electrode formed on the gate insulating film. Between the channel region and the drain region, a region having a higher resistivity is provided in order to reduce an Ioff current. A method for forming this structure comprises the steps of anodizing the gate electrode to form a porous anodic oxide film on the side of the gate electrode; removing a portion of the gate insulating using the porous anodic oxide film as a mask so that the gate insulating film extends beyond the gate electrode but does not completely cover the source and drain regions. Thereafter, an ion doping of one conductivity element is performed. The high resistivity region is defined under the gate insulating film.
    Type: Grant
    Filed: December 2, 2010
    Date of Patent: June 12, 2012
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Toshimitsu Konuma, Akira Sugawara, Yukiko Uehara, Hongyong Zhang, Atsunori Suzuki, Hideto Ohnuma, Naoaki Yamaguchi, Hideomi Suzawa, Hideki Uochi, Yasuhiko Takemura
  • Patent number: 8120106
    Abstract: A LDMOS with double LDD and trenched drain is disclosed. According to some preferred embodiment of the present invention, the structure contains a double LDD region, including a high energy implantation to form lightly doped region and a low energy implantation thereon to provide a low resistance path for current flow without degrading breakdown voltage. At the same time, a P+ junction made by source mask is provided underneath source region to avoid latch-up effect from happening.
    Type: Grant
    Filed: January 13, 2011
    Date of Patent: February 21, 2012
    Assignee: Force MOS Technology Co., Ltd.
    Inventor: Fu-Yuan Hsieh
  • Patent number: 8106466
    Abstract: A method for fabricating a MOS transistor is disclosed. First, a semiconductor substrate having a gate thereon is provided. A spacer is then formed on the sidewall of the gate, and two recesses are formed adjacent to the spacer and within the semiconductor substrate. Next, the spacer is thinned, and epitaxial layer is grown in each of the two recesses. By thinning the spacer before the epitaxial layer is formed, the present invention could stop the epitaxial layer to grow against the sidewall of the spacer, thereby preventing problem such as Ion degradation.
    Type: Grant
    Filed: August 10, 2008
    Date of Patent: January 31, 2012
    Assignee: United Microelectronics Corp.
    Inventors: Po-Lun Cheng, Pin-Chien Chu
  • Patent number: 8097930
    Abstract: In an embodiment, a semiconductor device is provided. The semiconductor device may include a first diffusion region, a second diffusion region an active region disposed between the first diffusion region and the second diffusion region, a control region disposed above the active region, a first trench isolation disposed laterally adjacent to the first diffusion region opposite to the active region, and a second trench isolation disposed between the second diffusion region and the active region. The second trench isolation may have a smaller depth than the first trench isolation.
    Type: Grant
    Filed: August 8, 2008
    Date of Patent: January 17, 2012
    Assignee: Infineon Technologies AG
    Inventors: Mayank Shrivastava, Harald Gossner, Ramgopal Rao, Maryam Shojaei Baghini
  • Publication number: 20120007179
    Abstract: A high voltage/power semiconductor device using a low voltage logic well is provided. The semiconductor device includes a substrate, a first well region formed by being doped in a first location on a surface of the substrate, a second well region formed by being doped with impurity different from the first well region's in a second location on a surface of the substrate, an overlapping region between the first well region and the second well region where the first well region and the second well region substantially coexist, a gate insulating layer formed on the surface of the first and the second well regions and the surface of the overlapping region, a gate electrode formed on the gate insulating layer, a source region formed on an upper portion of the first well region, and a drain region formed on an upper portion of the second well region.
    Type: Application
    Filed: November 16, 2010
    Publication date: January 12, 2012
    Inventors: Yon-sup Pang, Jun-ho Lee
  • Publication number: 20110254105
    Abstract: A semiconductor device having a strained channel and a method of manufacture thereof is provided. The semiconductor device has a gate electrode formed over a channel recess. A first recess and a second recess formed on opposing sides of the gate electrode are filled with a stress-inducing material. The stress-inducing material extends into an area wherein source/drain extensions overlap an edge of the gate electrode. In an embodiment, sidewalls of the channel recess and/or the first and second recesses may be along {111} facet planes.
    Type: Application
    Filed: April 16, 2010
    Publication date: October 20, 2011
    Applicant: Taiwan Semiconductor Manufacturing Company. Ltd.
    Inventors: Chun-Fai Cheng, Ka-Hing Fung, Han-Ting Tsai, Ming-Huan Tsai, Wei-Han Fan, Hsueh-Chang Sung, Haiting Wang, Wei-Yuan Lu, Hsien-Ching Lo, Kuan-Chung Chen
  • Patent number: 8022488
    Abstract: A high-performance semiconductor structure and a method of fabricating such a structure are provided. The semiconductor structure includes at least one gate stack, e.g., FET, located on an upper surface of a semiconductor substrate. The structure further includes a first epitaxy semiconductor material that induces a strain upon a channel of the at least one gate stack. The first epitaxy semiconductor material is located at a footprint of the at least one gate stack substantially within a pair of recessed regions in the substrate which are present on opposite sides of the at least one gate stack. A diffused extension region is located within an upper surface of said first epitaxy semiconductor material in each of the recessed regions. The structure further includes a second epitaxy semiconductor material located on an upper surface of the diffused extension region. The second epitaxy semiconductor material has a higher dopant concentration than the first epitaxy semiconductor material.
    Type: Grant
    Filed: September 24, 2009
    Date of Patent: September 20, 2011
    Assignee: International Business Machines Corporation
    Inventors: Kangguo Cheng, Bruce B. Doris, Ali Khakifirooz, Ghavam G. Shahidi
  • Publication number: 20110169078
    Abstract: A disclosed power transistor, suitable for use in a switch mode converter that is operable with a switching frequency exceeding, for example, 5 MHz or more, includes a gate dielectric layer overlying an upper surface of a semiconductor substrate and first and second gate electrodes overlying the gate dielectric layer. The first gate electrode is laterally positioned overlying a first region of the substrate. The first substrate region has a first type of doping, which may be either n-type or p-type. A second gate electrode of the power transistor overlies the gate dielectric and is laterally positioned over a second region of the substrate. The second substrate region has a second doping type that is different than the first type. The transistor further includes a drift region located within the substrate in close proximity to an upper surface of the substrate and laterally positioned between the first and second substrate regions.
    Type: Application
    Filed: March 22, 2011
    Publication date: July 14, 2011
    Applicant: FREESCALE SEMICONDUCTOR, INC.
    Inventors: Hongning Yang, Jiang-Kai Zuo
  • Publication number: 20110108913
    Abstract: A LDMOS with double LDD and trenched drain is disclosed. According to some preferred embodiment of the present invention, the structure contains a double LDD region, including a high energy implantation to form lightly doped region and a low energy implantation thereon to provide a low resistance path for current flow without degrading breakdown voltage. At the same time, a P+ junction made by source mask is provided underneath source region to avoid latch-up effect from happening.
    Type: Application
    Filed: January 13, 2011
    Publication date: May 12, 2011
    Applicant: FORCE MOS TECHNOLOGY CO., LTD.
    Inventor: Fu-Yuan HSIEH
  • Publication number: 20110079850
    Abstract: A high voltage device includes a substrate with a device region defined thereon. A gate stack is disposed on the substrate in the device region. A channel region is located in the substrate beneath the gate stack, while a first diffusion region is located in the substrate on a first side of the gate stack. A first isolation structure in the substrate, located on the first side of the gate stack, separates the channel and the first diffusion region. The high voltage device also includes a first drift region in the substrate coupling the channel to the first diffusion region, wherein the first drift region comprises a non-uniform depth profile conforming to a profile of the first isolation structure.
    Type: Application
    Filed: December 10, 2010
    Publication date: April 7, 2011
    Applicant: GLOBALFOUNDRIES SINGAPORE PTE. LTD.
    Inventors: Jeoung Mo KOO, Purakh Raj VERMA, Sanford CHU, Chunlin ZHU, Yisuo LI
  • Patent number: 7880228
    Abstract: A semiconductor device includes a semiconductor substrate, a gate insulating film, a gate electrode, a source/drain layer, and a germanide layer. The gate insulating film is formed on the semiconductor substrate. The gate electrode is formed on the gate insulating film. The source/drain layer is formed on both sides of the gate electrode, contains silicon germanium, and has a germanium layer in a surface layer portion. The germanide layer is formed on the germanium layer of the source/drain layer.
    Type: Grant
    Filed: March 12, 2010
    Date of Patent: February 1, 2011
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Nobuaki Yasutake
  • Patent number: 7867862
    Abstract: A high voltage device includes a substrate with a device region defined thereon. A gate stack is disposed on the substrate in the device region. A channel region is located in the substrate beneath the gate stack, while a first diffusion region is located in the substrate on a first side of the gate stack. A first isolation structure in the substrate, located on the first side of the gate stack, separates the channel and the first diffusion region. The high voltage device also includes a first drift region in the substrate coupling the channel to the first diffusion region, wherein the first drift region comprises a non-uniform depth profile conforming to a profile of the first isolation structure.
    Type: Grant
    Filed: September 14, 2007
    Date of Patent: January 11, 2011
    Assignee: Chartered Semiconductor Manufacturing, Ltd
    Inventors: Jeoung Mo Koo, Purakh Raj Verma, Sanford Chu, Chunlin Zhu, Yisuo Li
  • Publication number: 20100314694
    Abstract: A semiconductor device includes: a channel region formed in a semiconductor substrate; a source region formed on one side of the channel region; a drain region formed on the other side of the channel region; a gate electrode formed on the channel region via a gate insulating film; and a stress-introducing layer that applies stress to the channel region, the semiconductor device having a stress distribution in which source region-side and drain region-side peaks are positioned between a pn junction boundary of the channel region and the source region and a pn junction boundary of the channel region and the drain region.
    Type: Application
    Filed: May 19, 2010
    Publication date: December 16, 2010
    Applicant: SONY CORPORATION
    Inventors: Satoru Mayuzumi, Hitoshi Wakabayashi
  • Patent number: 7847355
    Abstract: A TFT formed on an insulating substrate source, drain and channel regions, a gate insulating film formed on at least the channel region and a gate electrode formed on the gate insulating film. Between the channel region and the drain region, a region having a higher resistivity is provided in order to reduce an Ioff current. A method for forming this structure comprises the steps of anodizing the gate electrode to form a porous anodic oxide film on the side of the gate electrode; removing a portion of the gate insulating using the porous anodic oxide film as a mask so that the gate insulating film extends beyond the gate electrode but does not completely cover the source and drain regions. Thereafter, an ion doping of one conductivity element is performed. The high resistivity region is defined under the gate insulating film.
    Type: Grant
    Filed: August 3, 2009
    Date of Patent: December 7, 2010
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Toshimitsu Konuma, Akira Sugawara, Yukiko Uehara, Hongyong Zhang, Atsunori Suzuki, Hideto Ohnuma, Naoaki Yamaguchi, Hideomi Suzawa, Hideki Uochi, Yasuhiko Takemura
  • Patent number: 7824989
    Abstract: A method for forming a field effect transistor (FET) device includes forming a gate conductor over a semiconductor substrate; forming a source region, the source region having a source extension that overlaps and extends under the gate conductor; and forming a drain region, the drain region having a drain extension that overlaps and extends under the gate conductor at selected locations along the width of the gate; and the drain region further comprising a plurality of recessed areas corresponding to areas where the drain extension does not overlap and extend under the gate conductor, wherein the plurality of recessed areas is formed only in the drain region.
    Type: Grant
    Filed: March 18, 2008
    Date of Patent: November 2, 2010
    Assignee: International Business Machines Corporation
    Inventors: Huilong Zhu, Oleg Gluschenkov
  • Patent number: 7759745
    Abstract: A drain (7) includes a lightly-doped shallow impurity region (7a) aligned with a control gate (5), and a heavily-doped deep impurity region (7b) aligned with a sidewall film (8) and doped with impurities at a concentration higher than that of the lightly-doped shallow impurity region (7a). The lightly-doped shallow impurity region (7a) leads to improvement of the short-channel effect and programming efficiency. A drain contact hole forming portion (70) is provided to the heavily-doped impurity region (7b) to reduce the contact resistance at the drain (7).
    Type: Grant
    Filed: January 23, 2007
    Date of Patent: July 20, 2010
    Assignees: Fujitsu Limited, Spansion LLC, Advanced Micro Devices, Inc.
    Inventors: Hideki Komori, Hisayuki Shimada, Yu Sun, Hiroyuki Kinoshita
  • Patent number: 7709333
    Abstract: A field effect transistor (FET) device includes a gate conductor formed over a semiconductor substrate, a source region having a source extension that overlaps and extends under the gate conductor, and a drain region having a drain extension that overlaps and extends under the gate conductor only at selected locations along the width of the gate conductor.
    Type: Grant
    Filed: July 15, 2008
    Date of Patent: May 4, 2010
    Assignee: International Business Machines Corporation
    Inventors: Huilong Zhu, Oleg Gluschenkov
  • Patent number: 7683440
    Abstract: A drain (7) includes a lightly-doped shallow impurity region (7a) aligned with a control gate (5), and a heavily-doped deep impurity region (7b) aligned with a sidewall film (8) and doped with impurities at a concentration higher than that of the lightly-doped shallow impurity region (7a). The lightly-doped shallow impurity region (7a) leads to improvement of the short-channel effect and programming efficiency. A drain contact hole forming portion (70) is provided to the heavily-doped impurity region (7b) to reduce the contact resistance at the drain (7).
    Type: Grant
    Filed: January 23, 2007
    Date of Patent: March 23, 2010
    Assignees: Fujitsu Limited, Spansion LLC, Advanced Micro Devices, Inc.
    Inventors: Hideki Komori, Hisayuki Shimada, Yu Sun, Hiroyuki Kinoshita
  • Publication number: 20100038705
    Abstract: A semiconductor structure and a method for fabricating the semiconductor structure provide an undercut beneath a spacer that is adjacent a gate electrode within a field effect structure such as a field effect transistor structure. The undercut, which may completely or incompletely encompass the area interposed between the spacer and a semiconductor substrate is filled with a gate dielectric. The gate dielectric has a greater thickness interposed between the spacer and the semiconductor substrate than the gate and the semiconductor substrate. The semiconductor structure may be fabricated using a sequential replacement gate dielectric and gate electrode method.
    Type: Application
    Filed: August 12, 2008
    Publication date: February 18, 2010
    Applicant: International Business Machines Corporation
    Inventors: Bruce B. Doris, Kangguo Cheng, Haining S. Yang
  • Patent number: 7655991
    Abstract: Sidewall spacers on the gate of a MOS device are formed from stressed material so as to provide strain in the channel region of the MOS device that enhances carrier mobility. In a particular embodiment, the MOS device is in a CMOS cell that includes a second MOS device. The first MOS device has sidewall spacers having a first (e.g., tensile) type of residual mechanical stress, and the second MOS device has sidewall spacers having a second (e.g., compressive) type of residual mechanical stress. Thus, carrier mobility is enhanced in both the PMOS portion and in the NMOS portion of the CMOS cell.
    Type: Grant
    Filed: September 8, 2005
    Date of Patent: February 2, 2010
    Assignee: XILINX, Inc.
    Inventors: Deepak Kumar Nayak, Yuhao Luo
  • Publication number: 20090315110
    Abstract: In an extended drain MOS device used in high voltage applications, switching characteristics are improved by providing for at least one base contact in the active region in the extended drain space.
    Type: Application
    Filed: June 18, 2008
    Publication date: December 24, 2009
    Inventor: Vladislav Vashchenko
  • Patent number: 7592669
    Abstract: With the objective of suppressing or preventing a kink effect in the operation of a semiconductor device having a high breakdown voltage field effect transistor, n+ type semiconductor regions, each having a conduction type opposite to p+ type semiconductor regions for a source and drain of a high breakdown voltage pMIS, are disposed in a boundary region between each of trench type isolation portions at both ends, in a gate width direction, of a channel region of the high breakdown voltage pMIS and a semiconductor substrate at positions spaced away from p? type semiconductor regions, each having a field relaxing function, of the high breakdown voltage pMIS, so as not to contact the p? type semiconductor regions (on the drain side, in particular). The n+ type semiconductor regions extend to positions deeper than the trench type isolation portions.
    Type: Grant
    Filed: July 11, 2007
    Date of Patent: September 22, 2009
    Assignee: Renesas Technology Corp.
    Inventors: Hideki Yasuoka, Keiichi Yoshizumi, Masami Koketsu
  • Patent number: 7579660
    Abstract: A semiconductor device includes a substrate including a semiconductor layer at a surface, a gate insulating film disposed on the semiconductor layer, and a gate electrode disposed on the gate insulating film. The gate electrode includes a conductive layer consisting of a nitride of a predetermined metal in contact with the gate insulating film. The conductive layer is formed by stacking a first film consisting of a nitride of the predetermined metal and a second film consisting of the predetermined metal, and diffusing nitrogen from the first film to the second film by solid-phase diffusion.
    Type: Grant
    Filed: November 16, 2006
    Date of Patent: August 25, 2009
    Assignees: Tokyo Electron Limited, Oki Electric Industry Co., Ltd.
    Inventors: Koji Akiyama, Zhang Lulu, Morifumi Ohno
  • Publication number: 20090121286
    Abstract: An integrated circuit includes a field effect transistor including: a gate electrode disposed adjacent to a surface of semiconductor substrate and a source/drain region disposed in the semiconductor substrate and adjacent to the surface. A net dopant concentration of a first section of the source/drain region decreases towards the gate electrode along a direction perpendicular to the surface.
    Type: Application
    Filed: November 14, 2007
    Publication date: May 14, 2009
    Applicant: QIMONDA AG
    Inventors: Matthias Goldbach, Jurgen Faul
  • Patent number: 7525158
    Abstract: A TFT formed on an insulating substrate source, drain and channel regions, a gate insulating film formed on at least the channel region and a gate electrode formed on the gate insulating film. Between the channel region and the drain region, a region having a higher resistivity is provided in order to reduce an Ioff current. A method for forming this structure comprises the steps of anodizing the gate electrode to form a porous anodic oxide film on the side of the gate electrode; removing a portion of the gate insulating using the porous anodic oxide film as a mask so that the gate insulating film extends beyond the gate electrode but does not completely cover the source and drain regions. Thereafter, an ion doping of one conductivity element is performed. The high resistivity region is defined under the gate insulating film.
    Type: Grant
    Filed: July 20, 2004
    Date of Patent: April 28, 2009
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Toshimitsu Konuma, Akira Sugawara, Yukiko Uehara, Hongyong Zhang, Atsunori Suzuki, Hideto Ohnuma, Naoaki Yamaguchi, Hideomi Suzawa, Hideki Uochi, Yasuhiko Takemura
  • Publication number: 20090072310
    Abstract: A high voltage device includes a substrate with a device region defined thereon. A gate stack is disposed on the substrate in the device region. A channel region is located in the substrate beneath the gate stack, while a first diffusion region is located in the substrate on a first side of the gate stack. A first isolation structure in the substrate, located on the first side of the gate stack, separates the channel and the first diffusion region. The high voltage device also includes a first drift region in the substrate coupling the channel to the first diffusion region, wherein the first drift region comprises a non-uniform depth profile conforming to a profile of the first isolation structure.
    Type: Application
    Filed: September 14, 2007
    Publication date: March 19, 2009
    Applicant: CHARTERED SEMICONDUCTOR MANUFACTURING, LTD.
    Inventors: Jeoung Mo KOO, Purakh Raj VERMA, Sanford CHU, Chunlin ZHU, Yisuo LI
  • Publication number: 20080290412
    Abstract: An apparatus comprising a substrate of first dopant type and first dopant concentration; pocket regions in the substrate and having the first dopant type and a second dopant concentration greater than the first dopant concentration; a gate stack over the substrate and laterally between the pocket regions; first and second source/drain regions on opposing sides of the gate stack and vertically between the gate stack and the pocket regions, the first and second source/drain regions having a second dopant type opposite the first dopant type and a third dopant concentration; and third and fourth source/drain regions having the second dopant type and a fourth dopant concentration that is greater than the third dopant concentration, wherein the pocket regions are between the third and fourth source/drain regions, and the third and fourth source/drain regions are vertically between the first and second source/drain regions and a bulk portion of the substrate.
    Type: Application
    Filed: May 22, 2007
    Publication date: November 27, 2008
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Chih-Chiang Wang, Yi-Ming Sheu, Ying-Shiou Lin
  • Publication number: 20080283915
    Abstract: The present invention provides a high voltage semiconductor device and a method of manufacturing the same. The high voltage semiconductor device includes: a semiconductor substrate; a first high voltage N-type well formed on the semiconductor substrate; a first high voltage P-type well formed inside the first high voltage N-type well; a second high voltage N-type well formed to surround the first high voltage P-type well inside the first high voltage N-type well; a gate dielectric layer and a gate electrode formed to be stacked on the upper of the first high voltage P-type well; and a first N-type high-concentration impurity region formed at both sides of the gate electrode in the first high voltage P-type well, wherein the concentration of the upper region of the first high voltage N-type well is lower than that of the lower region thereof, based on a portion formed with the first high voltage P-type well.
    Type: Application
    Filed: May 6, 2008
    Publication date: November 20, 2008
    Inventor: Duck-Ki Jang
  • Patent number: 7453088
    Abstract: A semiconductor device that uses a high reliability TFT structure is provided. The gate electrode of an n-channel type TFT is formed by a first gate electrode and a second gate electrode that covers the first gate electrode. LDD regions have portions that overlap the second gate electrode through a gate insulating film, and portions that do not overlap. As a result, the TFT can be prevented from degradation in an ON state, and it is possible to reduce the leak current in an OFF state.
    Type: Grant
    Filed: January 18, 2007
    Date of Patent: November 18, 2008
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Hisashi Ohtani, Setsuo Nakajima
  • Patent number: 7420241
    Abstract: A semiconductor memory device includes a memory cell which includes a first gate insulation film provided on the semiconductor substrate; a floating gate electrode provided on the first gate insulation film; a second gate insulation film provided on the floating gate electrode; a control gate electrode provided on the second gate insulation film; a source layer and a drain layer that are provided in the semiconductor substrate, the source layer and the drain layer respectively being provided either side of a channel region which is below the floating gate electrode; a source electrode that is electrically connected to the source layer; a buffer film provided on the drain layer; and a memory cell including a drain electrode electrically connected to the drain layer through the buffer film, wherein when viewing the surface of the semiconductor substrate from above, an overlapped area between the floating gate electrode and the drain layer is smaller than an overlapped area between the floating gate electrode an
    Type: Grant
    Filed: November 21, 2005
    Date of Patent: September 2, 2008
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Takamitsu Ishihara
  • Publication number: 20080150045
    Abstract: A method for manufacturing a semiconductor device. The method comprises depositing a material layer on a semiconductor substrate and patterning the material layer with a patterning material. Patterning forms a patterned structure of a semiconductor device, wherein the patterned structure has a sidewall with a roughness associated therewith. The method also comprises removing the patterning material from the patterned structure and annealing an outer surface of the patterned structure such that the roughness is reduced.
    Type: Application
    Filed: December 22, 2006
    Publication date: June 26, 2008
    Applicant: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Stephanie W. Butler, Yuanning Chen