With Overlap Between Lightly Doped Extension And Gate Electrode (epo) Patents (Class 257/E29.269)
  • Publication number: 20080111168
    Abstract: An improved coupling stability between the source region and the source electrode of the transistor is achieved. In the method for manufacturing the MOSFET, the p-type base region is formed in a semiconductor layer, and after the p-type base region is formed in the surface portion of the n+ type source region, the higher concentration source region extending from the side edge of the n+ type source region to the lateral side of the n+ type source region is formed in the surface portion of the p-type base region. Then, the source electrode coupled to the higher concentration source region is formed. This allows providing an improved coupling stability between the source electrode and the source region when a misalignment is occurred in the location for forming the source electrode during the formation of the source electrode to be coupled to the first source region.
    Type: Application
    Filed: November 7, 2007
    Publication date: May 15, 2008
    Applicant: NEC ELECTRONICS CORPORATION
    Inventors: Takayoshi ANDOU, Kenya KOBAYASHI
  • Patent number: 7355245
    Abstract: A field effect transistor (FET) device includes a gate conductor formed over a semiconductor substrate, a source region having a source extension that overlaps and extends under the gate conductor, and a drain region having a drain extension that overlaps and extends under the gate conductor only at selected locations along the width of the gate conductor.
    Type: Grant
    Filed: March 28, 2007
    Date of Patent: April 8, 2008
    Assignee: International Business Machines Corporation
    Inventors: Huilong Zhu, Oleg Gluschenkov
  • Publication number: 20080042197
    Abstract: A high voltage field effect transistor according to the present invention has: a p-type low concentration drain region and a low concentration source region formed on both sides of a channel formation region within a n-type region of a semiconductor substrate; a high concentration drain region formed in the low concentration drain region, an impurity concentration of which is higher than that of the low concentration drain region; a gate insulating film that at least covers a surface of the channel formation region; a field oxide film formed on the low concentration drain region so as to be in contact with an end section of the gate insulating film; a gate electrode formed on said gate insulating film and at least a part of said field oxide film so as to cover an entire channel formation region and an end section of said low concentration drain region; and a non-oxide region of the low concentration drain region, on both sides of which there are the gate electrode and the high concentration drain region, and
    Type: Application
    Filed: June 29, 2007
    Publication date: February 21, 2008
    Applicant: OKI ELECTRIC INDUSTRY CO., LTD.
    Inventors: Masashi Yamagishi, Toshihiro Honma
  • Publication number: 20080017921
    Abstract: A high voltage semiconductor deice and a manufacturing method thereof are provided. The high voltage semiconductor device comprises: second conductive type drift regions disposed spaced from each other on a first conductive type well region formed on a first conductive type semiconductor substrate; a gate electrode on a channel region between the second conductive type drift regions with a gate insulating film disposed therebetween; second conductive type high-concentration source and drain each disposed in the second conductive type drift regions, spaced from a side of a gate electrode; a gate spacer having a spacer part covering the side of the gate electrode and a spacer extending part to cover a spaced portion of the second conductive type high-concentration source and drain from the side of the gate electrode; and a silicide formed on the gate electrode and the second conductive type high-concentration source and drain.
    Type: Application
    Filed: July 19, 2007
    Publication date: January 24, 2008
    Inventor: JIN HYO JUNG
  • Patent number: 7227227
    Abstract: The invention includes a semiconductor construction having a pair of channel regions that have sub-regions doped with indium and surrounded by boron. A pair of transistor constructions are located over the channel regions and are separated by an isolation region. The transistors have gates that are wider than the underlying sub-regions. The invention also includes a semiconductor construction that has transistor constructions with insulative spacers along-gate sidewalls. Each transistor construction is between a pair source/drain regions that extend beneath the spacers. A source/drain extension extends the source/drain region farther beneath the transistor constructions on only one side of each of the transistor constructions. The invention also includes methods of forming semiconductor constructions.
    Type: Grant
    Filed: August 24, 2005
    Date of Patent: June 5, 2007
    Assignee: Micron Technology, Inc.
    Inventor: Luan C. Tran
  • Publication number: 20060220115
    Abstract: In a semiconductor device of the present invention, an N-type epitaxial layer 2 is deposited on a P-type substrate 1. In the epitaxial layer 2, a P-type diffusion layer 5 to be used as a back gate region is formed. An N-type diffusion layer 8 to be used as a drain region is formed so as to surround the P-type diffusion layer 5. The P-type diffusion layer 5 and the N-type diffusion layer 8 partially overlap with each other. By use of a structure described above, a distance between a drain and a source is shortened. Thus, an ON resistance value can be reduced. Moreover, since a concentration gradient can be generated in the drain region, withstand pressure characteristics can be maintained while reducing an element formation region.
    Type: Application
    Filed: March 27, 2006
    Publication date: October 5, 2006
    Inventor: Seiji Otake
  • Patent number: 7112844
    Abstract: The objectives of the present invention are achieving TFTs having a small off current and TFT structures optimal for the driving conditions of a pixel portion and driver circuits, and providing a technique of making the differently structured TFTs without increasing the number of manufacturing steps and the production costs. A semiconductor device has a semiconductor layer, a gate insulating film on the semiconductor layer, and a gate electrode on the gate insulating film. The semiconductor layer contains a channel forming region, a region containing a first concentration impurity element, a region containing a second concentration impurity element, and a region containing a third concentration impurity element. The gate electrode is formed by laminating an electrode (A) and an electrode (B).
    Type: Grant
    Filed: April 17, 2002
    Date of Patent: September 26, 2006
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Ritsuko Nagao, Masahiko Hayakawa