Vertical Transistor (epo) Patents (Class 257/E29.274)
  • Patent number: 7670911
    Abstract: A method for manufacturing a vertical MOS transistor comprising forming a protrusion-like region, forming a silicon oxide film on an exposed surface of the protrusion-like region and a surface of the silicon semiconductor substrate, increasing a film thickness of at least the silicon oxide film on the silicon semiconductor substrate by thermal oxidation to form a first insulating film, forming a lower impurity diffusion region, removing the silicon oxide film to expose a silicon side of the protrusion-like region, thermally oxidizing the silicon side to form a second insulating film having a thinner film thickness than a film thickness of the first insulating film, forming a gate electrode over a side of the protrusion-like region, and forming an upper impurity diffusion region.
    Type: Grant
    Filed: July 31, 2008
    Date of Patent: March 2, 2010
    Assignee: Elpida Memory, Inc.
    Inventor: Kiyonori Oyu
  • Patent number: 7663184
    Abstract: A memory and a method of fabricating the same are provided. The memory is disposed on a substrate in which a plurality of trenches is arranged in parallel. The memory includes a gate structure and a doped region. The gate structure is disposed between the trenches. The doped region is disposed at one side of the gate structure, in the substrate between the trenches and in the sidewalls and bottoms of the trenches. The top surface of the doped region in the substrate between the trenches is lower than the surface of the substrate under the gate structure by a distance, and the distance is greater than 300 ?.
    Type: Grant
    Filed: July 31, 2008
    Date of Patent: February 16, 2010
    Assignee: MACRONIX International Co., Ltd.
    Inventors: Yao-Fu Chan, Ta-Kang Chu, Jung-Chuan Ting, Cheng-Ming Yih
  • Patent number: 7649222
    Abstract: This semiconductor device includes a first conductivity type first semiconductor layer formed on the upper surface of a substrate, a first conductivity type second semiconductor layer formed on the first semiconductor layer, a first conductivity type third semiconductor layer formed on the second semiconductor layer, a second conductivity type fourth semiconductor layer formed on the third semiconductor layer, a first conductivity type fifth semiconductor layer formed on the fourth semiconductor layer and an electrode formed in a trench, so provided as to reach the second semiconductor layer through at least the fifth semiconductor layer, the fourth semiconductor layer and the third semiconductor layer, in contact with an insulating film, while the upper surface of the second semiconductor layer is arranged upward beyond the lower end of the electrode.
    Type: Grant
    Filed: December 21, 2007
    Date of Patent: January 19, 2010
    Assignee: Sanyo Electric Co., Ltd.
    Inventor: Haruki Yoneda
  • Patent number: 7638374
    Abstract: A method of fabricating a vertical thin film transistor (vertical TFT) is disclosed, wherein a shadow mask is used to fabricate the TFT device in vertical structure. First, a metal layer is formed, which serves as ribs and a gate layer. Next, a shadow mask is disposed on the gate layer. Afterwards, the shadow mask is used as a mask to form a source layer, an organic semiconductor layer and a drain layer. Thus, the process is simplified. Since no photolithography process is required, and therefore damage of the organic semiconductor layer is avoided and a vertical TFT with desired electrical characteristics may be obtained.
    Type: Grant
    Filed: August 6, 2009
    Date of Patent: December 29, 2009
    Assignee: Industrial Technology Research Institute
    Inventors: Yi-Kai Wang, Tsung-Hsien Lin, Tarng-Shiang Hu, Yu-Yuan Shen
  • Publication number: 20090278134
    Abstract: In a semiconductor device according to the present invention, an insulator layer on a substrate is provided with a trench. A gate electrode is formed in the trench so that an upper surface of the gate electrode is approximately flush with an upper surface of the insulator layer. On the gate electrode, a semiconductor layer is provided via a gate insulating film. At least one of a source electrode and a drain electrode is electrically connected to the semiconductor layer. Particularly, the gate insulating film includes an insulator coating film provided on the gate electrode, and an insulator CVD film formed on the insulator coating film.
    Type: Application
    Filed: September 21, 2007
    Publication date: November 12, 2009
    Applicant: NATIONAL UNIVRSITY CORPORATION THOKU UNIVERSITY
    Inventors: Tadahiro Ohmi, Koichi Sugitani
  • Patent number: 7588971
    Abstract: A method of fabricating a vertical thin film transistor (vertical TFT) is disclosed, wherein a shadow mask is used to fabricate the TFT device in vertical structure. First, a metal layer is formed, which serves as ribs and a gate layer. Next, a shadow mask is disposed on the gate layer. Afterwards, the shadow mask is used as a mask to form a source layer, an organic semiconductor layer and a drain layer. Thus, the process is simplified. Since no photolithography process is required, and therefore damage of the organic semiconductor layer is avoided and a vertical TFT with desired electrical characteristics may be obtained.
    Type: Grant
    Filed: July 17, 2007
    Date of Patent: September 15, 2009
    Assignee: Industrial Technology Research Institute
    Inventors: Yi-Kai Wang, Tsung-Hsien Lin, Tarng-Shiang Hu, Yu-Yuan Shen
  • Patent number: 7589387
    Abstract: A 2-bit FinFET flash memory cell capable of storing 2 bits and a method of forming the same are provided. The memory cell includes a semiconductor fin on a top surface of a substrate, a gate insulation film on the top surface and sidewalls of a channel section of the semiconductor fin, a gate electrode on the gate insulation film, and two charge-trapping regions along opposite sides of the gate electrode, wherein each charge-trapping region is separated from the gate electrode and the semiconductor fin by a tunneling layer. The memory cell further includes a protective layer on the charge-trapping regions. Each of the two charge-trapping regions is capable of storing one bit. The memory cell can be operated by applying different bias voltages to the source, the drain, and the gate of the memory cell.
    Type: Grant
    Filed: October 5, 2005
    Date of Patent: September 15, 2009
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Jiunn-Ren Hwang, Min-Hwa Chi, Fu-Liang Yang
  • Patent number: 7586130
    Abstract: A vertical field effect transistor includes: an active region with a bundle of linear structures functioning as a channel region; a lower electrode, functioning as one of source and drain regions; an upper electrode, functioning as the other of the source and drain regions; a gate electrode for controlling the electric conductivity of at least a portion of the bundle of linear structures included in the active region; and a gate insulating film arranged between the active region and the gate electrode to electrically isolate the gate electrode from the bundle of linear structures. The transistor further includes a dielectric portion between the upper and lower electrodes. The upper electrode is located over the lower electrode with the dielectric portion interposed and includes an overhanging portion sticking out laterally from over the dielectric portion. The active region is located right under the overhanging portion of the upper electrode.
    Type: Grant
    Filed: February 1, 2006
    Date of Patent: September 8, 2009
    Assignee: Panasonic Corporation
    Inventors: Takahiro Kawashima, Tohru Saitoh, Takeshi Takagi
  • Publication number: 20090207649
    Abstract: A vertical transistor having a wrap-around-gate and a method of fabricating such a transistor. The wrap-around-gate (WAG) vertical transistors are fabricated by a process in which source, drain and channel regions of the transistor are automatically defined and aligned by the fabrication process, without photolithographic patterning.
    Type: Application
    Filed: April 2, 2009
    Publication date: August 20, 2009
    Inventors: Sanh D. Tang, Robert J. Burke, Anand Srinivasan
  • Patent number: 7560773
    Abstract: A vertical-type semiconductor device for controlling a current flowing between electrodes opposed against each other across a semiconductor substrate, including: a semiconductor substrate having first and second surfaces opposed against each other; a first electrode formed in the first surface; a second electrode formed in the second surface through a high-resistance electrode whose resistance is Rs; and a third electrode formed along at least a part of the outer periphery of the second surface, wherein a potential difference Vs between the second and third electrodes is measured with a current I flowing between the first and second electrodes, and the current I is detected from the resistance Rs and the potential difference Vs.
    Type: Grant
    Filed: August 9, 2006
    Date of Patent: July 14, 2009
    Assignee: Mitsubishi Electric Corporation
    Inventor: Masahiro Tanaka
  • Patent number: 7528439
    Abstract: A vertical transistor having a wrap-around-gate and a method of fabricating such a transistor. The wrap-around-gate (WAG) vertical transistors are fabricated by a process in which source, drain and channel regions of the transistor are automatically defined and aligned by the fabrication process, without photolithographic patterning.
    Type: Grant
    Filed: May 23, 2006
    Date of Patent: May 5, 2009
    Assignee: Micron Technology, Inc.
    Inventors: Sanh D. Tang, Robert J. Burke, Anand Srinivasan
  • Patent number: 7510955
    Abstract: A multi-fin field effect transistor includes a substrate, an oxide layer, a conductive layer, a gate oxide layer, and a doped region is provided. The substrate is surrounded by a trench, and there are at least two fin-type silicon layers formed in the substrate in a region prepared to form a gate thereon. The oxide layer is disposed in the trench and the top surface of the oxide layer is lower than that of the fin-type silicon layers. The conductive layer is disposed in the region prepared to form a gate. The top surface of the conductive layer is higher than that of the fin-type silicon layers. The gate oxide layer is disposed between the conductive layer and the fin-type silicon layers and disposed between the conductive layer and the substrate. The doped region is disposed in the substrate on both sides of the conductive layer.
    Type: Grant
    Filed: August 2, 2006
    Date of Patent: March 31, 2009
    Assignee: ProMOS Technologies Inc.
    Inventor: Hsiao-Che Wu
  • Patent number: 7508025
    Abstract: Structures and methods for programmable array type logic and/or memory devices with asymmetrical low tunnel barrier intergate insulators are provided. The programmable array type logic and/or memory devices include non-volatile memory which has a first source/drain region and a second source/drain region separated by a channel region in a substrate. A floating gate opposing the channel region and is separated therefrom by a gate oxide. A control gate opposes the floating gate. The control gate is separated from the floating gate by an asymmetrical low tunnel barrier intergate insulator formed by atomic layer deposition. The asymmetrical low tunnel barrier intergate insulator includes a metal oxide insulator selected from the group consisting of Al2O3, Ta2O5, TiO2, ZrO2, Nb2O5, SrBi2Ta2O3, SrTiO3, PbTiO3, and PbZrO3.
    Type: Grant
    Filed: April 27, 2006
    Date of Patent: March 24, 2009
    Assignee: Micron Technology, Inc.
    Inventors: Jerome M. Eldridge, Kie Y. Ahn, Leonard Forbes
  • Patent number: 7504687
    Abstract: Structures and methods for programmable array type logic and/or memory devices with asymmetrical low tunnel barrier intergate insulators are provided. The programmable array type logic and/or memory devices include non-volatile memory which has a first source/drain region and a second source/drain region separated by a channel region in a substrate. A floating gate opposing the channel region and is separated therefrom by a gate oxide. A control gate opposes the floating gate. The control gate is separated from the floating gate by an asymmetrical low tunnel barrier intergate insulator formed by atomic layer deposition. The asymmetrical low tunnel barrier intergate insulator includes a metal oxide insulator selected from the group consisting of Al2O3, Ta2O5, TiO2, ZrO2, Nb2O5, SrBi2Ta2O3, SrTiO3, PbTiO3, and PbZrO3.
    Type: Grant
    Filed: March 27, 2007
    Date of Patent: March 17, 2009
    Assignee: Micron Technology, Inc.
    Inventors: Jerome M. Eldridge, Kie Y. Ahn, Leonard Forbes
  • Patent number: 7476925
    Abstract: Structures and methods for programmable array type logic and/or memory devices with asymmetrical low tunnel barrier intergate insulators are provided. The programmable array type logic and/or memory devices include non-volatile memory which has a first source/drain region and a second source/drain region separated by a channel region in a substrate. A floating gate opposing the channel region and is separated therefrom by a gate oxide. A control gate opposes the floating gate. The control gate is separated from the floating gate by an asymmetrical low tunnel barrier intergate insulator formed by atomic layer deposition. The asymmetrical low tunnel barrier intergate insulator includes a metal oxide insulator selected from the group consisting of Al2O3, Ta2O5, TiO2, ZrO2, Nb2O5, SrBi2Ta2O3, SrTiO3, PbTiO3, and PbZrO3.
    Type: Grant
    Filed: February 20, 2002
    Date of Patent: January 13, 2009
    Assignee: Micron Technology, Inc.
    Inventors: Jerome M. Eldridge, Kie Y. Ahn, Leonard Forbes
  • Patent number: 7473956
    Abstract: Structures and methods for programmable array type logic and/or memory devices with asymmetrical low tunnel barrier intergate insulators are provided. The programmable array type logic and/or memory devices include non-volatile memory which has a first source/drain region and a second source/drain region separated by a channel region in a substrate. A floating gate opposing the channel region and is separated therefrom by a gate oxide. A control gate opposes the floating gate. The control gate is separated from the floating gate by an asymmetrical low tunnel barrier intergate insulator formed by atomic layer deposition. The asymmetrical low tunnel barrier intergate insulator includes a metal oxide insulator selected from the group consisting of Al2O3, Ta2O5, TiO2, ZrO2, Nb2O5, SrBi2Ta2O3, SrTiO3, PbTiO3, and PbZrO3.
    Type: Grant
    Filed: August 30, 2004
    Date of Patent: January 6, 2009
    Assignee: Micron Technology, Inc.
    Inventors: Jerome M. Eldridge, Kie Y. Ahn, Leonard Forbes
  • Patent number: 7465983
    Abstract: Structures and methods for programmable array type logic and/or memory devices with asymmetrical low tunnel barrier intergate insulators are provided. The programmable array type logic and/or memory devices include non-volatile memory which has a first source/drain region and a second source/drain region separated by a channel region in a substrate. A floating gate opposing the channel region and is separated therefrom by a gate oxide. A control gate opposes the floating gate. The control gate is separated from the floating gate by an asymmetrical low tunnel barrier intergate insulator formed by atomic layer deposition. The asymmetrical low tunnel barrier intergate insulator includes a metal oxide insulator selected from the group consisting of Al2O3, Ta2O5, TiO2, ZrO2, Nb2O5, SrBi2Ta2O3, SrTiO3, PbTiO3, and PbZrO3.
    Type: Grant
    Filed: February 20, 2007
    Date of Patent: December 16, 2008
    Assignee: Micron Technology, Inc.
    Inventors: Jerome M. Eldridge, Kie Y. Ahn, Leonard Forbes
  • Patent number: 7446368
    Abstract: Structures and methods for programmable array type logic and/or memory devices with asymmetrical low tunnel barrier intergate insulators are provided. The programmable array type logic and/or memory devices include non-volatile memory which has a first source/drain region and a second source/drain region separated by a channel region in a substrate. A floating gate opposing the channel region and is separated therefrom by a gate oxide. A control gate opposes the floating gate. The control gate is separated from the floating gate by an asymmetrical low tunnel barrier intergate insulator formed by atomic layer deposition. The asymmetrical low tunnel barrier intergate insulator includes a metal oxide insulator selected from the group consisting of Al2O3, Ta2O5, TiO2, ZrO2, Nb2O5, SrBi2Ta2O3, SrTiO3, PbTiO3, and PbZrO3.
    Type: Grant
    Filed: February 9, 2007
    Date of Patent: November 4, 2008
    Assignee: Micron Technology, Inc.
    Inventors: Jerome M. Eldridge, Kie Y. Ahn, Leonard Forbes
  • Publication number: 20080237696
    Abstract: A memory device, a memory array and a method of arranging memory devices and arrays. The memory device includes a memory region including a plurality of memory cells, each memory cell with a source, a drain and a channel between the source and the drain, a channel dielectric, a charge storage region and an electrically alterable conductor-material system in proximity to the charge storage region. The memory device includes a plurality of conductor lines. The memory includes a non-memory region having embedded logic including a plurality of transistors, each transistor for electrically coupling one of the conductor lines and each transistor including a transistor source, a transistor drain and a transistor gate.
    Type: Application
    Filed: October 31, 2007
    Publication date: October 2, 2008
    Inventor: Chih-Hsin Wang
  • Publication number: 20080224205
    Abstract: A method is provided for forming a low-temperature vertical gate insulator in a vertical thin-film transistor (V-TFT) fabrication process. The method comprises: forming a gate, having vertical sidewalls and a top surface, overlying a substrate insulation layer; depositing a silicon oxide thin-film gate insulator overlying the gate; plasma oxidizing the gate insulator at a temperature of less than 400° C., using a high-density plasma source; forming a first source/drain region overlying the gate top surface; forming a second source/drain region overlying the substrate insulation layer, adjacent a first gate sidewall; and, forming a channel region overlying the first gate sidewall, in the gate insulator interposed between the first and second source/drain regions. When the silicon oxide thin-film gate insulator is deposited overlying the gate a Si oxide layer, a low temperature deposition process can be used, so that a step-coverage of greater than 65% can be obtained.
    Type: Application
    Filed: April 23, 2008
    Publication date: September 18, 2008
    Inventors: Pooran Chandra Joshi, Apostolos T. Voutsas, John W. Hartzell
  • Patent number: 7391072
    Abstract: Structures and methods for programmable array type logic and/or memory with p-channel devices and asymmetrical low tunnel barrier intergate insulators are provided. The programmable array type logic and/or memory devices include p-channel non-volatile memory which has a first source/drain region and a second source/drain region separated by a p-type channel region in an n-type substrate. A floating gate opposing the p-type channel region and is separated therefrom by a gate oxide. A control gate opposes the floating gate. The control gate is separated from the floating gate by an asymmetrical low tunnel barrier intergate insulator. The asymmetrical low tunnel barrier intergate insulator includes a metal oxide insulator selected from the group consisting of Al2O3, Ta2O5, TiO2, ZrO2, Nb2O5, SrBi2Ta2O3, SrTiO3, PbTiO3, and PbZrO3. The floating gate includes a polysilicon floating gate having a metal layer formed thereon in contact with the low tunnel barrier intergate insulator.
    Type: Grant
    Filed: June 20, 2006
    Date of Patent: June 24, 2008
    Assignee: Micron Technology, Inc.
    Inventors: Leonard Forbes, Jerome M. Eldridge, Kie Y. Ahn
  • Publication number: 20080128802
    Abstract: Single transistor floating body dynamic random access memory (DRAM) cells include a semiconductor substrate and a barrier layer on the semiconductor substrate and a recess channel transistor on the barrier layer. The recess channel transistor includes a source region of a first conductivity type, a drain region of the first conductivity type spaced apart from the source region and a floating body of a second conductivity type between the barrier layer and the source region and the drain region. The floating body includes a recess region between the source region and the drain region.
    Type: Application
    Filed: January 14, 2008
    Publication date: June 5, 2008
    Inventors: Zong-Liang Huo, Seung-Jae Baik, In-Seok Yeo, Hong-Sik Yoon, Shi-Eun Kim
  • Patent number: 7381595
    Abstract: A method is provided for forming a low-temperature vertical gate insulator in a vertical thin-film transistor (V-TFT) fabrication process. The method comprises: forming a gate, having vertical sidewalls and a top surface, overlying a substrate insulation layer; depositing a silicon oxide thin-film gate insulator overlying the gate; plasma oxidizing the gate insulator at a temperature of less than 400° C., using a high-density plasma source; forming a first source/drain region overlying the gate top surface; forming a second source/drain region overlying the substrate insulation layer, adjacent a first gate sidewall; and, forming a channel region overlying the first gate sidewall, in the gate insulator interposed between the first and second source/drain regions. When the silicon oxide thin-film gate insulator is deposited overlying the gate a Si oxide layer, a low temperature deposition process can be used, so that a step-coverage of greater than 65% can be obtained.
    Type: Grant
    Filed: May 26, 2005
    Date of Patent: June 3, 2008
    Assignee: Sharp Laboratories of America, Inc.
    Inventors: Pooran Chandra Joshi, Apostolos T. Voutsas, John W. Hartzell
  • Patent number: 7372097
    Abstract: Structures and methods for programmable array type logic and/or memory with p-channel devices and asymmetrical low tunnel barrier intergate insulators are provided. The programmable array type logic and/or memory devices include p-channel non-volatile memory which has a first source/drain region and a second source/drain region separated by a p-type channel region in an n-type substrate. A floating gate opposing the p-type channel region and is separated therefrom by a gate oxide. A control gate opposes the floating gate. The control gate is separated from the floating gate by an asymmetrical low tunnel barrier intergate insulator. The asymmetrical low tunnel barrier intergate insulator includes a metal oxide insulator selected from the group consisting of Al2O3, Ta2O5, TiO2, ZrO2, Nb2O5, SrBi2Ta2O3, SrTiO3, PbTiO3, and PbZrO3. The floating gate includes a polysilicon floating gate having a metal layer formed thereon in contact with the low tunnel barrier intergate insulator.
    Type: Grant
    Filed: June 20, 2006
    Date of Patent: May 13, 2008
    Assignee: Micron Technology, Inc.
    Inventors: Leonard Forbes, Jerome M. Eldridge, Kie Y. Ahn
  • Patent number: 7372096
    Abstract: Structures and methods for programmable array type logic and/or memory with p-channel devices and asymmetrical low tunnel barrier intergate insulators are provided. The programmable array type logic and/or memory devices include p-channel non-volatile memory which has a first source/drain region and a second source/drain region separated by a p-type channel region in an n-type substrate. A floating gate opposing the p-type channel region and is separated therefrom by a gate oxide. A control gate opposes the floating gate. The control gate is separated from the floating gate by an asymmetrical low tunnel barrier intergate insulator. The asymmetrical low tunnel barrier intergate insulator includes a metal oxide insulator selected from the group consisting of Al2O3, Ta2O5, TiO2, ZrO2, Nb2O5, SrBi2Ta2O3, SrTiO3, PbTiO3, and PbZrO3. The floating gate includes a polysilicon floating gate having a metal layer formed thereon in contact with the low tunnel barrier intergate insulator.
    Type: Grant
    Filed: June 20, 2006
    Date of Patent: May 13, 2008
    Assignee: Micron Technology, Inc.
    Inventors: Leonard Forbes, Jerome M. Eldridge, Kie Y. Ahn
  • Publication number: 20080105921
    Abstract: The present invention provides a step in which a channel-length of a TFT can be controlled with higher reproducibility. In addition, the present invention provides a step in which a short channel-length of the TFT can be manufactured. Further, the present invention provides a structure of the TFT in which a current-voltage characteristic can be improved. The present invention refers to a thin film transistor comprising a lamination layer wherein a first conductive film, a first insulating film and a second conductive film are sequentially laminated, a semiconductor film formed so as to be in contact with the side surface of the lamination layer, and a third conductive film covering the semiconductor film through a second insulating film.
    Type: Application
    Filed: December 14, 2007
    Publication date: May 8, 2008
    Applicant: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Yoshiharu Hirakata, Yukie Nemoto
  • Patent number: 7364997
    Abstract: In one implementation, field oxide is grown within bulk semiconductive material in a first circuitry area and not over immediately adjacent bulk semiconductive material in a second circuitry area. The field oxide is etched from the first circuitry area. After the etching, a circuit component is formed in the first circuitry area and a circuit component is formed in the second circuitry area. Dielectric material is formed over the first and second circuitry areas. The dielectric material comprises a conductive contact extending outwardly from the circuit component in the first circuitry area. The dielectric material has a first outermost surface. A portion of the dielectric material and a portion of the conductive contact are removed to form a second outermost surface of the dielectric material which has greater degree of planarity than did the first outermost surface. Other aspects are contemplated.
    Type: Grant
    Filed: July 7, 2005
    Date of Patent: April 29, 2008
    Assignee: Micron Technology, Inc.
    Inventor: Werner Juengling
  • Patent number: 7244977
    Abstract: A semiconductor memory device includes a vertical MISFET having a source region, a channel forming region, a drain region, and a gate electrode formed on a sidewall of the channel forming region via a gate insulating film. In manufacturing the semiconductor memory device, the vertical MISFET in which leakage current (off current) is less can be realized by: counter-doping boron of a conductivity type opposite to that of phosphorus diffused into a poly-crystalline silicon film (10) constituting the channel forming region from an n type poly-crystalline silicon film (7) constituting the source region of the vertical MISFET, and the above-mentioned poly-crystalline silicon film (10); and reducing an effective impurity concentration in the poly-crystalline silicon film (10).
    Type: Grant
    Filed: October 10, 2002
    Date of Patent: July 17, 2007
    Assignee: Elpida Memory, Inc.
    Inventors: Tsuyoshi Tabata, Kazuo Nakazato, Hiroshi Kujirai, Masahiro Moniwa, Hideyuki Matsuoka, Teruo Kisu, legal representative, Haruko Kisu, legal representative, Satoru Haga, Teruaki Kisu, deceased
  • Patent number: 7229867
    Abstract: A substrate supporting a portion of a semiconductor material is used to produce a field-effect transistor. A portion of a temporary material lies between the portion of semiconductor material and the substrate. A gate is formed, which comprises an upper part in rigid connection with the portion of semiconductor material, and at least one bearing part settled on the substrate. The temporary material is removed and replaced with an electrically insulating material. During removal and replacement of the temporary material, the portion of semiconductor material is held in place relative to the substrate by the gate.
    Type: Grant
    Filed: February 3, 2005
    Date of Patent: June 12, 2007
    Assignee: STMicroelectronics SA
    Inventors: Thomas Skotnicki, Daniel Chanemougame, Stephane Monfray
  • Patent number: 7138682
    Abstract: A thin-film transistor includes a substrate (10), a gate electrode (20) provided on a portion of the substrate, an insulation layer (30) arranged to cover the gate electrode and the substrate, a source or drain (40) provided on the insulation layer in a region corresponding to a region of the gate electrode, a semiconductor layer (50) arranged to cover the source or drain (40) and the insulation layer, a drain or source (60) provided on the semiconductor in a portion of a region corresponding to a region of the source or drain (40) that overlaps with the gate electrode, and a channel (70) formed between the source or drain (40) and the drain or source (60) and having a length defined by a film thickness of the semiconductor layer (50).
    Type: Grant
    Filed: December 27, 2002
    Date of Patent: November 21, 2006
    Assignee: National Institute of Advanced Industrial Science and Technology
    Inventors: Toshihide Kamata, Manabu Yoshida
  • Patent number: 7115945
    Abstract: Disclosing is a strained silicon finFET device having a strained silicon fin channel in a double gate finFET structure. The disclosed finFET device is a double gate MOSFET consisting of a silicon fin channel controlled by a self-aligned double gate for suppressing short channel effect and enhancing drive current. The silicon fin channel of the disclosed finFET device is a strained silicon fin channel, comprising a strained silicon layer deposited on a seed fin having different lattice constant, for example, a silicon layer deposited on a silicon germanium seed fin, or a carbon doped silicon layer deposited on a silicon seed fin. The lattice mismatch between the silicon layer and the seed fin generates the strained silicon fin channel in the disclosed finFET device to improve hole and electron mobility enhancement, in addition to short channel effect reduction characteristic inherently in a finFET device.
    Type: Grant
    Filed: January 6, 2006
    Date of Patent: October 3, 2006
    Assignee: Sharp Laboratories of America, Inc.
    Inventors: Jong-Jan Lee, Sheng Teng Hsu, Douglas J. Tweet, Jer-Shen Maa
  • Patent number: 6977406
    Abstract: The ultra high-speed vertical short channel insulated-gate static induction transistor with uniform operating characteristic which has the drain layer 3 consisting of an epitaxial single crystal layer on the main surface 2 of substrate 1, the channel layer 4 with thickness 1000 ? or less on the drain layer, the source layer 5 consisting of an epitaxial single crystal layer on the channel layer 4, and the insulated-gates 6 and 7 on the sidewalls of the drain, the channel, and the source layers. Since the thickness of 1000 ? or less is accurately controlled using the molecular layer epitaxial method and the channel layer 4 is grown up, the X-ray photolithography is not needed. Since the gate oxide film is formed by low temperature CVD using active oxygen, impurity re-distribution does not occur.
    Type: Grant
    Filed: April 26, 2002
    Date of Patent: December 20, 2005
    Assignees: National Institute of Information and Communications Technology, Incorporated Administrative Agency, Zaidan Hojin Handotai Kenkyu Shinkokai
    Inventors: Toru Kurabayashi, Toru Oizumi, Kyouzou Kanamoto, Jun-ichi Nishizawa