Programmable With More Than Two Possible Different Levels (epo) Patents (Class 257/E29.308)
  • Patent number: 8853769
    Abstract: Some embodiments include a transistor having a first electrically conductive gate portion along a first segment of a channel region and a second electrically conductive gate portion along a second segment of the channel region. The second electrically conductive gate portion is a different composition than the first electrically conductive gate portion. Some embodiments include a method of forming a semiconductor construction. First semiconductor material and metal-containing material are formed over a NAND string. An opening is formed through the metal-containing material and the first semiconductor material, and is lined with gate dielectric. Second semiconductor material is provided within the opening to form a channel region of a transistor. The transistor is a select device electrically coupled to the NAND string.
    Type: Grant
    Filed: January 10, 2013
    Date of Patent: October 7, 2014
    Assignee: Micron Technology, Inc.
    Inventors: Deepak Thimmegowda, Andrew R. Bicksler, Roland Awusie
  • Patent number: 8816422
    Abstract: A semiconductor device includes a semiconductor substrate, a top gate over the semiconductor substrate, and a stacked gate between the top gate and the semiconductor substrate. The stacked gate includes a first tunneling layer, a first storage layer adjoining the first tunneling layer, and an additional layer adjoining the first tunneling layer. The additional layer is selected from the group consisting of a retention layer and an additional composite layer. The additional composite layer comprises a second tunneling layer and a second storage layer adjoining the second tunneling layer. The semiconductor device further includes a blocking layer adjoining the first storage layer.
    Type: Grant
    Filed: September 15, 2006
    Date of Patent: August 26, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Ming-Tsong Wang, Tong-Chern Ong
  • Patent number: 8754465
    Abstract: According to one embodiment, a semiconductor device includes a semiconductor substrate, a tunnel insulating film on the semiconductor substrate, a first floating gate electrode on the tunnel insulating film, an inter-floating gate insulating film on the first floating gate electrode, a second floating gate electrode on the inter-floating gate insulating film, an inter-electrode insulating film on the second floating gate electrode, and a control gate electrode on the inter-electrode insulating film. The inter-floating gate insulating film includes a main insulating film, and a first fixed charge layer between the main insulating film and the second floating gate electrode and having negative fixed charges.
    Type: Grant
    Filed: September 5, 2012
    Date of Patent: June 17, 2014
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Motoyuki Sato
  • Patent number: 8624214
    Abstract: A semiconductor device (100) of the present invention has a structure in which an interlayer insulating layer (115) is formed on an uppermost wire (114), contacts (116, 117) penetrate the interlayer insulating layer (115), a lower electrode (118a) of the resistance variable element is formed on the interlayer insulating layer (115) to cover the contact (116), and resistance variable layer (119) is formed on the interlayer insulating layer (115) to cover the lower electrode (118a) and the contact (117). The contact (116) and the lower electrode (118a) serve as a first terminal, while the contact (117) serves as a second terminal.
    Type: Grant
    Filed: June 8, 2009
    Date of Patent: January 7, 2014
    Assignee: Panasonic Corporation
    Inventors: Takumi Mikawa, Kazuhiko Shimakawa
  • Patent number: 8592792
    Abstract: A monolithic three dimensional memory array is provided that includes a first memory level formed above a substrate, and a second memory level monolithically formed above the first memory level. The first memory level includes a first plurality of substantially parallel, substantially coplanar conductors extending in a first direction, a second plurality of substantially parallel, substantially coplanar conductors extending in a second direction, the second direction different from the first direction, the second conductors above the first conductors, and a first plurality of devices. Each of the first plurality of devices is disposed between one of the first conductors and one of the second conductors, and includes a resistivity-switching binary metal oxide or nitride compound and a silicon, germanium, or silicon-germanium alloy resistor of a single conductivity type. Numerous other aspects are provided.
    Type: Grant
    Filed: July 20, 2012
    Date of Patent: November 26, 2013
    Assignee: SanDisk 3D LLC
    Inventors: Tanmay Kumar, Scott Brad Herner
  • Patent number: 8581223
    Abstract: A radial memory device includes a phase-change material, a first electrode in electrical communication with the phase-change material, the first electrode having a substantially planar first area of electrical communication with the phase-change material. The radial memory device also includes a second electrode in electrical communication with the phase-change material, the second electrode having a second area of electrical communication with the phase-change material, the second area being laterally spacedly disposed from the first area and substantially circumscribing the first area. Further, a method of making a memory device is disclosed. The steps include depositing a first electrode, depositing a first insulator, configuring the first insulator to define a first opening. The first opening provides for a generally planar first contact of the first electrode.
    Type: Grant
    Filed: March 3, 2011
    Date of Patent: November 12, 2013
    Assignee: Ovonyx, Inc.
    Inventors: Wolodymyr Czubatyj, Tyler Lowrey, Sergey Kostylev
  • Patent number: 8476708
    Abstract: According to one embodiment, a semiconductor memory device includes a semiconductor substrate, memory cell array portion, single-crystal semiconductor layer, and circuit portion. The memory cell array portion is formed on the semiconductor substrate, and includes memory cells. The semiconductor layer is formed on the memory cell array portion, and connected to the semiconductor substrate by being formed in a hole extending through the memory cell array portion. The circuit portion is formed on the semiconductor layer. The Ge concentration in the lower portion of the semiconductor layer is higher than that in the upper portion of the semiconductor layer.
    Type: Grant
    Filed: January 10, 2012
    Date of Patent: July 2, 2013
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Yoshiaki Fukuzumi, Hideaki Aochi, Masaru Kito, Kiyotaka Miyano, Shinji Mori, Ichiro Mizushima
  • Patent number: 8227787
    Abstract: In the present invention, a metal oxide or nitride compound which is a wide-band-gap semiconductor abuts a silicon, germanium, or alloy of silicon and/or germanium of the opposite conductivity type to form a p-n heterojunction. This p-n heterojunction can be used to advantage in various devices. In preferred embodiments, one terminal of a vertically oriented p-i-n heterojunction diode is a metal oxide or nitride layer, while the rest of the diode is formed of a silicon or silicon-germanium resistor. For example, a diode may include a heavily doped n-type silicon region, an intrinsic silicon region, and a nickel oxide layer serving as the p-type terminal. Many of these metal oxides and nitrides exhibit resistivity-switching behavior, and such a heterojunction diode can be used in a nonvolatile memory cell, for example in a monolithic three dimensional memory array.
    Type: Grant
    Filed: January 17, 2011
    Date of Patent: July 24, 2012
    Assignee: SanDisk 3D LLC
    Inventors: Tanmay Kumar, S. Brad Herner
  • Patent number: 8026544
    Abstract: Techniques are disclosed herein for applying different process steps to single-level cell (SLC) blocks in a memory array than to multi-level cell (MLC) blocks such that the SLC blocks will have high endurance and the MLC blocks will have high reliability. In some aspects, different doping is used in the MLC blocks than the SLC blocks. In some aspects, different isolation is used in the MLC blocks than the SLC blocks. Techniques are disclosed that apply different read parameters depending on how many times a block has been programmed/erased. Therefore, blocks that have been cycled many times are read using different parameters than blocks that have been cycled fewer times.
    Type: Grant
    Filed: March 30, 2009
    Date of Patent: September 27, 2011
    Assignee: SanDisk Technologies Inc.
    Inventors: Fumitoshi Ito, Shinji Sato
  • Patent number: 8008702
    Abstract: A multi-transistor element including a substrate, a first floating gate disposed on the substrate, a second floating gate disposed on the substrate and coupled to the first floating gate, and a first active region disposed in the substrate and coupled to the first and second floating gates.
    Type: Grant
    Filed: February 20, 2008
    Date of Patent: August 30, 2011
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Shih Wei Wang, Chun Jung Lin
  • Patent number: 7981742
    Abstract: A method of fabricating a semiconductor device is provided. The method comprises: (a) providing a first and a second conductor; (b) providing a conductive layer; (c) forming a part of the conductive layer into a data storage layer by a plasma oxidation process, wherein the data storage layer is positioned between the first and the second conductor.
    Type: Grant
    Filed: July 2, 2008
    Date of Patent: July 19, 2011
    Assignee: Macronic International Co., Ltd.
    Inventors: Wei-Chih Chien, Kuo-Pin Chang, Erh-Kun Lai, Kuang-Yeu Hsieh
  • Patent number: 7834388
    Abstract: A memory cell that includes a control gate disposed laterally between two floating gates where each floating gate is capable of holding data. Each floating gate in a memory cell may be erased and programmed by applying a combination of voltages to diffusion regions, the control gate, and a well. A plurality of memory cells creates a memory string, and a memory array is formed from a plurality of memory strings arranged in rows and columns.
    Type: Grant
    Filed: February 6, 2006
    Date of Patent: November 16, 2010
    Assignee: Nanostar Corporation
    Inventors: Andy Yu, Ying W. Go
  • Patent number: 7816723
    Abstract: A memory device, and method of making and operating the same, including a substrate of semiconductor material of a first conductivity type, first and second spaced apart regions in the substrate of a second conductivity type with a channel region therebetween, an electrically conductive floating gate having a first portion disposed over and insulated from the channel region and a second portion disposed over and insulated from the first region and including a sharpened edge, an electrically conductive P/E gate having a first portion disposed over and insulated from the first region and a second portion extending up and over the floating gate second portion and insulated therefrom by a first layer of insulation material, and an electrically conductive select gate having a first portion disposed laterally adjacent to the floating gate and disposed over and insulated from the channel region.
    Type: Grant
    Filed: December 4, 2007
    Date of Patent: October 19, 2010
    Assignee: Silicon Storage Technology, Inc.
    Inventors: Pavel Klinger, Amitay Levi
  • Publication number: 20090256189
    Abstract: A memory structure includes: a substrate; a control gate positioned on the substrate; floating gates positioned at two sides of the control gate, wherein the floating gates have a U-shaped bottom embedded in the substrate; a first dielectric layer positioned between the control gate and the substrate; a second dielectric layer positioned between the U-shaped bottom of the floating gates and the substrate; a third dielectric layer positioned between the control gate and the floating gates; a local doping region positioned around the floating gates channel; and a source/drain doping region positioned in the substrate at a side of the floating gates.
    Type: Application
    Filed: June 15, 2008
    Publication date: October 15, 2009
    Inventors: Wei-Ming Liao, Jer-Chyi Wang
  • Patent number: 7550347
    Abstract: Methods of forming a gate structure for an integrated circuit memory device include forming a first dielectric layer having a dielectric constant of under 7 on an integrated circuit substrate. Ions of a selected element from group 4 of the periodic table and having a thermal diffusivity of less than about 0.5 centimeters per second (cm2/s) are injected into the first dielectric layer to form a charge storing region in the first dielectric layer with a tunnel dielectric layer under the charge storing region. A metal oxide second dielectric layer is formed on the first dielectric layer, the second dielectric layer. The substrate including the first and second dielectric layers is thermally treated to form a plurality of discrete charge storing nano crystals in the charge storing region and a gate electrode layer is formed on the second dielectric layer. Gate structures for integrated circuit devices and memory cells are also provided.
    Type: Grant
    Filed: August 25, 2006
    Date of Patent: June 23, 2009
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Sam-jong Choi, Yong-kwon Kim, Kyoo-chul Cho, Kyung-soo Kim, Jae-ryong Jung, Tae-soo Kang, Sang-Sig Kim
  • Patent number: 7541638
    Abstract: A memory structure in a semiconductor substrate essentially comprises a first conductive line, two conductive blocks, two first dielectric spacers, a first dielectric layer, and a second conductive line. The first conductive line, e.g., a polysilicon line, is formed above the semiconductor substrate, and the two conductive blocks composed of polysilicon, for example, are formed at the two sides of the first conductive line and insulated from the first conductive line with the two first dielectric spacers. The first dielectric layer, such as an oxide/nitride/oxide (ONO) layer, is formed on the two second conductive blocks and above the first conductive line, and the second conductive line is formed on the first dielectric layer and is substantially perpendicular to the two doping regions. Accordingly, the stack of the conductive block, the first dielectric layer, and the second conductive line form a floating gate structure which can store charges.
    Type: Grant
    Filed: February 28, 2005
    Date of Patent: June 2, 2009
    Assignee: Skymedi Corporation
    Inventor: Fuja Shone
  • Patent number: 7449747
    Abstract: Flash memory is rapidly decreasing in price. There is a demand for a new memory system that permits size reduction and suits multiple-value memory. A flash memory of AND type suitable for multiple-value memory with multiple-level threshold values can be made small in area if the inversion layer is utilized as the wiring; however, it suffers the disadvantage of greatly varying in writing characteristics from cell to cell. Another promising method of realizing multiple-value memory is to change the storage locations. This method, however, poses a problem with disturbance at the time of operation. The present invention provides one way to realize a semiconductor memory device with reduced cell-to-cell variation in writing characteristics.
    Type: Grant
    Filed: December 20, 2005
    Date of Patent: November 11, 2008
    Assignee: Renesas Technology Corp.
    Inventors: Tomoyuki Ishii, Kazunori Furusawa, Hideaki Kurata, Yoshihiro Ikeda
  • Patent number: 7315056
    Abstract: A memory device, and method of making and operating the same, including a substrate of semiconductor material of a first conductivity type, first and second spaced apart regions in the substrate of a second conductivity type with a channel region therebetween, an electrically conductive floating gate having a first portion disposed over and insulated from the channel region and a second portion disposed over and insulated from the first region and including a sharpened edge, an electrically conductive P/E gate having a first portion disposed over and insulated from the first region and a second portion extending up and over the floating gate second portion and insulated therefrom by a first layer of insulation material, and an electrically conductive select gate having a first portion disposed laterally adjacent to the floating gate and disposed over and insulated from the channel region.
    Type: Grant
    Filed: June 7, 2004
    Date of Patent: January 1, 2008
    Assignee: Silicon Storage Technology, Inc.
    Inventors: Pavel Klinger, Amitay Levi
  • Patent number: 7253429
    Abstract: A programmable resistance memory element including a memory material which is raised above a semiconductor substrate by a dielectric layer.
    Type: Grant
    Filed: November 5, 2004
    Date of Patent: August 7, 2007
    Assignee: Ovonyx, Inc.
    Inventors: Patrick Klersy, Tyler Lowrey
  • Patent number: 7166886
    Abstract: Structures and methods for memory cells having a volatile and a non-volatile component in a single memory cell are provided. The memory cell includes a first source/drain region and a second source/drain region separated by a channel region in a substrate. A storage capacitor is coupled to one of the first and the second source/drain regions. A floating gate opposes the channel region and separated therefrom by a gate oxide. A control gate opposes the floating gate. The control gate is separated from the floating gate by a low tunnel barrier intergate insulator. The memory cell is adapted to operate in a first and a second mode of operation. The first mode of operation is a dynamic mode of operation and the second mode of operation is a repressed memory mode of operation.
    Type: Grant
    Filed: February 20, 2004
    Date of Patent: January 23, 2007
    Assignee: Micron Technology, Inc.
    Inventor: Leonard Forbes