Structurally Associated With Electric Light Source (e.g., Electroluminescent Light Source) (epo) Patents (Class 257/E31.095)
  • Publication number: 20120313155
    Abstract: A photo detector comprising a first doped impurity region (adapted to receive a first voltage) disposed in or on a substrate; a body region, juxtaposed the first doped impurity region; a gate (adapted to receive a second voltage) spaced from a first portion of the body region; a light absorbing region, juxtaposed a second portion of the body region, includes a material which, in response to light incident thereon, generates carrier pairs including a first and second type carriers; a contact region (adapted to receive a third voltage) juxtaposed the light absorbing region; wherein, in response to incident light, the gate attracts first type carriers of the carrier pairs to the first portion of the body region which causes second carriers from the first doped impurity region to flow to the contact region, and the contact region attracts second type carriers.
    Type: Application
    Filed: May 28, 2012
    Publication date: December 13, 2012
    Inventor: Serguei Okhonin
  • Patent number: 8330243
    Abstract: A semiconductor light-detecting element includes: a semiconductor substrate of a first conductivity type having a band gap energy, a first principal surface, and a second principal surface opposed to the first principal surface; a first semiconductor layer of the first conductivity type on the first principal surface and having a band gap energy smaller than the band gap energy of the semiconductor substrate; a second semiconductor layer of the first conductivity type on the first semiconductor layer; an area of a second conductivity type on a part of the second semiconductor layer; a first electrode connected to the second semiconductor layer; a second electrode connected to the area; and a low-reflection film on the second principal surface. The second principal surface is a light-detecting surface detecting incident light, and no substance or structure having a higher reflection factor, with respect to the incident light, than the low-reflection film, is located on the second principal surface.
    Type: Grant
    Filed: January 31, 2011
    Date of Patent: December 11, 2012
    Assignee: Mitsubishi Electric Corporation
    Inventor: Matobu Kikuchi
  • Patent number: 8313975
    Abstract: The purpose is manufacturing a photoelectric conversion device with excellent photoelectric conversion characteristics typified by a solar cell with effective use of a silicon material. A single crystal silicon layer is irradiated with a laser beam through an optical modulator to form an uneven structure on a surface thereof. The single crystal silicon layer is obtained in the following manner; an embrittlement layer is formed in a single crystal silicon substrate; one surface of a supporting substrate and one surface of an insulating layer formed over the single crystal silicon substrate are disposed to be in contact and bonded; heat treatment is performed; and the single crystal silicon layer is formed over the supporting substrate by separating part of the single crystal silicon substrate fixed to the supporting substrate along the embrittlement layer or a periphery of the embrittlement layer.
    Type: Grant
    Filed: August 31, 2011
    Date of Patent: November 20, 2012
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Fumito Isaka, Sho Kato, Junpei Momo
  • Patent number: 8309976
    Abstract: A light emission device manufactured by a method of forming a curved surface having a radius of curvature to the upper end of an insulator 19, exposing a portion of the first electrode 18c to form an inclined surface in accordance with the curved surface, and applying etching so as to expose the first electrode 18b in a region to form a light emission region, in which emitted light from the layer containing the organic compound 20 is reflected on the inclined surface of the first electrode 18c to increase the total take-out amount of light in the direction of an arrow shown in FIG.
    Type: Grant
    Filed: February 25, 2011
    Date of Patent: November 13, 2012
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Takeshi Noda, Yoshinari Higaki
  • Publication number: 20120280344
    Abstract: A wafer scale implementation of an opto-electronic transceiver assembly process utilizes a silicon wafer as an optical reference plane and platform upon which all necessary optical and electronic components are simultaneously assembled for a plurality of separate transceiver modules. In particular, a silicon wafer is utilized as a “platform” (interposer) upon which all of the components for a multiple number of transceiver modules are mounted or integrated, with the top surface of the silicon interposer used as a reference plane for defining the optical signal path between separate optical components. Indeed, by using a single silicon wafer as the platform for a large number of separate transceiver modules, one is able to use a wafer scale assembly process, as well as optical alignment and testing of these modules.
    Type: Application
    Filed: May 3, 2012
    Publication date: November 8, 2012
    Applicant: LIGHTWIRE LLC
    Inventors: Kalpendu Shastri, Vipulkumar Patel, Mark Webster, Prakash Gothoskar, Ravinder Kachru, Soham Pathak, Rao V. Yelamarty, Thomas Daugherty, Bipin Dama, Kaushik Patel, Kishor Desai
  • Publication number: 20120273785
    Abstract: A photosensor element (6a) is provided with a gate electrode (11da) disposed on an insulating substrate (10), a gate insulating film (12) disposed so as to cover the gate electrode (11da), a semiconductor layer (15db) disposed on the gate insulating film (12) so as to overlap the gate electrode (11da), and a source electrode (16da) and a drain electrode (16db) provided on the semiconductor layer (15db) so as to overlap the gate electrode (11da) and so as to face each other. The photosensor element (6a) has the semiconductor layer (15db) provided with an intrinsic semiconductor layer (13db) in which a channel region (C) is defined and an extrinsic semiconductor layer (14db) that is laminated on the intrinsic semiconductor layer (13db) such that the channel region (C) is exposed. The extrinsic semiconductor layer (14db) protrudes from the drain electrode (16db) on the side close to the channel region (C).
    Type: Application
    Filed: November 11, 2010
    Publication date: November 1, 2012
    Applicant: SHARP KABUSHIKI KAISHA
    Inventors: Masao Moriguchi, Yohsuke Kanzaki, Tsuyoshi Inoue
  • Patent number: 8293559
    Abstract: In a method of manufacturing a photoelectric conversion device having a pixel region and a peripheral circuit region, a semiconductor compound layer is formed by causing a surface of a diffusion layer or gate electrode of a MOS transistor in the peripheral circuit region to react with a high melting point metal, then an insulating layer is formed in the pixel region and the peripheral circuit region after the step of forming a semiconductor compound layer. A contact hole is formed in the insulating layer to expose a diffusion layer in the pixel region, and a contact hole is formed in the insulating layer to expose the semiconductor compound layer formed in the peripheral circuit region. These holes are formed at different timings. Prior to forming the hole which is formed later, a contact plug is formed in the contact hole which is formed earlier.
    Type: Grant
    Filed: June 16, 2011
    Date of Patent: October 23, 2012
    Assignee: Canon Kabushiki Kaisha
    Inventors: Takehito Okabe, Hiroaki Naruse, Ryuichi Mishima, Kouhei Hashimoto
  • Publication number: 20120235113
    Abstract: An electron emission element has an electron emission layer that emits an electron from a surface emission portion, a focusing electrode layer that is film-formed on a surface of the electron emission layer via a first insulation layer and focuses the emitted electron, a gate electrode layer that is film-formed on a surface of the focusing electrode layer via a second insulation layer, an emission concave portion that penetrates the gate electrode layer, the second insulation layer, the focusing electrode layer and the first insulation layer and opens in a concave shape on a surface of the surface emission portion, a carbon layer that is film-formed from a surface of the gate electrode layer over an inner peripheral surface of the emission concave portion, and a partial insulation portion that insulates the focusing electrode layer from the carbon layer.
    Type: Application
    Filed: December 17, 2009
    Publication date: September 20, 2012
    Applicants: PIONEER MICRO TECHNOLOGY CORPORATION, PIONEER CORPORATION
    Inventor: Masaki Yoshinari
  • Publication number: 20120213470
    Abstract: In the optical waveguide board, simultaneously with pattern formation of mirror members at arbitrary positions on a clad layer 11, guiding patterns 14 having convex shapes are formed respectively at arbitrary positions on peripheral parts of mirror patterns 13, and the mirror patterns 13 are worked into tapered shapes. Next, in a state that a mask member 100 having through holes at desired positions, and the guiding patterns 14 are guided by mating, a metal film is formed on surfaces of slope parts 22 of the mirror patterns and the guiding patterns 14. Furthermore, in a state that the guiding patterns 14 and the photomask 16 are guided, wiring core patterns 20 are formed on the clad layer 11 adjacent to the mirror patterns 13.
    Type: Application
    Filed: October 19, 2010
    Publication date: August 23, 2012
    Inventors: Yasunobu Matsuoka, Toshiki Sugawara
  • Patent number: 8218043
    Abstract: The prevent invention is to provide a solid-state imaging device having a electrode configuration applicable to a progressive scan, and able to reduce a obstruction of incident light at the periphery of a light receiving portion, a method of producing the same, a camera including the same. A first transfer electrode, a second transfer electrode, and a third transfer electrode which have a single layer transfer electrode configuration are repeatedly arranged in a vertical direction. The first transfer electrodes are connected in a horizontal direction by an inter-pixel interconnection formed in the same layer. Shunt interconnections are formed in the horizontal direction and in the vertical direction above the transfer layers. The shunt interconnection connected to the second transfer interconnection is formed on the inter-pixel interconnection. The shunt interconnection connected to the third transfer electrode is formed above the transfer electrodes.
    Type: Grant
    Filed: July 6, 2009
    Date of Patent: July 10, 2012
    Assignee: Sony Corporation
    Inventor: Hideo Kanbe
  • Patent number: 8212284
    Abstract: It is an object of the present invention to provide a technique to manufacture a highly reliable display device at a low cost with high yield. A display device according to the present invention includes a semiconductor layer including an impurity region of one conductivity type; a gate insulating layer, a gate electrode layer, and a wiring layer in contact with the impurity region of one conductivity type, which are provided over the semiconductor layer; a conductive layer which is formed over the gate insulating layer and in contact with the wiring layer; a first electrode layer in contact with the conductive layer; an electroluminescent layer provided over the first electrode layer; and a second electrode layer, where the wiring layer is electrically connected to the first electrode layer with the conductive layer interposed therebetween.
    Type: Grant
    Filed: January 20, 2011
    Date of Patent: July 3, 2012
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Kengo Akimoto, Hisashi Ohtani, Misako Hirosue
  • Publication number: 20120154337
    Abstract: A semiconductor device with high definition, which includes a plurality of sets each including a photosensor and a display element including a light-emitting element arranged in a matrix is provided, wherein a power supply line electrically connected to the display element also serves as a power supply line electrically connected to the photosensor. Thus, the semiconductor device with high definition can be provided without decreasing the width of each power supply line. Thus, the definition of the semiconductor device can be improved while securing the stability of the potential of the power supply line. The stability of the potential of the power supply line leads to the stability of the driving voltage of the display element and the stability of the driving voltage of the photosensor. Accordingly, the semiconductor device with high definition, high display quality, and high accuracy of imaging or detection of an object can be provided.
    Type: Application
    Filed: December 14, 2011
    Publication date: June 21, 2012
    Inventors: Yoshiyuki KUROKAWA, Takayuki IKEDA, Takeshi AOKI
  • Patent number: 8202756
    Abstract: According to one embodiment, a method of manufacturing an organic EL device includes providing a structure including a substrate and an electrode positioned above the substrate, and forming an organic layer including a mixture of first and second organic materials above the electrode. The first organic material has a first sublimation point. The second organic material has a second sublimation point higher than the first sublimation point. The formation of the organic layer includes heating an evaporation material including a mixture of the first and second organic materials to an evaporation temperature so as to sublimate the first and second organic materials, and delivering the sublimed first and second organic materials toward the electrode to deposit a mixture including the first and second organic materials above the electrode. The evaporation temperature is, for example, a temperature higher than the second sublimation temperature by 50° C. or more.
    Type: Grant
    Filed: December 30, 2011
    Date of Patent: June 19, 2012
    Assignee: Toshiba Mobile Display Co., Ltd.
    Inventors: Kazuki Kitamura, Tetsuo Ishida
  • Publication number: 20120119271
    Abstract: According to one embodiment, a solid-state imaging device includes an imaging region including unit pixels which are two-dimensionally arranged on a semiconductor layer and each of which includes a photoelectric conversion unit and a signal scanning circuit unit. The unit pixel includes a transfer gate provided on the semiconductor layer, a photogate provided on the semiconductor layer, a first semiconductor layer of a first conductivity type, which is provided in the semiconductor layer below the photogate, and a second semiconductor layer of the first conductivity type, which is adjacent to the first semiconductor layer and provided in the semiconductor layer between the transfer gate and the photogate.
    Type: Application
    Filed: September 18, 2011
    Publication date: May 17, 2012
    Inventors: Ai MOCHIZUKI, Takeshi Yoshida
  • Patent number: 8173481
    Abstract: A thin film deposition apparatus to remove static electricity generated between a substrate and a mask, and a method of manufacturing an organic light-emitting display device using the thin film deposition apparatus.
    Type: Grant
    Filed: December 8, 2010
    Date of Patent: May 8, 2012
    Assignee: Samsung Mobile Display Co., Ltd.
    Inventors: Chang-Soon Ji, Tae-Seung Kim, Jong-Woo Lee, Chengguo An
  • Patent number: 8174022
    Abstract: A method for forming a flat panel display includes disposing a light guide plate below a display panel, disposing at least one optical film between the display panel and the light guide plate, and disposing at least one illuminating device package in proximity to the light guide plate. The method for forming the illuminating device package includes forming a light emitting diode device over a substrate and forming a lens encapsulating the light emitting diode device. The lens includes two reflective surfaces disposed substantially symmetrically at either side of a central axis. The reflective surfaces is configured to reflect portions of light beams to at least one of the diffractive surfaces. The lens also includes a plurality of diffractive surfaces separating the reflective surfaces. The diffractive surfaces are configured to diffract the reflected light beams into a convergent angle. Each of the diffractive surfaces having a tilt angle respective to the central axis.
    Type: Grant
    Filed: April 27, 2010
    Date of Patent: May 8, 2012
    Assignee: Chimei Innolux Corporation
    Inventor: Chen-Pin Hung
  • Patent number: 8164105
    Abstract: Disclosed is a light emitting device. The light emitting device comprises a first conductive semiconductor layer, an active layer on the first conductive semiconductor layer, a second conductive semiconductor layer on the active layer, the second conductive semiconductor layer comprising a first area and a second area, a third conductive semiconductor layer on the second area of the second conductive semiconductor layer, a first electrode layer electrically connecting the first conductive semiconductor layer with the second conductive semiconductor layer of the second area, and a second electrode layer electrically connecting the second conductive semiconductor layer with the third conductive semiconductor layer.
    Type: Grant
    Filed: April 1, 2008
    Date of Patent: April 24, 2012
    Assignee: LG Innotek Co., Ltd.
    Inventor: Hyung Jo Park
  • Patent number: 8158452
    Abstract: A backside-illuminated imaging device, which performs imaging by illuminating light from a back side of a semiconductor substrate to generate electric charges in the semiconductor substrate based on the light and reading out the electric charges from a front side of the semiconductor substrate, is provided and includes: a back-side layer including an back-side element on the back side of the semiconductor substrate; a front-side layer including an front-side element on the front side of the semiconductor substrate; a support substrate above the front-side layer; a spacer, one end of which comes in contact with the front-side layer and the other end of which comes in contact with the support substrate, to form a space having a uniform distance between the semiconductor substrate and the support substrate; and an adhesive filled in at least a part of the space between the surface-side element formation layer and the support substrate.
    Type: Grant
    Filed: January 14, 2011
    Date of Patent: April 17, 2012
    Assignee: Fujifilm Corporation
    Inventor: Shinji Uya
  • Patent number: 8114703
    Abstract: According to one embodiment, a method of manufacturing an organic EL device includes providing a structure including a substrate and an electrode positioned above the substrate, and forming an organic layer including a mixture of first and second organic materials above the electrode. The first organic material has a first sublimation point. The second organic material has a second sublimation point higher than the first sublimation point. The formation of the organic layer includes heating an evaporation material including a mixture of the first and second organic materials to an evaporation temperature so as to sublimate the first and second organic materials, and delivering the sublimed first and second organic materials toward the electrode to deposit a mixture including the first and second organic materials above the electrode. The evaporation temperature is, for example, a temperature higher than the second sublimation temperature by 50° C. or more.
    Type: Grant
    Filed: November 2, 2010
    Date of Patent: February 14, 2012
    Assignee: Toshiba Mobile Display Co., Ltd.
    Inventors: Kazuki Kitamura, Tetsuo Ishida
  • Publication number: 20120032192
    Abstract: A light emitting diode includes a first illumination region, a second illumination region, and the third illumination, wherein a first fluorescent conversion layer and a second fluorescent conversion layer cover the first illumination region and the second illumination region, respectively. The fluorescent conversion layers can convert lights from the illumination regions to other lights with different wavelengths whereby the light emitting diode generates light with multiple wavelengths.
    Type: Application
    Filed: March 6, 2011
    Publication date: February 9, 2012
    Applicant: ADVANCED OPTOELECTRONIC TECHNOLOGY, INC.
    Inventors: CHIA-HUI SHEN, TZU-CHIEN HUNG, JIAN-SHIHN TSANG
  • Publication number: 20120007090
    Abstract: An area sensor of the present invention has a function of displaying an image in a sensor portion by using light-emitting elements and a reading function using photoelectric conversion devices. Therefore, an image read in the sensor portion can be displayed thereon without separately providing an electronic display on the area sensor. Furthermore, a photoelectric conversion layer of a photodiode according to the present invention is made of an amorphous silicon film and an N-type semiconductor layer and a P-type semiconductor layer are made of a polycrystalline silicon film. The amorphous silicon film is formed to be thicker than the polycrystalline silicon film. As a result, the photodiode according to the present invention can receive more light.
    Type: Application
    Filed: September 23, 2011
    Publication date: January 12, 2012
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Shunpei Yamazaki, Jun Koyama, Masato Yonezawa, Hajime Kimura, Yu Yamazaki
  • Publication number: 20120006976
    Abstract: Disclosed are various embodiments of a single track reflective optical encoder featuring current amplifiers disposed in the signal generating circuit thereof. Voltage amplifiers and their associated feedback resistors are eliminated in the various embodiments disclosed herein, resulting in decreased die size and improved encoder signal accuracy and performance, especially at high speeds The single track optical encoder configurations disclosed herein permit very high resolution reflective optical encoders in small packages to be provided. Methods of making and using such optical encoders are also disclosed.
    Type: Application
    Filed: July 7, 2010
    Publication date: January 12, 2012
    Applicant: Avago Technologies ECBU(Singapore) Pte, Ltd.
    Inventors: Chung Min Thor, Gim Eng Chew
  • Patent number: 8089077
    Abstract: A light-emitting element array with the improvement of the light-emitting efficiency and the improvement of the uneven amount of light is provided. A light-emitting element array comprises a light-emitting portion array consisting of a plurality of light-emitting portions linearly arranged in a main scanning direction, and a micro-lens formed on each of the light-emitting portions, wherein the micro-lens has a shape of the length of a sub-scanning direction different from the length of the main scanning direction, and the length of the sub-scanning direction is longer than the length of the main scanning direction, and is 3.5 times or less of the length of the main scanning direction.
    Type: Grant
    Filed: February 21, 2007
    Date of Patent: January 3, 2012
    Assignee: Fuji Xerox Co., Ltd.
    Inventors: Kenjiro Hamanaka, Takahiro Hashimoto
  • Patent number: 8086108
    Abstract: An optical transmission/reception device includes at least one light emitting portion and at least one light receiving portion on the same substrate. The light emitting portion includes at least a lower multilayer reflector and an active layer provided on the lower multilayer reflector. A metal layer including a plurality of opening portions is provided in an upper portion of the light emitting portion. Each of the opening portions has a size smaller than a light emission wavelength of the light emitting portion.
    Type: Grant
    Filed: July 25, 2008
    Date of Patent: December 27, 2011
    Assignee: Panasonic Corporation
    Inventors: Tatsuya Tanigawa, Tetsuzo Ueda, Daisuke Ueda
  • Publication number: 20110290990
    Abstract: The present invention embraces a construction unit comprising a light detector and mountable to a carrier, such as a printed circuit card, and where said construction unit is adapted to be includable in a gas sensor-related arrangement. Said construction unit is assigned a plurality of first connection devices, which connection devices are adapted and distributed along a first surface portion of said construction unit for an electric connection facility to second connection devices related to said carrier. Said construction unit is adapted attachable to or placeable in the vicinity of a translucent recess formed in said carrier for the formation of an aperture. An optoelectric sensor is tightly placed against one side surface of said carrier while a first light-generating means is orientable, preferably as an individual unit, at an adapted distance from or along the other and opposite side surface of the carrier.
    Type: Application
    Filed: February 8, 2010
    Publication date: December 1, 2011
    Applicant: SENSEAIR AB
    Inventor: Hans Göran Evald Martin
  • Patent number: 8044393
    Abstract: A light emitting device is provided, which uses alternating current drive as a method of driving the light emitting device, and in which light emission is always obtained when voltages having different polarities are alternately applied, and a method of manufacturing the light emitting device is also provided. A first light emitting element made from an anode, an organic compound layer, and a cathode, and a second electrode made from an anode, an organic compound layer, and a cathode are formed. The light emitting elements are formed sandwiching the same organic compound layer. The anode of the first light emitting element and the anode of the second light emitting element, and the cathode of the first light emitting element and the cathode of the second light emitting element, are formed on opposite sides of the organic compound layer, respectively, thus sandwiching the organic compound layer.
    Type: Grant
    Filed: July 15, 2010
    Date of Patent: October 25, 2011
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Satoshi Seo
  • Publication number: 20110241549
    Abstract: A light generating system comprising: a plurality of solid state emitters (SSEs) and a stability control system for controlling the spectral stability of the SSEs. In a particular case, the stability control system may comprise: a power regulator to regulate power supplied to a sub-set of the plurality of SSEs; a constant current circuit connected to the power regulator to provide a constant current to the sub-set of SSEs; a current regulation set point connected to the constant current circuit; and a controller configured to set the regulation set point based on metrology relating to the state of the SSEs.
    Type: Application
    Filed: March 31, 2011
    Publication date: October 6, 2011
    Applicant: ATS Automation Tooling Systems Inc.
    Inventor: Gerald R. WOOTTON
  • Patent number: 7993951
    Abstract: In a method of manufacturing a photoelectric conversion device having a pixel region and a peripheral circuit region, a semiconductor compound layer is formed by causing a surface of a diffusion layer or gate electrode of a MOS transistor in the peripheral circuit region to react with a high melting point metal, then an insulating layer is formed in the pixel region and the peripheral circuit region after the step of forming a semiconductor compound layer. A contact hole is formed in the insulating layer to expose a diffusion layer in the pixel region, and a contact hole is formed in the insulating layer to expose the semiconductor compound layer formed in the peripheral circuit region. These holes are formed at different timings. Prior to forming the hole which is formed later, a contact plug is formed in the contact hole which is formed earlier.
    Type: Grant
    Filed: June 3, 2010
    Date of Patent: August 9, 2011
    Assignee: Canon Kabushiki Kaisha
    Inventors: Takehito Okabe, Hiroaki Naruse, Ryuichi Mishima, Kouhei Hashimoto
  • Patent number: 7977681
    Abstract: A photo sensor includes a light incidence unit including a plurality of light incidence layers, the light incidence unit having a varying light transmittance with respect to external light, and a photo sensing unit including a plurality of photo sensing elements, the photo sensing unit being configured to output electrical signals in accordance with an amount of light transmitted through the light incidence unit to determine intensity of the external light, each of the photo sensing elements being configured to output electrical signals in accordance with light transmitted through a respective light incidence layer.
    Type: Grant
    Filed: July 31, 2008
    Date of Patent: July 12, 2011
    Assignee: Samsung Mobile Display Co., Ltd.
    Inventors: Ki-Ju Im, Byong-Deog Choi, Won-Sik Kim, Hye-Hyang Park, Hui-Won Yang, Yun-Gyu Lee
  • Publication number: 20110101481
    Abstract: Photodetector arrays, image sensors, and other apparatus are disclosed. In one aspect, an apparatus may include a surface to receive light, a plurality of photosensitive regions disposed within a substrate, and a material coupled between the surface and the plurality of photosensitive regions. The material may receive the light. At least some of the light may free electrons in the material. The apparatus may also include a plurality of discrete electron repulsive elements. The discrete electron repulsive elements may be coupled between the surface and the material. Each of the discrete electron repulsive elements may correspond to a different photosensitive region. Each of the discrete electron repulsive elements may repel electrons in the material toward a corresponding photosensitive region. Other apparatus are also disclosed, as are methods of use, methods of fabrication, and systems incorporating such apparatus.
    Type: Application
    Filed: November 4, 2009
    Publication date: May 5, 2011
    Inventor: Hidetoshi Nozaki
  • Publication number: 20110062542
    Abstract: Pixel sensor cells, method of fabricating pixel sensor cells and design structure for pixel sensor cells. The pixel sensor cells including: a photodiode body in a first region of a semiconductor layer; a floating diffusion node in a second region of the semiconductor layer, a third region of the semiconductor layer between and abutting the first and second regions; and dielectric isolation in the semiconductor layer, the dielectric isolation surrounding the first, second and third regions, the dielectric isolation abutting the first, second and third regions and the photodiode body, the dielectric isolation not abutting the floating diffusion node, portions of the second region intervening between the dielectric isolation and the floating diffusion node.
    Type: Application
    Filed: September 17, 2009
    Publication date: March 17, 2011
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: James William Adkisson, John Joseph Ellis-Monaghan, Mark David Jaffe, Richard John Rassel
  • Patent number: 7902564
    Abstract: A ceramic body is disposed in a path of light emitted by a light source. The light source may include a semiconductor structure comprising a light emitting region disposed between an n-type region and a p-type region. The ceramic body includes a plurality of first grains configured to absorb light emitted by the light source and emit light of a different wavelength, and a plurality of second grains. For example, the first grains may be grains of luminescent material and the second grains may be grains of a luminescent material host matrix without activating dopant.
    Type: Grant
    Filed: December 22, 2006
    Date of Patent: March 8, 2011
    Assignees: Koninklijke Philips Electronics N.V., Philips Lumileds Lighting Company, LLC
    Inventors: Regina B. Mueller-Mach, Gerd O. Mueller, Michael R. Krames, Peter J. Schmidt, Hans-Helmut Bechtel
  • Patent number: 7897979
    Abstract: A light emission device manufactured by a method of forming a curved surface having a radius of curvature to the upper end of an insulator 19, exposing a portion of the first electrode 18c to form an inclined surface in accordance with the curved surface, and applying etching so as to expose the first electrode 18b in a region to form a light emission region, in which emitted light from the layer containing the organic compound 20 is reflected on the inclined surface of the first electrode 18c to increase the total take-out amount of light in the direction of an arrow shown in FIG.
    Type: Grant
    Filed: June 4, 2003
    Date of Patent: March 1, 2011
    Assignee: Semiconductor Energy laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Takeshi Noda, Yoshinari Higaki
  • Publication number: 20110044694
    Abstract: The present disclosure describes an optically powered transducer with a photovoltaic collector. An optical fiber power delivery method and system and a free space power delivery method are also provided. A fabrication process for making an optically powered transducer is further described, together with an implantable transducer system based on optical power delivery.
    Type: Application
    Filed: August 20, 2010
    Publication date: February 24, 2011
    Inventors: Axel Scherer, Aditya Rajagopal, Seheon Kim, Andrew P. Homyk
  • Patent number: 7893516
    Abstract: A backside-illuminated imaging device, which performs imaging by illuminating light from a back side of a semiconductor substrate to generate electric charges in the semiconductor substrate based on the light and reading out the electric charges from a front side of the semiconductor substrate, is provided and includes: a back-side layer including an back-side element on the back side of the semiconductor substrate; a front-side layer including an front-side element on the front side of the semiconductor substrate; a support substrate above the front-side layer; a spacer, one end of which comes in contact with the front-side layer and the other end of which comes in contact with the support substrate, to form a space having a uniform distance between the semiconductor substrate and the support substrate; and an adhesive filled in at least a part of the space between the surface-side element formation layer and the support substrate.
    Type: Grant
    Filed: May 23, 2008
    Date of Patent: February 22, 2011
    Assignee: Fujifilm Corporation
    Inventor: Shinji Uya
  • Patent number: 7888702
    Abstract: It is an object of the present invention to provide a technique to manufacture a highly reliable display device at a low cost with high yield. A display device according to the present invention includes a semiconductor layer including an impurity region of one conductivity type; a gate insulating layer, a gate electrode layer, and a wiring layer in contact with the impurity region of one conductivity type, which are provided over the semiconductor layer; a conductive layer which is formed over the gate insulating layer and in contact with the wiring layer; a first electrode layer in contact with the conductive layer; an electroluminescent layer provided over the first electrode layer; and a second electrode layer, where the wiring layer is electrically connected to the first electrode layer with the conductive layer interposed therebetween.
    Type: Grant
    Filed: April 3, 2006
    Date of Patent: February 15, 2011
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Kengo Akimoto, Hisashi Ohtani, Misako Hirosue
  • Patent number: 7880189
    Abstract: A light-emitting semiconductor component comprising a substrate which has a first interface between a first and a second silicon layer, whose lattice structures which are considered as ideal are rotated relative to each other through a twist angle about a first axis perpendicular to the substrate surface and are tilted through a tilt angle about a second axis parallel to the substrate surface, in such a way that a dislocation network is present in the region of the interface, wherein the twist angle and the tilt angle are so selected that an electroluminescence spectrum of the semiconductor component has an absolute maximum of the emitted light intensity at either 1.3 micrometers light wavelength or 1.55 micrometers light wavelength.
    Type: Grant
    Filed: May 3, 2006
    Date of Patent: February 1, 2011
    Assignee: IHP GmbH-Innovations for High Performance Microelectronics/ Leibniz-Institut für innovative Mikroelektronik
    Inventors: Martin Kittler, Manfred Reiche, Tzanimir Arguirov, Winfried Seifert
  • Publication number: 20110019048
    Abstract: A sensor module has first and second sensor arrays formed on a substrate, with the first and second sensor arrays adapted to share common readout circuitry and shared read out for a pair of sensors on a single array.
    Type: Application
    Filed: July 26, 2010
    Publication date: January 27, 2011
    Applicant: STMicroelectronics (Research & Development)Limited
    Inventors: Jeffrey Raynor, Arnaud Laflaquiere, Stewart Smith
  • Publication number: 20100330723
    Abstract: In a method of manufacturing a photoelectric conversion device having a pixel region and a peripheral circuit region, a semiconductor compound layer is formed by causing a surface of a diffusion layer or gate electrode of a MOS transistor in the peripheral circuit region to react with a high melting point metal, then an insulating layer is formed in the pixel region and the peripheral circuit region after the step of forming a semiconductor compound layer. A contact hole is formed in the insulating layer to expose a diffusion layer in the pixel region, and a contact hole is formed in the insulating layer to expose the semiconductor compound layer formed in the peripheral circuit region. These holes are formed at different timings. Prior to forming the hole which is formed later, a contact plug is formed in the contact hole which is formed earlier.
    Type: Application
    Filed: June 3, 2010
    Publication date: December 30, 2010
    Applicant: CANON KABUSHIKI KAISHA
    Inventors: Takehito Okabe, Hiroaki Naruse, Ryuichi Mishima, Kouhei Hashimoto
  • Publication number: 20100327753
    Abstract: A stacked body comprising a light emitting layer and a light detecting element which detects light emitted by the light emitting layer. The light detecting element has a light detecting region which overlaps a light emitting surface of the light emitting layer as viewed in the thickness direction of the light emitting layer.
    Type: Application
    Filed: June 30, 2010
    Publication date: December 30, 2010
    Applicant: Casio Computer Co., Ltd.
    Inventors: Isao EBISAWA, Yoshiyuki MATSUOKA, Kenji KOBAYASHI
  • Publication number: 20100327169
    Abstract: In order to ensure an even image quality of digital X-ray recordings, provision is made for an X-ray detector with light-sensitive pixel elements arranged in an active readout matrix and with a reset-light source arranged therebehind in the radiation direction of X-ray radiation, wherein the reset-light source is designed as a planar OLED (organic light-emitting diode) matrix applied to a film.
    Type: Application
    Filed: June 7, 2010
    Publication date: December 30, 2010
    Inventor: Alexander Korn
  • Publication number: 20100320553
    Abstract: A finger sensor assembly may include a circuit board and an integrated circuit (IC) finger sensor grid array package including a grid array on a lower end thereof mounted to the circuit board, and a finger sensing area on an upper end thereof. The finger sensor assembly may further include at least one visible light source carried by the circuit board and a visible light guide optically coupled to the at least one visible light source. The at least one visible light source may at least partially laterally surround the upper end of the IC finger sensor grid array package to provide visual light indications. The IC finger sensor grid array package may also include circuitry for controlling the at least one visible light source.
    Type: Application
    Filed: June 19, 2009
    Publication date: December 23, 2010
    Applicant: AuthenTec, Inc.
    Inventors: Dale R. SETLAK, John David Mckinney
  • Publication number: 20100308430
    Abstract: A semiconductor device comprises a semiconductor substrate, and a multilayer wiring structure arranged on the semiconductor substrate, the multilayer wiring structure including a plurality of first electrically conductive lines, an insulating film covering the plurality of first electrically conductive lines, and a second electrically conductive line arranged on the insulating film so as to intersect the plurality of first electrically conductive lines, wherein the insulating film has gaps in at least some of a plurality of regions where the plurality of first electrically conductive lines and the second electrically conductive line intersect each other, and a width of the gap in a direction along the second electrically conductive line is not larger than a width of the first electrically conductive line.
    Type: Application
    Filed: May 19, 2010
    Publication date: December 9, 2010
    Applicant: CANON KABUSHIKI KAISHA
    Inventor: Takeshi Aoki
  • Patent number: 7847286
    Abstract: A semiconductor device with a substrate, a first electrode on the substrate, at least one of an injection layer or a transporting layer on the first electrode, an adhesion layer on the at least one of an injection layer or a transporting layer, and a second electrode on the adhesion layer.
    Type: Grant
    Filed: November 3, 2009
    Date of Patent: December 7, 2010
    Assignee: LG Electronics Inc.
    Inventors: Jong Geun Yoon, Myung Seop Kim, Hyoung Yun Oh, Sung Tae Kim
  • Publication number: 20100294961
    Abstract: Disclosed herein is a lighting unit (10) including one or more light sources (12) configured to emit light and one or more photosensors (16) supported by a substantially transparent structure (18). Light emitted by the one or more light sources (12)and incident upon the structure (18) is substantially transmitted therethrough with a portion of light emitted by the one or more light sources (12) incident upon the one or more photosensors (16) for detection thereof. In some embodiments, the one or more photosensors (16) are configured as substantially transparent photosensors.
    Type: Application
    Filed: January 26, 2009
    Publication date: November 25, 2010
    Applicant: KONINKLIJKE PHILIPS ELECTRONICS N.V.
    Inventor: Ian Ashdown
  • Publication number: 20100288911
    Abstract: A solid state imaging device that includes a semiconductor substrate having a plurality of photodiodes thereon and a first wiring portion, a second wiring portion and a third wiring portion, a first wiring layer over the semiconductor substrate and which includes a plurality of metal films and extends across all the wiring portions, and a second wiring layer over the first wiring layer and which extends across the first wiring portion and the second wiring portion.
    Type: Application
    Filed: April 22, 2010
    Publication date: November 18, 2010
    Applicant: SONY CORPORATION
    Inventors: Kyohei Mizuta, Kazuichiro Itonaga
  • Patent number: 7816161
    Abstract: An organic electroluminescent device includes: a switching element and a driving element connected to each other on a substrate including a pixel region; a planarization layer on the switching element and the driving element, the planarization layer having a substantially flat top surface; a cathode on the planarization layer, the cathode connected to the driving element; an emitting layer on the cathode; and an anode on the emitting layer.
    Type: Grant
    Filed: December 15, 2006
    Date of Patent: October 19, 2010
    Assignee: LG Display Co., Ltd.
    Inventors: Jae-Hee Park, Kyung-Min Park, Seok-Jong Lee
  • Publication number: 20100252809
    Abstract: A light emitting element array including an active layer commonly used for light emitting element regions, carrier injection layers which are electrically isolated from each other and which are provided in the respective light emitting element regions, and a resistive layer which has a resistance higher than that of the carrier injection layers and which is provided between the active layer and the carrier injection layers.
    Type: Application
    Filed: June 22, 2010
    Publication date: October 7, 2010
    Applicant: CANON KABUSHIKI KAISHA
    Inventor: Tetsuya Takeuchi
  • Publication number: 20100243057
    Abstract: The semiconductor device according to the present invention includes: a semiconductor substrate; an integrated circuit formed on the semiconductor substrate; and a photoelectric converter, stacked on the integrated circuit, having a light absorbing layer made of a compound semiconductor having a chalcopyrite structure.
    Type: Application
    Filed: March 23, 2010
    Publication date: September 30, 2010
    Applicant: ROHM CO., LTD.
    Inventors: Goro NAKATANI, Osamu Matsushima, Takamitsu Yamanaka
  • Publication number: 20100224877
    Abstract: Disclosed is an electrophotographic photoreceptor which comprises a base material and a photoconductive layer. The photoconductive layer is formed on the base material, and comprises a non-single-crystal material mainly composed of silicon. In the photoconductive layer, with regard to a characteristic energy E (eV) which has the relationship with a light absorption coefficient ? (cm?1) represented by the following formula (1), the characteristic energy E1 (eV) for an exposure wavelength in larger than the characteristic energy E2 (eV) for a neutralization wavelength.
    Type: Application
    Filed: July 31, 2008
    Publication date: September 9, 2010
    Applicant: KYOCERA CORPORATION
    Inventor: Yoshinobu Ishii