Including Ternary Or Quaternary Compound (e.g., Algaas) (epo) Patents (Class 257/E33.031)
-
Patent number: 8890196Abstract: A solid-state light source has light emitting diodes embedded in a thermally conductive translucent luminescent element. The thermally conductive translucent luminescent element has optically translucent thermal filler and at least one luminescent element in a matrix material. A leadframe is electrically connected to the light emitting diodes. The leadframe distributes heat from the light emitting diodes to the thermally conductive translucent luminescent element. The thermally conductive translucent luminescent element distributes heat from light emitting diodes and the thermally conductive translucent luminescent element.Type: GrantFiled: March 14, 2013Date of Patent: November 18, 2014Assignee: Goldeneye, Inc.Inventors: Scott M. Zimmerman, William R. Livesay, Richard L. Ross, Eduardo DeAnda
-
Patent number: 8853735Abstract: Provided is an epitaxial substrate for a semiconductor device, which has excellent schottky contact characteristics that are stable over time. The epitaxial substrate for a semiconductor device includes a base substrate, a channel layer formed of a first group III nitride containing at least Ga and having a composition of Inx1Aly1Gaz1N (x1+y1+z1=1), and a barrier layer formed of a second group III nitride containing at least In and Al and having a composition of Inx2Aly2Gaz2N (x2+y2+z2=1), wherein the barrier layer has tensile strains in an in-plane direction, and pits are formed on a surface of the barrier layer at a surface density of 5×107/cm2 or more and 1×109/cm2 or less.Type: GrantFiled: September 20, 2012Date of Patent: October 7, 2014Assignee: NGK Insulators, Ltd.Inventors: Makoto Miyoshi, Mikiya Ichimura, Tomohiko Sugiyama, Mitsuhiro Tanaka
-
Patent number: 8729598Abstract: The present invention provides a light-emitting diode that includes two electrodes provided on a light-emitting surface, and exhibits high light extraction efficiency and high-brightness.Type: GrantFiled: February 2, 2011Date of Patent: May 20, 2014Assignee: Showa Denko K.K.Inventors: Wataru Nabekura, Ryouichi Takeuchi
-
Patent number: 8674337Abstract: A light emitting diode (LED) and a method for fabricating the same, capable of improving brightness by forming a InGaN layer having a low concentration of indium, and whose lattice constant is similar to that of an active layer of the LED, is provided. The LED includes: a buffer layer disposed on a sapphire substrate; a GaN layer disposed on the buffer layer; a doped GaN layer disposed on the GaN layer; a GaN layer having indium disposed on the GaN layer; an active layer disposed on the GaN layer having indium; and a P-type GaN disposed on the active layer. Here, an empirical formula of the GaN layer having indium is given by In(x)Ga(1?x)N and a range of x is given by 0<x<2, and a thickness of the GaN layer having indium is 50-200 ?.Type: GrantFiled: June 27, 2011Date of Patent: March 18, 2014Assignee: LG Innotek Co., Ltd.Inventor: Seong Jae Kim
-
Patent number: 8648384Abstract: A light emitting device is disclosed. In the light emitting device, the structure of a barrier layer of an active layer is changed, and a band gap energy of an intermediate layer is varied, thereby improving hole injection efficiency of the active layer and thus light emission efficiency.Type: GrantFiled: February 16, 2012Date of Patent: February 11, 2014Assignee: LG Innotek Co., Ltd.Inventors: Jongho Na, Hoonki Hong, Hyunkee Lee
-
Patent number: 8502242Abstract: A semiconductor device includes a first light emitting chip, the first light emitting chip having a first semiconductor layer, a second semiconductor layer, and a first active layer disposed therebetween, a second light emitting chip disposed on the first light emitting chip, the second light emitting chip having a third semiconductor layer, a fourth semiconductor layer, and a second active layer disposed therebetween, and a conductive layer disposed between the first semiconductor layer and the fourth semiconductor layer, the first semiconductor layer and the fourth semiconductor layer having different conductivity types.Type: GrantFiled: July 31, 2012Date of Patent: August 6, 2013Assignee: Samsung Electronics Co., Ltd.Inventor: YuSik Kim
-
Patent number: 8441024Abstract: A semiconductor light emitting device includes an active layer; a first nitride semiconductor layer on the active layer; a first delta-doped layer on the first nitride semiconductor layer; a second nitride semiconductor layer on the first delta-doped layer; a second delta-doped layer on the second nitride semiconductor layer; a third nitride semiconductor layer on the second delta-doped layer. The first delta-doped layer, the second nitride semiconductor layer, the second delta-doped layer, and the third nitride semiconductor layer are doped with an n-type dopant.Type: GrantFiled: April 23, 2012Date of Patent: May 14, 2013Assignee: LG Innotek Co., Ltd.Inventors: Tae Yun Kim, Hyo Kun Son
-
Patent number: 8420426Abstract: To provide a light-emitting device using a nitride semiconductor which can attain high-power light emission by highly efficient light emission, a method of manufacturing the light-emitting device involves forming a first AlGaN layer of a first conductivity type on a side of a first main surface of a nitride semiconductor substrate, forming a light-emitting layer including an InAlGaN quaternary alloy on the first AlGaN layer, forming a second AlGaN layer of a second conductivity type on the light-emitting layer, and removing the nitride semiconductor substrate after forming the second AlGaN layer.Type: GrantFiled: April 25, 2011Date of Patent: April 16, 2013Assignees: Sumitomo Electric Industries, Ltd., RIKENInventors: Hideki Hirayama, Katsushi Akita, Takao Nakamura
-
Patent number: 8404506Abstract: In a method for the production of a single photon source with a given operational performance, the given operational performance for the individual photon source may be fixed by a directed setting of the fine structure gap of the excitonic energy level for at least one quantum dot. The at least one quantum dot is produced with a quantum dot size corresponding to the fine structure gap for setting.Type: GrantFiled: November 20, 2006Date of Patent: March 26, 2013Assignee: Technische Universitaet BerlinInventors: Anatol Lochmann, Robert Seguin, Dieter Bimberg, Sven Rodt, Vladimir Gaysler
-
Patent number: 8354689Abstract: Light emitting devices described herein include dopant front loaded tunnel barrier layers (TBLs). A front loaded TBL includes a first surface closer to the active region of the light emitting device and a second surface farther from the active region. The dopant concentration in the TBL is higher near the first surface of the TBL when compared to the dopant concentration near the second surface of the TBL. The front loaded region near the first surface of the TBL is formed during fabrication of the device by pausing the growth of the light emitting device before the TBL is formed and flowing dopant into the reaction chamber. After the dopant flows in the reaction chamber during the pause, the TBL is grown.Type: GrantFiled: April 28, 2011Date of Patent: January 15, 2013Assignee: Palo Alto Research Center IncorporatedInventors: Christopher L. Chua, Zhihong Yang
-
Patent number: 8242538Abstract: A semiconductor device and method are being disclosed. The semiconductor device discloses an InAs layer, a plurality of group III-V ternary layers supported by the InAs layer, and a plurality of group III-V quarternary layers supported by the InAs layer, wherein the group III-V ternary layers are separated from each other by a single group III-V quarternary layer. The method discloses providing an InAs layer, growing a plurality of group III-V ternary layers, and growing a plurality of group III-V quarternary layers, wherein the group III-V ternary layers are separated from each other by a single group III-V quarternary layer and are supported by the InAs layer.Type: GrantFiled: May 11, 2011Date of Patent: August 14, 2012Assignee: HRL Laboratories, LLCInventors: Peter Deelman, Ken Elliott, David Chow
-
Patent number: 8124993Abstract: A method of texturing a surface within or immediately adjacent to a template layer of a LED is described. The method uses a texturing laser directed through a substrate to decompose and pit a semiconductor material at the surface to be textured. By texturing the surface, light trapping within the template layer is reduced. Furthermore, by patterning the arrangement of pits, metal coating each pit can be arranged to spread current through the template layer and thus through the n-doped region of a LED.Type: GrantFiled: December 17, 2008Date of Patent: February 28, 2012Assignee: Palo Alto Research Center IncorporatedInventors: David P Bour, Clifford F Knollenberg, Christopher L Chua
-
Patent number: 8076685Abstract: A nitride semiconductor device includes an active layer formed between an n-type cladding layer and a p-type cladding layer, and a current confining layer having a conductive area through which a current flows to the active layer. The current confining layer includes a first semiconductor layer, a second semiconductor layer and a third semiconductor layer. The second semiconductor layer is formed on and in contact with the first semiconductor layer and has a smaller lattice constant than that of the first semiconductor layer. The third semiconductor layer is formed on and in contact with the second semiconductor layer and has a lattice constant that is smaller than that of the first semiconductor layer and larger than that of the second semiconductor layer.Type: GrantFiled: September 10, 2009Date of Patent: December 13, 2011Assignee: Panasonic CorporationInventors: Satoshi Tamura, Ryo Kajitani
-
Patent number: 8076677Abstract: A semiconductor light emitting device includes a semiconductor light emitting element, a lead electrically connected to the semiconductor light emitting element, and a resin package covering the semiconductor light emitting element and part of the lead. The resin package includes a lens facing the semiconductor light emitting element. The lead includes an exposed portion that is not covered by the resin package. The exposed portion includes a first portion and a second portion, where the first portion has a first mount surface oriented backward along the optical axis of the lens, and the second portion has a second mount surface oriented perpendicularly to the optical axis of the lens.Type: GrantFiled: December 7, 2010Date of Patent: December 13, 2011Assignee: Rohm Co., Ltd.Inventors: Yasunori Hata, Masahiko Kobayakawa
-
Patent number: 8039370Abstract: A method for transferring a layer onto a support includes transferring the layer, assembled on an initial substrate, onto a liquid layer that has been previously deposited on the support. The layer is subsequently released from the initial substrate by chemical etching, and the liquid layer is evacuated to allow molecular adhesion of the layer to the support.Type: GrantFiled: August 5, 2008Date of Patent: October 18, 2011Assignee: Commissariat a l'Energie AtomiqueInventors: Damien Bordel, Léa Di Cioccio
-
Patent number: 7943943Abstract: To provide a light-emitting device using a nitride semiconductor which can attain high-power light emission by highly efficient light emission and a manufacturing method thereof, the light-emitting device includes a GaN substrate and a light-emitting layer including an InAlGaN quaternary alloy on a side of a first main surface of GaN substrate.Type: GrantFiled: June 12, 2007Date of Patent: May 17, 2011Assignees: Sumitomo Electric Industries, Ltd., RIKENInventors: Hideki Hirayama, Katsushi Akita, Takao Nakamura
-
Patent number: 7935974Abstract: The invention relates to a monolithic white light emitting device using wafer bonding or metal bonding. In the invention, a conductive submount substrate is provided. A first light emitter is bonded onto the conductive submount substrate by a metal layer. In the first light emitter, a p-type nitride semiconductor layer, a first active layer, an n-type nitride semiconductor layer and a conductive substrate are stacked sequentially from bottom to top. In addition, a second light emitter is formed on a partial area of the conductive substrate. In the second light emitter, a p-type AlGaInP-based semiconductor layer, an active layer and an n-type AlGaInP-based semiconductor layer are stacked sequentially from bottom to top. Further, a p-electrode is formed on an underside of the conductive submount substrate and an n-electrode is formed on a top surface of the n-type AlGaInP-based semiconductor layer.Type: GrantFiled: March 6, 2009Date of Patent: May 3, 2011Assignee: Samsung LED Co., Ltd.Inventors: Min Ho Kim, Masayoshi Koike, Kyeong Ik Min, Myong Soo Cho
-
Patent number: 7928448Abstract: A semiconductor structure comprising a III-nitride light emitting layer disposed between an n-type region and a p-type region is grown over a porous III-nitride region. A III-nitride layer comprising InN is disposed between the light emitting layer and the porous III-nitride region. Since the III-nitride layer comprising InN is grown on the porous region, the III-nitride layer comprising InN may be at least partially relaxed, i.e. the III-nitride layer comprising InN may have an in-plane lattice constant larger than an in-plane lattice constant of a conventional GaN layer grown on sapphire.Type: GrantFiled: December 4, 2007Date of Patent: April 19, 2011Inventors: Jonathan J. Wierer, Jr., John E. Epler
-
Patent number: 7884388Abstract: A light emitting diode (LED) and a method for fabricating the same, capable of improving brightness by forming a InGaN layer having a low concentration of indium, and whose lattice constant is similar to that of an active layer of the LED, is provided. The LED includes: a buffer layer disposed on a sapphire substrate; a GaN layer disposed on the buffer layer; a doped GaN layer disposed on the GaN layer; a GaN layer having indium disposed on the GaN layer; an active layer disposed on the GaN layer having indium; and a P-type GaN disposed on the active layer. Here, an empirical formula of the GaN layer having indium is given by In(x)Ga(1?x)N and a range of x is given by 0<x<2, and a thickness of the GaN layer having indium is 50-200 ?.Type: GrantFiled: November 23, 2009Date of Patent: February 8, 2011Assignee: LG Innotek Co., LtdInventor: Seong Jae Kim
-
Patent number: 7868334Abstract: A semiconductor light emitting device includes a semiconductor light emitting element, a lead electrically connected to the semiconductor light emitting element, and a resin package covering the semiconductor light emitting element and part of the lead. The resin package includes a lens facing the semiconductor light emitting element. The lead includes an exposed portion that is not covered by the resin package. The exposed portion includes a first portion and a second portion, where the first portion has a first mount surface oriented backward along the optical axis of the lens, and the second portion has a second mount surface oriented perpendicularly to the optical axis of the lens.Type: GrantFiled: April 8, 2008Date of Patent: January 11, 2011Assignee: Rohm Co., Ltd.Inventors: Yasunori Hata, Masahiko Kobayakawa
-
Patent number: 7859007Abstract: To provide a light-emitting device using a nitride semiconductor which can attain high-power light emission by highly efficient light emission and a manufacturing method thereof, the light-emitting device includes a GaN substrate and a light-emitting layer including an InAlGaN quaternary alloy on a side of a first main surface of GaN substrate.Type: GrantFiled: August 11, 2004Date of Patent: December 28, 2010Assignees: Sumitomo Electric Industries, Ltd., RIKENInventors: Hideki Hirayama, Katsushi Akita, Takao Nakamura
-
Patent number: 7842531Abstract: A gallium nitride-based device has a first GaN layer and a type II quantum well active region over the GaN layer. The type II quantum well active region comprises at least one InGaN layer and at least one GaNAs layer comprising 1.5 to 8% As concentration. The type II quantum well emits in the 400 to 700 nm region with reduced polarization affect.Type: GrantFiled: March 5, 2009Date of Patent: November 30, 2010Assignee: Lehigh UniversityInventors: Nelson Tansu, Ronald A. Arif, Yik Khoon Ee
-
Publication number: 20100276709Abstract: A method for manufacturing a compound semiconductor substrate includes at least the processes of epitaxially growing a quaternary light emitting layer composed of AlGaInP on a GaAs substrate; vapor-phase growing a p-type GaP window layer on a first main surface of the quaternary light emitting layer, the first main surface being opposite to the GaAs substrate; removing the GaAs substrate; and epitaxially growing an n-type GaP window layer on a second main surface of the light emitting layer, the second main surface being located at a side where the GaAs substrate is removed. The method includes the process of performing a heat treatment under a hydrogen atmosphere containing ammonia after the process of removing the GaAs substrate and before the process of epitaxially growing the n-type GaP window layer.Type: ApplicationFiled: January 14, 2009Publication date: November 4, 2010Applicant: SHIN-ETSU HANDOTAI, CO. LTD.Inventors: Yukari Suzuki, Jun Ikeda, Masataka Watanabe
-
Patent number: 7741654Abstract: The present invention provides a semiconductor laser excellent in the current injection efficiency. In an inner stripe type semiconductor laser according to the present invention, a p type cladding layer 309 has a superlattice structure composed of GaN layers and Al0.1Ga0.9N layers, which are alternately layered on each other. The p type cladding layer 309 has a portion of high dislocation density and a portion of low dislocation density. That is, the dislocation density is relatively low in a region directly above an opening of the current-confining region 308, whereas the dislocation density is relatively high in a region directly above a current-confining region 308.Type: GrantFiled: September 15, 2005Date of Patent: June 22, 2010Assignee: NEC CorporationInventors: Kazuhisa Fukuda, Chiaki Sasaoka, Akitaka Kimura
-
Patent number: 7622745Abstract: A n-type GaAs buffer layer 2, a n-type GaInP buffer layer 3, a n-type AlGaInP cladding layer 4, an undoped AlGaAs guide layer 5, an AlGaAs/GaAs multiquantum well (MQW) active layer 6, a first p-type AlGaInP cladding layer 7, a p-type GaInP etching stopper layer 8, a second p-type AlGaInP cladding layer 9, a C-doped AlGaAs layer (Zn-diffusion suppressing layer) 10, a p-type GaInP intermediate layer 11, and a p-type GaAs cap layer 12 are sequentially grown on a n-type GaAs substrate 1.Type: GrantFiled: August 18, 2006Date of Patent: November 24, 2009Assignee: Hitachi Cable, Ltd.Inventor: Ryoji Suzuki
-
Patent number: 7601985Abstract: A semiconductor light-emitting device includes: a substrate; a first conductivity type layer formed on the substrate and including a plurality of group III-V nitride semiconductor layers of a first conductivity type; an active layer formed on the first conductivity type layer; and a second conductivity type layer formed on the active layer and including a group III-V nitride semiconductor layer of a second conductivity type. The first conductivity type layer includes an intermediate layer made of AlxGa1?x?yInyN (wherein 0.001?x<0.1, 0<y<1 and x+y<1).Type: GrantFiled: September 15, 2006Date of Patent: October 13, 2009Assignee: Panasonic CorporationInventors: Yoshitaka Kinoshita, Hidenori Kamei
-
Patent number: 7531827Abstract: A light emitting diode (LED) and a method for fabricating the same, capable of improving brightness by forming a InGaN layer having a low concentration of indium, and whose lattice constant is similar to that of an active layer of the LED, is provided. The LED includes: a buffer layer disposed on a sapphire substrate; a GaN layer disposed on the buffer layer; a doped GaN layer disposed on the GaN layer; a GaN layer having indium disposed on the GaN layer; an active layer disposed on the GaN layer having indium; and a P-type GaN disposed on the active layer. Here, an empirical formula of the GaN layer having indium is given by In(x)Ga(1-x)N and a range of x is given by 0<x<2, and a thickness of the GaN layer having indium is 50-200 ?.Type: GrantFiled: January 18, 2006Date of Patent: May 12, 2009Assignee: LG Innotek Co., Ltd.Inventor: Seong Jae Kim
-
Patent number: 7518139Abstract: A gallium nitride-based device has a first GaN layer and a type II quantum well active region over the GaN layer. The type II quantum well active region comprises at least one InGaN layer and at least one GaNAs layer comprising 1.5 to 8% As concentration. The type II quantum well emits in the 400 to 700 nm region with reduced polarization affect.Type: GrantFiled: October 31, 2006Date of Patent: April 14, 2009Assignee: Lehigh UniversityInventors: Nelson Tansu, Ronald A. Arif, Yik Khoon Ee
-
Patent number: 7514720Abstract: The invention relates to a monolithic white light emitting device using wafer bonding or metal bonding. In the invention, a conductive submount substrate is provided. A first light emitter is bonded onto the conductive submount substrate by a metal layer. In the first light emitter, a p-type nitride semiconductor layer, a first active layer, an n-type nitride semiconductor layer and a conductive substrate are stacked sequentially from bottom to top. In addition, a second light emitter is formed on a partial area of the conductive substrate. In the second light emitter, a p-type AlGaInP-based semiconductor layer, an active layer and an n-type AlGaInP-based semiconductor layer are stacked sequentially from bottom to top. Further, a p-electrode is formed on an underside of the conductive submount substrate and an n-electrode is formed on a top surface of the n-type AlGaInP-based semiconductor layer.Type: GrantFiled: May 31, 2006Date of Patent: April 7, 2009Assignee: Samsung Electro-Mechanics Co., Ltd.Inventors: Min Ho Kim, Masayoshi Koike, Kyeong Ik Min, Myong Soo Cho
-
Patent number: 7374959Abstract: A two-wavelength semiconductor laser device includes a first conductive material substrate having thereon first and second regions separated from each other. A first semiconductor laser diode is formed on the first region. A non-active layer is formed on the second region and has the same layers as those of the first semiconductor laser diode. A second semiconductor laser diode is formed on the non-active layer. A lateral conductive region is formed at least between the first and second semiconductor laser diodes.Type: GrantFiled: May 24, 2006Date of Patent: May 20, 2008Assignee: Samsung Electro-Mechanics Co., Ltd.Inventor: Chong Mann Koh