A.c. Patents (Class 310/159)
  • Patent number: 11565824
    Abstract: An electric generator assembly for an aircraft is provided. The electric generator assembly includes: a main generator having a main rotor and a main stator, the main stator includes a first three-phase winding and a second three-phase winding, the first and second three-phase windings each configured to have a voltage induced therein by the main rotor, the first three-phase winding defining a phase shift from the second three-phase winding greater than zero degrees.
    Type: Grant
    Filed: April 8, 2020
    Date of Patent: January 31, 2023
    Assignee: General Electric Company
    Inventors: Hao Huang, David Dimitri Karipides, Jia Xiaochuan
  • Patent number: 11289947
    Abstract: In the present invention, junction capacitance is increased by stabilizing the junction capacitance of rotating electrodes such that a short circuit does not occur between the electrodes.
    Type: Grant
    Filed: August 29, 2018
    Date of Patent: March 29, 2022
    Assignees: ExH Corporation, KYOEI ELECTRIC CO., Ltd.
    Inventor: Kenichi Harakawa
  • Patent number: 10756661
    Abstract: A field winding type rotating electric machine, whose power factor is cos ?, includes a stator, a rotor with a field winding, a rectifying element, a drive unit and a control unit. When performing rectangular-wave or overmodulation energization, the control unit generates a voltage pulse pair, which induces a current pulse pair, by: setting a reference time to the center of an ON duration or OFF duration of a control signal of a first phase; and providing a temporary ON duration and a temporary OFF duration after a predetermined angle from the reference time. The predetermined angle is within a predetermined range including cos?1 ? in electrical angle. The temporary ON duration is provided to temporarily turn ON a control signal of a second phase during an OFF duration thereof. The temporary OFF duration is provided to temporarily turn OFF a control signal of a third phase during an ON duration thereof.
    Type: Grant
    Filed: June 13, 2019
    Date of Patent: August 25, 2020
    Assignee: DENSO CORPORATION
    Inventors: Masahiro Seguchi, Junichi Nakazono
  • Patent number: 10141821
    Abstract: A motor includes a rotor and a stator. The rotor includes a first rotor core including a plurality of first claw-like magnetic poles, a second rotor core including a plurality of second claw-like magnetic poles, and a magnetic field magnet arranged between the first and second rotor cores. The first and second claw-like magnetic poles are alternately arranged in a circumferential direction. The magnetic field magnet causes the first and second claw-like magnetic poles to function as magnetic poles different from each other. The stator includes a first stator core including a plurality of first claw-like magnetic poles, a second stator core including a plurality of second claw-like magnetic poles, and a coil section arranged between the first and second stator cores. The stator is configured to cause the first and second claw-like magnetic poles of the stator to function as magnetic poles different from each other and switch polarities of the magnetic poles on the basis of energization to the coil section.
    Type: Grant
    Filed: September 18, 2014
    Date of Patent: November 27, 2018
    Assignee: Denso Corporation
    Inventors: Yoshiaki Takemoto, Masashi Matsuda, Yusuke Morimoto
  • Patent number: 10122307
    Abstract: According to an aspect of the disclosure herein, a generator is provided herein. The generator includes a rotor that further includes a plurality of slots. The generator also includes a three-phase winding configured to produce a first magnetic field and an excitation winding. The excitation winding is a material filling in the plurality of slots and produces a second magnetic field. In turn, a rotation of the generator induces alternating voltage in the stator three-phase winding and the stator excitation winding excites the magnetic flux in the rotor.
    Type: Grant
    Filed: November 4, 2015
    Date of Patent: November 6, 2018
    Assignee: HAMILTON SUNDSTRAND CORPORATION
    Inventor: Jacek F. Gieras
  • Patent number: 9893644
    Abstract: Electric power devices and control methods are provided which automatically select a line voltage or phase voltage of an AC voltage supply. The electric power device includes a switchable circuit, a sensor and a switch control. The switchable circuit connects to the AC voltage supply, and includes multiple switchable elements. The sensor ascertains a voltage level of the AC voltage supply, and the switch control automatically establishes a configuration of the switchable circuit through control of the multiple switchable elements. The switch control couples the electric power device in a line-line (delta) configuration to the AC voltage supply when the voltage level is in a first voltage range, and a line-neutral (wye) configuration when the voltage level is in a second voltage range.
    Type: Grant
    Filed: November 15, 2016
    Date of Patent: February 13, 2018
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Steven J. Ahladas, Kevin R. Covi, Luke L. Jenkins, Robert B. Schlak
  • Patent number: 9865410
    Abstract: A switching system for switching between phases in a multi-phase power distribution system includes a switch for selectively connecting a lateral line to feeder conductors of different phases in a multi-phase power distribution system. Feeder terminals of the switch are configured to connect to feeder conductors of the multi-phase power distribution system. At least one output terminal of the switch is configured to connect to the lateral line. The feeder terminals are spaced about the body of the switch. A shaft and a rotatable contact member extending radially from the shaft are configured for rotating within the switch body to selectively connect the at least one output terminal to any one or more of the feeder terminals. At least one controller operates the switch to selectively change connection of the lateral line between the feeder conductors.
    Type: Grant
    Filed: September 25, 2013
    Date of Patent: January 9, 2018
    Assignee: ABB Schweiz AG
    Inventors: Mirrasoul J. Mousavi, Dmitry Ishchenko
  • Patent number: 9013178
    Abstract: In a resolver for determining the relative angular position between two subassemblies, each subassembly includes a winding, the winding being situated inside a housing made up of two housing shells. The housing shells have tabs which are oriented with an axial directional component and joined in interlocking manner with axial overlap at a mutual offset in the circumferential direction.
    Type: Grant
    Filed: January 28, 2010
    Date of Patent: April 21, 2015
    Assignee: LTN Servotechnik GmbH
    Inventors: Hans Logé, Andreas Hitzer
  • Patent number: 9006914
    Abstract: An AC current generator for generating an CA current and method therefor and includes a stator and a rotor. The stator includes an outer shell of non-magnetic material enclosing an evacuated chamber and having a distribution of a plurality of ferromagnets attached thereto. The rotor includes an inner core of non-magnetic material located at a stability location within said evacuated chamber and having a distribution of a plurality of diamagnets attached thereto. In addition, the AC current generator includes at least one magnetic flux detection unit located within at least one magnetic field generated by at least one group of ferromagnets of the plurality of ferromagnets. Displacing the rotor from the stability location towards the at least one group of ferromagnets generates a change in magnetic flux in the magnetic field thereby generating an AC current in the at least one magnetic flux detection unit.
    Type: Grant
    Filed: January 5, 2012
    Date of Patent: April 14, 2015
    Inventor: Uri Rapoport
  • Publication number: 20140015365
    Abstract: Electromagnetic high frequency homopolar generator is a type of homopolar generator that can continuously transform kinetic energy into high frequency current. Operating frequency of this generator is independent from speed of rotation. Due to high frequency, power from this generator can be easily distributed by transformers. It is known that the higher frequency of the current is, the smaller core for the transformer is required. Generator, described herein, is operating on its resonant frequency, increasing voltage in the armature circuit. Where a large power source of a high frequency is needed, my generator can replace devices, which use semiconductors to convert current from direct to high frequency.
    Type: Application
    Filed: July 12, 2012
    Publication date: January 16, 2014
    Inventor: Vadim Harenco
  • Publication number: 20130076187
    Abstract: An induction motor having five phases is disclosed. Adding two or more phases to existing 1, 2, and 3 phase designs can boost power, torque, and speed. This document describes a method of controlling a motor and an inverter through load, power, torque, or speed demands. Cooling applications for the system and various electronic filtering methods are also disclosed.
    Type: Application
    Filed: September 17, 2012
    Publication date: March 28, 2013
    Inventor: Adam Daniel Flaster
  • Patent number: 8217601
    Abstract: A robust method for detecting a relative position of a feedback device, such as an encoder or resolver, coupled to a shaft, such as a motor shaft, is provided. To detect the relative position, electrical commands are issued in an open loop mode to spin the motor shaft an amount greater than the apparent rotational angle between two consecutive markers of the position feedback device, such that the net mechanical rotation is equal to or greater than the total rotational angle between two consecutive markers.
    Type: Grant
    Filed: February 2, 2010
    Date of Patent: July 10, 2012
    Assignee: Parker-Hannifin Corporation
    Inventor: Yun-Chich “Jack” Lin
  • Patent number: 8207699
    Abstract: An alternating current motor control system constituted of: a control unit; a cycloconverter functionality; a phase control functionality; and a semiconductor switching unit comprising a plurality of electronically controlled semiconductor switches each associated with a particular winding of a target alternating current motor and each independently responsive to the control unit. In one embodiment the semiconductor switching unit is arranged to connect the windings of the target alternating current motor to a three phase power input in one of a star and a delta configuration responsive to the control unit.
    Type: Grant
    Filed: July 8, 2009
    Date of Patent: June 26, 2012
    Assignee: InnoSave Ltd.
    Inventor: Arthur Naiman
  • Publication number: 20120112594
    Abstract: A stator core includes a cylindrical yoke and teeth that are disposed in an inner circumference surface of the yoke along its circumferential direction and that are subjected to magnetic flux from the rotor of the rotating electrical device. The teeth include a trapezoidal tooth that has a trapezoidal cross section that is taken vertically along a central axis of the yoke and an oddly shaped tooth of which a tip section has the same shape as the trapezoidal tooth and a base section from the tip section to the yoke has a different shape from the trapezoidal tooth.
    Type: Application
    Filed: November 4, 2011
    Publication date: May 10, 2012
    Applicants: AISIN SEIKI KABUSHIKI KAISHA, TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Shinya SANO, Isao KATO
  • Publication number: 20120025657
    Abstract: In order to provide a vehicle AC generator capable of easily setting an attachment direction of a battery terminal and reducing the total shaft length of the generator, in the vehicle AC generator including a case composed of a front bracket and a rear bracket, and a rotor and a stator which are arranged in the case, the vehicle AC generator includes a battery terminal arranged on an outer circumferential portion of the rear bracket, an engaging body provided on the battery terminal, and a plurality of fitting portions to which the engaging body is fitted.
    Type: Application
    Filed: December 15, 2010
    Publication date: February 2, 2012
    Applicant: Mitsubishi Electric Corporation
    Inventor: Yoshihiro SHINOSAKA
  • Publication number: 20110127861
    Abstract: The present invention relates to a motor for a washing machine for enhancing rigidity of a rotor frame, easy verification and adjustment of a gap, and improving a cooling performance of the motor. To achieve the objects of the present invention, a motor for a washing machine includes a stator having an AC power applied thereto, a rotor core on an outer side of the stator mounted so as to be rotatable by interaction of electromagnetic force with respect to the stator, a rotor frame arranged to surround the outer side of the stator, rotor core securing means formed along a side of the rotor frame for seating, and securing the rotor core, and preventing the rotor core from moving in up/down directions, strength reinforcing means for improving strength of the rotor frame, and gap verifying means provided to the rotor frame for verifying a gap between the rotor core and the stator.
    Type: Application
    Filed: October 29, 2010
    Publication date: June 2, 2011
    Inventor: Yong Suck PARK
  • Publication number: 20100104321
    Abstract: An image forming apparatus is configured to reduce a velocity fluctuation of a rotating body by reducing the AC velocity component of the rotating body. The image forming apparatus may include an image bearing body with a surface on which a toner image is formed; a driving motor configured to drive the image bearing body according to an input signal; and a controller configured to control the driving motor to output a motor output velocity at a period equal to that of an AC velocity component of the image bearing body. A velocity control method for the rotating body includes sampling a continuous motor input signal at a period equal to that of an AC velocity component of a rotating velocity of the rotating body. The sampled signal is transmitted to a driving motor that drives the rotating body, which is driven based upon the discrete motor input signal.
    Type: Application
    Filed: October 7, 2009
    Publication date: April 29, 2010
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Hyun-Ki Cho, Sung-Dae Kim, Jong-Tae Kim, Dong-Hoon Han
  • Publication number: 20090267440
    Abstract: The present invention provides a dynamoelectric machine that can reduce 12 f vibrational force and suppress generation of irritating electromagnetic noise in a vicinity of 2,000 Hz in an idling state. In the present invention, an armature winding includes first and second three-phase windings, the first three-phase winding is configured by delta-connecting respective phase windings, and the second three-phase winding is configured so as to be Y-connected to the first three-phase winding by connecting respective phase windings in series to respective output ends of the first three-phase winding. The first and second three-phase windings are each installed in the stator core such that respective phase currents have a phase difference from each other.
    Type: Application
    Filed: February 1, 2006
    Publication date: October 29, 2009
    Inventors: Haruyuki Kometani, Toshiaki Kashihara
  • Publication number: 20090039652
    Abstract: Embedding electrical machines in gas turbine engines has particular advantages by avoiding the need to provide mechanical connections. However, electrical machines such as switched reluctance electrical machines require relatively large electrical capacitors to accommodate and filter voltage variations in the phases of the electrical machine. Generally, the electrical machine will have a motoring period or generating period with a spacer period between. By injecting electrical current as electrical power in the spacer period, there is limited effect upon net torque within the electrical machine or electrical power generation. However, such stored electrical power in an inductive winding element of the electrical machine augments power pulses provided by a power source incorporating an electrical capacitor. In such circumstances, a smaller sized electrical capacitor can be used.
    Type: Application
    Filed: July 21, 2008
    Publication date: February 12, 2009
    Applicant: ROLLS-ROYCE PLC
    Inventors: David Reginald Trainer, John James Anthony Cullen, Stephen Andrew Long
  • Publication number: 20080315702
    Abstract: An alternator for vehicle includes a stator that outputs an AC voltage and a rotor that includes a field coil and a rotor core. The stator includes a plurality of phase stators that are disposed side-by-side along the rotational axis and individually output AC voltages. The phase stators include an even number of stator tabs alternately extending from one outer side of a phase stator coil toward another outer side of the phase stator coil and extending from the other outer side toward the one outer side along the rotational axis. The rotor includes a field coil and a rotor core at which an even number of rotor tabs are formed along the circumferential direction so as to alternately extend from one outer side of the field coil toward another outer side of the field coil along the rotational axis and extend from the other outer side toward the one outer side along the rotational axis. A phase stator core at each phase stator is formed by laminating a plurality of magnetic sheets.
    Type: Application
    Filed: June 18, 2008
    Publication date: December 25, 2008
    Applicant: Hitachi, Ltd.
    Inventors: Toshio Ishikawa, Minoru Yabuki, Yoshihisa Ishikawa, Yuji Enomoto
  • Publication number: 20080290754
    Abstract: The motor includes a rotor including N-pole magnets and S-pole magnets located alternately along a circumferential direction of said AC motor, a stator core including a plurality of partial cores arranged coaxially along an axial direction of said AC motor each of said partial cores including a plurality of stator poles located along said circumferential direction so as to be on the same circumference, and a plurality of loop-like windings each of which extends in said circumferential direction while passing through, in said axial direction, interpole spaces between each two adjacent stator poles in said circumferential direction. The a phase angle difference between each adjacent two of said stator poles in said circumferential direction of the same one of said partial cores is set at a value smaller than 360 degrees for each of said partial cores.
    Type: Application
    Filed: April 23, 2008
    Publication date: November 27, 2008
    Applicant: DENSO CORPORATION
    Inventors: Shinji Makita, Masayuki Nashiki, Yoshinobu Kamada, Eisuke Takahashi
  • Patent number: 7411322
    Abstract: A reluctance motor having a movable part that does not need a fixed mounting shaft in the motor's stationary part. In one embodiment, a motor of the invention has a stationary part that defines a cylindrical cavity into which a rotor is inserted, with an interior wall of the cavity covered by nonmagnetic lining. The stationary part has a plurality of stator poles, each defined by an electric coil having a magnetic core. The rotor has a spacer and a plurality of bearings, with each bearing at least partially confined between the spacer and the lining. The rotor is adapted to spin within the cavity in response to the excitation of one or more of the stator poles such that the bearings roll between the lining and the spacer. The motor can be implemented as a MEMS device, with the motor's stator being a substantially monolithic structure formed using a single substrate, which structure has a size on the order of 1 mm.
    Type: Grant
    Filed: December 6, 2005
    Date of Patent: August 12, 2008
    Assignee: Lucent Technologies Inc.
    Inventor: Dennis S. Greywall
  • Publication number: 20080129137
    Abstract: The present invention is an electrical rotating apparatus comprising stator coils wound around the inside and outside of the stator. In a further embodiment, the machine contains a high number of phases, greater than three. In a further embodiment, the phases are connected in a mesh connection. In a further embodiment, each half-phase is independently driven to enable second harmonic drive for an impedance effect. Improvements are apparent in efficiency and packing density.
    Type: Application
    Filed: December 13, 2005
    Publication date: June 5, 2008
    Inventor: Jonathan Sidney Edelson
  • Publication number: 20070188038
    Abstract: A self magnetizing motor is disclosed, which comprises a stator which is comprised of a plurality of sheets including a plurality of stator slots and exciter slots formed at fixed intervals along an outer circumferential surface of the center, a teeth provided between each of the stator slots, and an exciter pole formed between the exciter slots; an exciter coil which is wound on each exciter slot; and a rotor which is rotatably inserted into the center (C) of the stator, and is provided with an exciter magnetizable portion on an outer circumferential surface to be magnetized by the exciter coil; wherein the exciter pole is positioned at the part of the stator to form a back yoke of an increased size. Preferably, the exciter pole is positioned at corner of the stator so that a rear stator portion of the exciter pole is increased in size.
    Type: Application
    Filed: December 8, 2006
    Publication date: August 16, 2007
    Applicant: LG ELECTRONICS INC.
    Inventors: Sung-Ho LEE, Jae-Hak CHOI, Jae-Min KIM
  • Patent number: 7030531
    Abstract: An electric motor operated by AC current, that includes a stator and a rotor supported for rotation about an axis relative to the stator. The stator is provided with field windings angularly distributed about the rotor axis and capable of producing a magnetic field vector in the space of the rotor. Circuitry delivers AC current to the windings in a manner that produces an AC magnetic field vector that moves around the axis of the rotor. The rotor has a construction, such as an axially extending conductive loop, that changes its reluctance in the AC magnetic field depending on its orientation to the AC magnetic field vector whereby the rotor is caused to rotate in synchronization with the movement of the AC magnetic field vector.
    Type: Grant
    Filed: May 3, 2005
    Date of Patent: April 18, 2006
    Inventor: Lambert Haner
  • Patent number: 6946767
    Abstract: An alternating current electrical generator creates three different and distinct magnetic fields between would coil elements and rotating magnets, two fields of which are induced fields caused by magnet rotation. A plurality of magnets are positioned such that they extend outwardly from a rotating shaft. The magnets are circumferentially spaced around the shaft such that the north polar end of one magnet follows the south polar end of the next magnet or such that the polar end of one magnet follows a magnet with the same polar end. A plurality of stationary coil elements are positioned in spaced relation to the magnets. The coil elements each have electrical windings and metal cores which extend the lengths of the coil elements. The magnets rotate in spaced relation to the ends of the coil elements in such a way that the magnets' flux lines cut the cores located at the center of each of the coil elements. This induces alternating electric current that oscillates back and forth along the lengths of the cores.
    Type: Grant
    Filed: June 18, 2003
    Date of Patent: September 20, 2005
    Inventor: John Reardon
  • Patent number: 6888279
    Abstract: An electric motor operated by AC current, that includes a stator and a rotor supported for rotation about an axis relative to the stator. The stator is provided with field windings angularly distributed about the rotor axis and capable of producing a magnetic field vector in the space of the rotor. Circuitry delivers AC current to the windings in a manner that produces an AC magnetic field vector that moves around the axis of the rotor. The rotor has a construction, such as an axially extending conductive loop, that changes its reluctance in the AC magnetic field depending on its orientation to the AC magnetic field vector whereby the rotor is caused to rotate in synchronization with the movement of the AC magnetic field vector.
    Type: Grant
    Filed: October 22, 2003
    Date of Patent: May 3, 2005
    Inventor: Lambert Haner
  • Patent number: 6876120
    Abstract: An inner core 62 and a resolver rotor 63 are secured to a rotary shaft 68 so that they are coaxial. A spacer 2, is provided between the inner core 62 and the resolver rotor 63. The spacer 2 and the inner core 62 are formed as a unit with separation, or space, between the spacer 2 and flange 41 of the inner core 62. The thickness of flange 41 is greater than the corresponding width of the corresponding part of the outer core, on which a rotary transformer input winding is wound. The resolver rotor 63 is a separate unit from the spacer 2 and the inner core 62, which facilitates automatic winding of the rotor. Grooves 3, 42 are formed in the spacer 2 and the flange 41 to accommodate a crossover wire 60.
    Type: Grant
    Filed: October 9, 2003
    Date of Patent: April 5, 2005
    Assignee: Minebea Co., Ltd.
    Inventors: Taiichi Miya, Mutsumi Matsuura
  • Publication number: 20040239200
    Abstract: A single phase synchronous AC motor includes a laminated iron stator (1) carrying a single phase winding (3, 4) and a permanent magnet rotor (2) located within a stator bore (5). The stator bore is elongate in shape and is generally symmetrical about a minor axis (13) and a major axis (14). A permanent magnet reluctance torque smoothes out the twice electrical frequency torque pulsation due to the single phase winding. Substantially constant torque is obtained at all rotor positions when rated load torque is applied. The motor may be designed such that constant torque is achieved for any rate value of load torque corresponding to a factional value of the permanent magnet reluctance torque. The motor may be designed to obtain a useful ratio of pullout to rated torque for operation from a mains AC supply.
    Type: Application
    Filed: March 8, 2004
    Publication date: December 2, 2004
    Inventor: Richard Johnston Strahan
  • Patent number: 6800145
    Abstract: A Nd—Fe—B type rare earth magnet alloy is provided with hard magnetic phases each of which has a size equal to or less than 80 nm, soft magnetic phases each of which has a size equal to or less than 80 nm, with the hard and soft magnetic phases being present in a mixed structure, and partly anisotropic regions wherein axes of easy magnetization of the hard magnetic phases are aligned in one direction and each having a size equal to or greater than 0.1 &mgr;m. Such a magnet alloy is obtained using a strip casting method or ultra cooling method and serves as material for an anisotropic exchange spring magnet to be applied to a motor.
    Type: Grant
    Filed: May 17, 2002
    Date of Patent: October 5, 2004
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Munekatsu Shimada, Hideaki Ono
  • Patent number: 6713924
    Abstract: A three-phase brushless motor includes a rotor with a permanent magnet having P (P is an integer not less than two) polarities and a stator facing the rotor and having plural coils shaped in approx, triangle or trapezoid. A space between adjacent coils is (360/P)×(5/3) degree. Three position-detectors, which detect the position of the rotor, is placed at intervals of (360/P)×(2/3) degree in an area where no coils are placed. This structure allows the coils to be optimally shaped and placed, and realizes to reduce a number of coils as well as improve the motor characteristics.
    Type: Grant
    Filed: February 9, 2001
    Date of Patent: March 30, 2004
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventor: Shinji Fukushima
  • Patent number: 6639338
    Abstract: An electric motor operated by AC current, that includes a stator and a rotor supported for rotation about an axis relative to the stator. The stator is provided with field windings angularly distributed about the rotor axis and capable of producing a magnetic field vector in the space of the rotor. Circuitry delivers AC current to the windings in a manner that produces an AC magnetic field vector that moves around the axis of the rotor. The rotor has a construction, such as an axially extending conductive loop, that changes its reluctance in the AC magnetic field depending on its orientation to the AC magnetic field vector whereby the rotor is caused to rotate in synchronization with the movement of the AC magnetic field vector.
    Type: Grant
    Filed: September 6, 2000
    Date of Patent: October 28, 2003
    Inventor: Lambert Haner
  • Patent number: 6252324
    Abstract: A method of winding an electrical rotating apparatus includes determining a desired number of phases that is output from an electrical rotating apparatus, with the number of phases being greater than three. A stator is provided and additionally, a rotor is provided such that the rotor is electromagnetically coupled to a magnetic field generated by the stator. A plurality of coils is also provided, with the plurality of coils including a first coil and a second coil. The plurality of coils are wound around the stator, with the first coil being placed on the right side of the stator and the second coil being placed on the left side of the stator.
    Type: Grant
    Filed: April 22, 1999
    Date of Patent: June 26, 2001
    Assignee: Borealis Technical Limited
    Inventor: George H. Muhr
  • Patent number: 6204585
    Abstract: A work unit for automatic machine tools is provided with a spindle that moves in translation and rotates with respect to a work axis. The spindle is housed within a sleeve that is slidable along the work axis, with the spindle being rotatable within. Rotation of the spindle is controlled by a drive unit mounted directly on the spindle and arranged inside the sleeve, which eliminates the need for a separate transmission mechanism and thereby results in a simplified construction of the work unit and an increase in performance.
    Type: Grant
    Filed: December 18, 1998
    Date of Patent: March 20, 2001
    Assignee: Riello Macchine Transfer SRL
    Inventors: Andrea Riello, Zeno Borsaro
  • Patent number: 6188204
    Abstract: An AC generator whose field winding (4) on the rotor is excited by AC so that the resultant speed of the rotating field is the algebraic sum of the rotor speed and the speed of the field relative to the rotor itself. This makes it possible to generate AC at a frequency different from that of conventional DC excited generators by the appropriate choice of the frequency of the AC input to the rotor field circuit. It enables the stabilization of the output frequency of the alternator when speed changes occur, by the adjustment of the AC frequency of the rotor input. The AC fed to the rotor is from an auxiliary winding (3) which may be housed on the rotor itself, thereby eliminating the need for any brushes or slip rings. The AC is induced in the auxiliary rotor winding by having an auxiliary winding on the stator (2), distinct from the main stator winding (1). The input to the stator auxiliary winding may be from an inverter (5) whose frequency may be adjustable.
    Type: Grant
    Filed: August 5, 1999
    Date of Patent: February 13, 2001
    Inventors: Joseph Vithayathil, John J. Vithayathil
  • Patent number: 5886450
    Abstract: An electrical motor includes a stator housing having a toroidally shaped inner cavity. A plurality of stator electromagnets are mounted along the cavity wall in a plurality of parallel helical paths. A plurality of rotor members are rotatively mounted at fixed, spaced-apart angular positions around a ring shaft whose axis is coincident with the axis of the toroidal cavity. Each rotor member includes a plurality of permanent magnets mounted around its circumference. A linear output shaft has one end connected to the ring shaft and its other end extending out of the stator housing. By properly energizing the stator electromagnets, electromagnetic fields set up by them and the rotor magnets interact to produce torque which causes the rotor members to rotate about the ring shaft and to precess laterally causing the ring shaft, and attached linear output shaft, to rotate relative to the stator housing.
    Type: Grant
    Filed: January 13, 1998
    Date of Patent: March 23, 1999
    Inventor: Manfred R. Kuehnle
  • Patent number: 5406186
    Abstract: An electrical apparatus, comprises a bridge circuit having a plurality of rectifier legs electrically coupled in parallel. Each of the rectifier legs comprises a first and a second rectifier coupled in series and having an input node therebetween. The electrical apparatus further comprises a switch, having a control input, a power input, and a power output, coupled in parallel with the bridge circuit, and a controller having a control output coupled to the control input of the switch for regulating the opening and closing of the switch. When the bridge/switch element is coupled to the disassociated neutral terminals of a wye wound electrical device, the controller modulates the opening and closing of the switch to provide an current controlled soft start of the device, as well as continued motor drive capability, including acceleration and breaking of the device.
    Type: Grant
    Filed: January 25, 1994
    Date of Patent: April 11, 1995
    Assignee: Sundstrand Corporation
    Inventor: Donald G. Fair
  • Patent number: 4669009
    Abstract: A floppy disc recording and/or reproducing apparatus comprises a loading mechanism which has a support member which is fixed to the frame and has cam levers pivotally supported thereon, where each of the cam levers have a second cam part, a cartridge holder which has a first cam part and is arranged movable in upward and downward directions of the apparatus under guidance of the support member, and a push-eject member which has third and fourth cam parts and an ejecting push-button. The push-eject member is movable in frontward and rearward directions of the apparatus under guidance of the frame or the support member. A sequence of operations are carried out when a cartridge which accommodates the floppy disc is placed onto the cartridge holder so as to load the cartridge with respect to a driving shaft.
    Type: Grant
    Filed: October 25, 1983
    Date of Patent: May 26, 1987
    Assignee: Mitsumi Electric Co., Ltd.
    Inventors: Mitsuaki Naoi, Azuma Miyazawa, Hideharu Arai
  • Patent number: 4080542
    Abstract: Magnetic means and circuits for efficiently conducting and directing flux to a flux emergent surface, such as the pole of a motor pole piece, in which flux produced by one or more permanent magnetic sources matched in reluctance to a working air gap is directed through an essentially continuously curved convex surface of a volume of magnetically permeable material significantly greater in area than the area of the working air gap, with the flux from the magnetic source(s) is generally everywhere normal to that surface.
    Type: Grant
    Filed: June 26, 1975
    Date of Patent: March 21, 1978
    Assignee: Photocircuits Division of Kollmorgen Corporation
    Inventor: Albert L. De Graffenried