By Pulse Width Or Spacing Patents (Class 327/31)
  • Patent number: 8284830
    Abstract: Systems and methods for the demodulation of pulse edge modulated signals for communications systems which are useful in body implanted electronics. A pulse edge modulated signal is generated by retarding or advancing each pulse edge of a carrier to be modulated relative to its original position in time, depending on the state of the digital bit to be modulated on that edge. Each modulated edge of a pulse edge modulated signal is demodulated by determining the position in time of the modulated edge relative to the original respective position of the modulated edge prior to modulation.
    Type: Grant
    Filed: May 12, 2009
    Date of Patent: October 9, 2012
    Assignee: Alfred E. Mann Foundation For Scientific Research
    Inventors: Edward K. F. Lee, Eusebiu Matei
  • Publication number: 20120218002
    Abstract: An apparatus for measuring time interval between two edges of a clock signal and includes an edge generator, a first multi-tap delay module, a second multi-tap delay module, and a multi-element phase detector. The edge generator produces a first edge at a first output node and a second selected edge at a second output node. First multi-tap delay module provides a first incremental delay at each tap to the first edge. Second multi-tap delay module provides a second incremental delay at each tap to the second selected edge. Each element of the multi-element phase detector has first and second input terminals. The first input terminal is coupled to a selected tap of the first multi-tap delay module and the second input terminal is coupled to a corresponding tap of the second multi-tap delay module. The output terminals of the multi-element phase detector provide the value of the time interval.
    Type: Application
    Filed: April 13, 2012
    Publication date: August 30, 2012
    Applicant: STMicroelectronics Pvt. Ltd.
    Inventors: Kallol Chatterjee, Anurag Tiwari
  • Patent number: 8218704
    Abstract: A variable delay circuit delays a carrier signal having a predetermined frequency, and outputs a modulated signal. A delay setting unit sets a delay period for the variable delay circuit according to a data signal to be modulated. The delay setting unit assigns each symbol in the data signal to any one of positive edges and negative edges in the carrier signal, and sets a delay period for the variable delay circuit at the timing at which a positive edge in the carrier signal passes through the variable delay circuit, according to the symbol value in the data signal assigned to the positive edge. Furthermore, the delay setting unit sets a delay period for the variable delay circuit at the timing at which a negative edge in the carrier signal passes through the variable delay circuit, according to the symbol value in the data signal assigned to the negative edge.
    Type: Grant
    Filed: August 28, 2008
    Date of Patent: July 10, 2012
    Assignee: Advantest Corporation
    Inventor: Shoji Kojima
  • Publication number: 20120169375
    Abstract: Disclosed is a programmable pulse width discriminator circuit operable to receive a set of parameters from a user and indicate when an input signal satisfies conditions set by the user-defined parameters. The input signal is sampled by the pulse width discriminator circuit to detect a desired state of the input signal. The user may set the parameters such that the pulse width discriminator indicates the condition wherein the number of consecutive samples for which the input signal is the desired state is (i) greater than a first threshold value, (ii) less than a second threshold value, or (iii) between the first and second threshold values. In these embodiments, the user sets the first and second threshold values and selects which set of conditions are indicated by the output of the circuit.
    Type: Application
    Filed: December 29, 2010
    Publication date: July 5, 2012
    Applicant: STMicroelectronics, Inc.
    Inventor: Vincent Himpe
  • Patent number: 8159272
    Abstract: An apparatus for measuring time interval between two selected edges of a clock signal. includes an edge generator, a first multi-tap delay module, a second multi-tap delay module, and a multi-element phase detector. The edge generator produces a first edge at a first output node and a second selected edge at a second output node. First multi-tap delay module provides a first constant incremental delay at each tap to the first edge. Second multi-tap delay module provides a second constant incremental delay at each tap to the second selected edge. Each element of the multi-element phase detector has a first input terminal and a second input terminal. The first input terminal is coupled to a selected tap of the first multi-tap delay module and the second input terminal is coupled to a corresponding tap of the second multi-tap delay module. The output terminals of the multi-element phase detector provide the value of the time interval.
    Type: Grant
    Filed: July 6, 2009
    Date of Patent: April 17, 2012
    Assignee: STMicroelectronics Pvt. Ltd.
    Inventors: Kallol Chatterjee, Anurag Tiwari
  • Patent number: 8125354
    Abstract: A complex switch control system including many switches, a switching voltage control circuit and a comparator is provided. The switching voltage control circuit converts an operating voltage into a switching voltage according to the states of the switches. The comparator compares the switching voltage with a reference voltage and outputs a switch state signal to a keyboard controller. A duty cycle of the switch state signal corresponds to the states of the switches.
    Type: Grant
    Filed: September 17, 2007
    Date of Patent: February 28, 2012
    Assignee: Quanta Computer Inc.
    Inventors: Cheng-Cheng Lu, Yu-Tsang Wu
  • Patent number: 8120403
    Abstract: A semiconductor device includes a first duty determining circuit (20) and a second duty determining circuit (30). The first duty determining circuit (20) determines a duty correction condition for an input signal in a first predetermined cycle longer than a cycle of the input signal to obtain a first determination result and updates the duty correction condition for the input signal on the basis of the first determination result. The second duty determining circuit (30) determines the duty correction condition for the input signal in a second predetermined cycle shorter than first predetermined cycle to obtain a second determination result and updates the duty correction condition for the input signal only when the second determination result is fixed during a predetermined period.
    Type: Grant
    Filed: May 19, 2009
    Date of Patent: February 21, 2012
    Assignee: Elpida Memory, Inc.
    Inventor: Kazutaka Miyano
  • Patent number: 8058932
    Abstract: A digital pulse width modulation device includes a counter, a first comparator and a second comparator, wherein the first and second comparators are connected in parallel with each other and in series with the counter. The counter is capable of sending a count signal to the first and second comparators simultaneously, starting a count when the counter receives a clock signal, and transmitting the count signal to the first and second comparators. If the first comparator receives a pulse duty width signal, the count of the count signal will generate a pulse output of the corresponding duty cycle. If the second comparator receives a total pulse duty length signal and the count of the count signal reaches a number of the total length, a clear signal will be outputted to the counter to reset the counter to zero, so as to achieve the effect of correcting the output pulse.
    Type: Grant
    Filed: January 26, 2010
    Date of Patent: November 15, 2011
    Inventors: Ta-I Liu, Chung-Chih Tung
  • Publication number: 20110273271
    Abstract: A method and tag for decoding a signal received from a radio frequency identification (“RFID”) reader. A signal is received from the RFID reader in which the signal has a series of pulses. A time frame between receipt of two consecutive pulses is measured to determine whether the pulses represent zero bits or one bits. A total pulse duration is calculated in which the total pulse duration represents a sum of the measured time frames for the signal. A command is decoded. The decoding is based on the total duration of the two pulses.
    Type: Application
    Filed: May 10, 2010
    Publication date: November 10, 2011
    Applicant: SENSORMATIC ELECTRONICS, LLC
    Inventor: Jorge F. ALICOT
  • Patent number: 7961023
    Abstract: A digital circuit implementing pulse width modulation controls power delivered in what one can model as a second order or higher order system. An exemplary control plant could embody a step-down switch mode power supply providing a precise sequence of voltages or currents to any of a variety of loads such as the core voltage of a semiconductor unique compared to its input/output ring voltage. One of several algorithms produce a specific predetermined sequence of pulses of varying width such that the voltage maintains maximally flat characteristics while the current delivered to the load from the system plant varies within a range bounded only by inductive element continuous conduction at the low power extreme and non-saturation of the inductor core at the high power extreme.
    Type: Grant
    Filed: May 17, 2010
    Date of Patent: June 14, 2011
    Assignee: IPower Holdings LLC
    Inventor: Andrew Roman Gizara
  • Patent number: 7933325
    Abstract: A transmitter portion 14 includes a control circuit 32, a driver circuit 33, and a wave detector circuit 35. The control circuit 32 generates control signals Vp, Vn based on a pulsed transmission signal So. The driver circuit 33, which is supplied with a battery voltage Vb, generates an output signal Sa to be sent to an antenna 13 based on the control signals Vp, Vn. The wave detector circuit 35 outputs a detection signal Sk having a voltage proportional to the level of the output signal Sa (transmission power level). The control circuit 32 changes the pulse widths of the control signals Vp, Vn based on the voltage level of the detection signal Sk. As a result, electric power consumption is reduced and enlargement of an apparatus is suppressed while maintaining the transmission power level constant.
    Type: Grant
    Filed: September 28, 2005
    Date of Patent: April 26, 2011
    Assignee: Aisin Seiki Kabushiki Kaisha
    Inventors: Hisashi Inaba, Rikuo Hatano, Eiji Mushiake, Masahiro Hagimoto
  • Patent number: 7881397
    Abstract: Methods and systems for modulating a signal are described. A phase-modulated signal that includes a sequence of contiguous one-cycle sinusoidal waveforms having a frequency above 50 MHz is generated. The phases of the one-cycle sinusoidal waveforms correspond to symbols of a message signal. A bandwidth of the phase-modulated signal is reduced using a bandpass filter centered at the frequency of the contiguous one-cycle sinusoidal waveforms. The phase-modulated signal is wirelessly transmitted.
    Type: Grant
    Filed: March 31, 2005
    Date of Patent: February 1, 2011
    Assignee: Teradyne, Inc.
    Inventor: Toshihide Kadota
  • Patent number: 7830180
    Abstract: A noise protector includes a first noise control block for NORing an input signal and a first trimmed input signal and providing an output; a second noise control block for NANDing the input signal and a second trimmed input signal and providing an output; and an output signal generation block for outputting an output signal removed of noise in response to the outputs of the first noise control block and the second noise control block.
    Type: Grant
    Filed: May 8, 2008
    Date of Patent: November 9, 2010
    Assignee: Hynix Semiconductor Inc.
    Inventors: Byoung Sung You, Duck Ju Kim
  • Patent number: 7778324
    Abstract: A system for controlling the delay applied to one branch of a pulse width modulation amplifier. The delay typically incorporated whether input signal level is low and diminished when the input signal level increases. The system may be implemented using a switch, a level detector and a timer, which in conjunction determine whether the delay unit is included in the branch or bypassed. The system may also use a programmable delay that can adjust the period of delay applied or be programmed to operate as a pass-through where delay is no longer beneficial for providing high signal quality.
    Type: Grant
    Filed: November 18, 2005
    Date of Patent: August 17, 2010
    Assignee: Harman International Industries, Incorporated
    Inventor: Gerald R. Stanley
  • Publication number: 20100171529
    Abstract: An apparatus for measuring time interval between two selected edges of a clock signal. includes an edge generator, a first multi-tap delay module, a second multi-tap delay module, and a multi-element phase detector. The edge generator produces a first edge at a first output node and a second selected edge at a second output node. First multi-tap delay module provides a first constant incremental delay at each tap to the first edge. Second multi-tap delay module provides a second constant incremental delay at each tap to the second selected edge. Each element of the multi-element phase detector has a first input terminal and a second input terminal. The first input terminal is coupled to a selected tap of the first multi-tap delay module and the second input terminal is coupled to a corresponding tap of the second multi-tap delay module. The output terminals of the multi-element phase detector provide the value of the time interval.
    Type: Application
    Filed: July 6, 2009
    Publication date: July 8, 2010
    Applicant: STMicroelectronics Pvt. Ltd.
    Inventors: Kallol CHATTERJEE, Anurag Tiwari
  • Patent number: 7733248
    Abstract: A system and process for receiving a variable pulse width signal and measuring and serially sending the measurements to a receiver that deserializes and regenerates the variable pulse width signal. Data bits may be embedded with the variable pulse width clock measurements and serially sent out. The measurements are illustratively accomplished using a reference clock and a phase locked loop.
    Type: Grant
    Filed: September 18, 2008
    Date of Patent: June 8, 2010
    Assignee: Fairchild Semiconductor Corporation
    Inventor: Seth Prentice
  • Publication number: 20100127733
    Abstract: Provided is a duty detection circuit including: a first capacitor; a first transistor that controls charge or discharge currents of the first capacitor during a first period of a clock signal; a second capacitor; a second transistor that controls charge or discharge currents of the second capacitor during a second period of the clock signal; and a latch circuit that detects that a potential of one of the first capacitor and the second capacitor reaches a predetermined potential, and latches an output based on a result of the detection.
    Type: Application
    Filed: November 23, 2009
    Publication date: May 27, 2010
    Applicant: NEC Electronics Corporation
    Inventor: Kazutaka KIKUCHI
  • Patent number: 7719336
    Abstract: A digital circuit implementing pulse width modulation controls power delivered in what one can model as a second order or higher order system. An exemplary control plant could embody a step-down switch mode power supply providing a precise sequence of voltages or currents to any of a variety of loads such as the core voltage of a semiconductor unique compared to its input/output ring voltage. One of several algorithms produce a specific predetermined sequence of pulses of varying width such that the voltage maintains maximally flat characteristics while the current delivered to the load from the system plant varies within a range bounded only by inductive element continuous conduction at the low power extreme and non-saturation of the inductor core at the high power extreme.
    Type: Grant
    Filed: October 31, 2006
    Date of Patent: May 18, 2010
    Inventor: Andrew Roman Gizara
  • Patent number: 7705651
    Abstract: A delay circuit of a semiconductor memory apparatus can include a clock period sensing unit for generating a sensing signal in response to a clock frequency, and a selective delay unit for delaying an input signal for a delay time and then output the input signal as an output signal, wherein the delay time can be one selected from a plurality of delay times according to the sensing signal. The delay time can be selectively determined according to a clock frequency used in a semiconductor memory apparatus.
    Type: Grant
    Filed: January 14, 2008
    Date of Patent: April 27, 2010
    Assignee: Hynix Semiconductor Inc.
    Inventor: Seung Bong Kim
  • Patent number: 7643981
    Abstract: The present invention provides for simulating signal transitions. Circuit characteristics are generated. Circuit characteristics are loaded into memory. Circuit behaviour is simulated. A non-leading edge circuit transition is captured. This occurs in software.
    Type: Grant
    Filed: July 22, 2004
    Date of Patent: January 5, 2010
    Assignee: International Business Machines Corporation
    Inventors: Sang Y. Lee, Vasant B. Rao, Jeffrey Soreff, James Warnock, David Winston
  • Patent number: 7627053
    Abstract: An apparatus for driving a pulse width modulation reference signal includes: (a) A converting unit receiving an input signal at an input locus and presenting an output current at an output locus. The input signal varies at a first frequency. The output current is substantially related with the first frequency. (b) A capacitive element coupled with the output locus for charging by the output current. The pulse width modulation reference signal is related with voltage across the capacitive element.
    Type: Grant
    Filed: June 29, 2005
    Date of Patent: December 1, 2009
    Assignee: Texas Instruments Incorporated
    Inventors: Stefan W. Wiktor, Vladimir A. Muratov, Xuening Li
  • Patent number: 7612593
    Abstract: Semiconductor memory device with duty correction circuit includes a clock edge detector configured to generate first and second detection pulses in response to a transition timing of a common clock signal in an initial measurement operation; a duty detector configured to compare the first and second detection pulses to output comparison result signals; and a code counter configured to control the duty detector based on the comparison signals outputted from the duty detector in the initial measurement operation.
    Type: Grant
    Filed: December 28, 2007
    Date of Patent: November 3, 2009
    Assignee: Hynix Semiconductor Inc.
    Inventors: Kyung-Hoon Kim, Jun-Woo Lee, Dae-Kun Yoon, Taek-Sang Song
  • Publication number: 20090091353
    Abstract: A method for detecting a leading edge blanking parameter of a power management chip includes generating a pulse signal and inputting the pulse signal to the power management chip, wherein the amplitude of the pulse signal will cause a PWM signal of the power management chip to change its duty cycle; detecting the PWM signal to generate a detecting result; when the detecting result indicates that the duty cycle of the PWM signal does not change, adjusting a pulse width of the pulse signal to generate an adjusted pulse signal, inputting the adjusted pulse signal to the power management chip and detecting the PWM signal; and when the detecting result indicates that the duty cycle of the PWM signal changes, determining the leading edge blanking parameter of the power management chip according to the pulse width of the pulse signal.
    Type: Application
    Filed: October 4, 2007
    Publication date: April 9, 2009
    Inventor: Chui-Hua Chiu
  • Patent number: 7508873
    Abstract: A pulse width modulator for use in a digital amplifier, includes a pop noise reducer for reducing pop noise by controlling a width and a phase of a pulse of a PWM signal output from the pulse width modulator, wherein the pop noise reducer contains: a PWM pulse register for storing a width and a phase values of a pulse of the PWM signal; and a pulse generator for outputting the PWM signal according to the values stored in the PWM pulse register. The pulse width modulator reduces pop noise generated when power supply to a digital amplifier is started and interrupted.
    Type: Grant
    Filed: July 28, 2005
    Date of Patent: March 24, 2009
    Assignee: Pulsus Technologies
    Inventors: Tae Ho Kim, Jong Hoon Oh
  • Patent number: 7504865
    Abstract: A frequency sensor includes at least one a resistor element and a capacitor. A frequency is detected according to a charging/discharging time to/from the capacitor, thereby realizing a frequency sensor with reduced power consumption and reduced circuit scale. Further, plural resistors and plural capacitors can be provided, along with switches connected to the respective resistors and capacitors. Additionally, a time constant can be adjusted after production, whereby variations in production can be reduced. Furthermore, a self-diagnosis circuit can be included for determining whether the frequency sensor itself operates normally or not. Thus, a highly-reliable frequency sensor can be realized.
    Type: Grant
    Filed: December 6, 2004
    Date of Patent: March 17, 2009
    Assignee: Panasonic Corporation
    Inventors: Rie Itoh, Eiichi Sadayuki
  • Publication number: 20090062880
    Abstract: Various aspects of the present invention enable robust, reliable control functionality for effectors present on intraluminal, e.g., vascular leads, as well as other types of implantable devices. Aspects of the invention include implantable integrated circuits that have self-referencing and self-clocking signal encoding, and are capable of bidirectional communication. Also provided by the invention are effector assemblies that include the integrated circuits, as well as implantable medical devices, e.g., pulse generators that include the same, as well as systems and kits thereof and methods of using the same, e.g., in pacing applications, including cardiac resynchronization therapy (CRT) applications.
    Type: Application
    Filed: August 29, 2008
    Publication date: March 5, 2009
    Inventors: Haifeng Li, Mark Zdeblick, Lawrence Arne, Yafei Bi, Nilay Jani, Jonathan Withrington
  • Patent number: 7495428
    Abstract: The present invention provides, a pulse generator, which is configured so as to generate pulses with a predetermined pulse width, comprises: multiple pulsers each of which is configured so as to adjust the pulse width of input pulses, and so as to output pulses with a predetermined pulse width thus adjusted, and which are connected in series; multiple signal acquisition units which are provided corresponding to the multiple pulsers, and each of which allows the pulses output from a corresponding one of the pulsers to be acquired at a position immediately after the output terminal of the corresponding pulser; a selection unit which allows the pulses acquired by one of the multiple signal acquisition units to be selected; a feedback path for inputting the pulses thus selected by the selection unit to the first pulser of the multiple pulsers; and a measurement unit for measuring the pulse width of the pulses thus selected by the selection unit based upon the loop cycle time of the pulse selected by the selection
    Type: Grant
    Filed: May 16, 2006
    Date of Patent: February 24, 2009
    Assignee: Advantest Corporation
    Inventor: Naoki Sato
  • Publication number: 20080297201
    Abstract: A complex switch control system including many switches, a switching voltage control circuit and a comparator is provided. The switching voltage control circuit converts an operating voltage into a switching voltage according to the states of the switches. The comparator compares the switching voltage with a reference voltage and outputs a switch state signal to a keyboard controller. A duty cycle of the switch state signal corresponds to the states of the switches.
    Type: Application
    Filed: September 17, 2007
    Publication date: December 4, 2008
    Applicant: Quanta Computer Inc.
    Inventors: Cheng-Cheng Lu, Yu-Tsang Wu
  • Patent number: 7426239
    Abstract: A method and an apparatus for transmitting information contained in a transmission signal via at least one channel includes a number of processing steps at the transmitter end. At least one pulse sequence with at least one pulse is produced as stipulated by the transmission signal. The pulse sequence is output to the at least one channel. The channel is monitored for the presence of an interference signal. If an interference signal is detected on the channel, the pulse sequence is repeated.
    Type: Grant
    Filed: July 3, 2003
    Date of Patent: September 16, 2008
    Assignee: Infineon Technologies AG
    Inventor: Karim-Thomas Taghizadeh-Kaschani
  • Patent number: 7400282
    Abstract: A quantum Turing machine constituted using a quantum bit created by localizing a phase difference soliton S between superconducting electrons existing in each of multiple of bands in a ring R0 that includes a ring main body R1 formed of a superconductor, and well-shaped portions W1, W2 formed with a reduced line-width at at least two positions on the ring main body R1, can easily constitute a quantum bit, can surely execute a basic logical operation, has multiple-bit capability and, moreover, can ensure sufficient time for executing a quantum algorithm.
    Type: Grant
    Filed: September 2, 2004
    Date of Patent: July 15, 2008
    Assignees: National Institute of Advanced Industrial Science and Technology, Japan Science and Technology Agency, Tokyo University of Science
    Inventors: Yasumoto Tanaka, Akira Iyo, Norio Terada, Shiro Kawabata, Athinarayan Sundaresan, Naoto Kikuchi, Tsuneo Watanabe, Kazuyasu Tokiwa
  • Patent number: 7266039
    Abstract: A circuit for adjusting a signal length is adapted for a memory device. The circuit adjusts a signal length of an ATD signal. The circuit includes a timing module, an encoding module and a logical control unit. Wherein, the timing module generates a plurality of timing signals according a pulse generated by the ATD signal. The encoding module is coupled to one of the data lines of the memory device. The timing signals are registered and encoded to generate a time value according to the status of the data output from the memory device. In addition, the logic control unit compares the present time value and the previous time value to generate a comparison result. The signal length of the ATD signal is adjusted according to the comparison result.
    Type: Grant
    Filed: July 8, 2005
    Date of Patent: September 4, 2007
    Assignee: Winbond Electronics Corp.
    Inventor: Ju-An Chiang
  • Patent number: 7256632
    Abstract: A pulse width modulation (PWM) controlling module, includes: a PWM controller, a load detector, and an adjusting module. The PWM controller generates a PWM signal that is utilized for controlling a supply voltage applied to an electronic system. The load detector, coupled to the PWM controller, detects a load of the electronic system according to the PWM signal and generates a decision value accordingly. The adjusting module, coupled to the PWM controller and the load detector, controls the PWM controller to adjust the PWM signal according to the decision value.
    Type: Grant
    Filed: April 20, 2005
    Date of Patent: August 14, 2007
    Assignee: Feature Integration Technology Inc.
    Inventors: Tseng-Wen Chen, Wen-Chi Fang, Yun-Chiang Wang, Yaw-Huei Tseng
  • Patent number: 7233618
    Abstract: To transmit digital signals, binary signals are transformed into a series of pulses, the pulses being modulated in their pulse length as a function of an information content of the binary signals. In a corresponding circuit configuration, a modulation unit is connected to a first signal line for receiving the binary signals, the modulation unit transforming the received binary signals into the series of pulses and outputting them to a second signal line. In the process, a signal level of the pulses is also varied as a function of a state of one of the binary signals. By using a modulated pulse it is possible to transmit more than one data bit on a single data line during a clock cycle. This permits a comparatively high data throughput rate.
    Type: Grant
    Filed: April 25, 2003
    Date of Patent: June 19, 2007
    Assignee: Infineon Technologies AG
    Inventor: Konstantin Korotkov
  • Patent number: 7227387
    Abstract: A pulse width measurement system is provided with components in an FPGA so that pulse widths can be measured that are smaller than the frequency limits of the FPGA system clock. For the measurement, an incoming pulse is fed into the FPGA to many (e.g. 32) I/O inputs in parallel. Each parallel input is then provided to a programmable delay device with each delay configured to a different ascending delay value. The input transition time is then detected by converting the outputs from the delay devices into data indicating the timing information. In one embodiment the outputs of the delay devices address data stored in BRAMs for later processing in the FPGA to determine the timing information.
    Type: Grant
    Filed: May 13, 2005
    Date of Patent: June 5, 2007
    Assignee: Xilinx, Inc.
    Inventor: Peter H. Alfke
  • Patent number: 7200187
    Abstract: A digital modulator for driving a digital amplifier. The digital modulator has a subtractor which receives a digital input signal. A filter amplifier receives the output of the filter amplifier and is tuned to an idle frequency of the digital modulator. The digital modulator includes a delay element and a digital comparator. The digital comparator receives the output from the filter and applies it to the delay element. A feedback loop couples the output of the delay element to the subtractor.
    Type: Grant
    Filed: July 25, 2002
    Date of Patent: April 3, 2007
    Inventor: Thomas J. O'Brien
  • Patent number: 7053667
    Abstract: A single-wire digital interface for receiving digital data as a stream of pulses, with ‘1’ and ‘0’ logic levels represented with pulses having “first” and “second” pulse widths, respectively. A low-pass filter produces an output that increases at a known rate for the duration of a received data pulse, and a comparator produces an output that toggles when the filter output exceeds a predetermined threshold. A clock edge is generated when a received pulse terminates; the clock and comparator outputs are provided to a latch circuit. The interface latches a ‘1’ when the received pulse's width is equal to the “first” pulse width, and latches a ‘0’ when the received pulse's width is equal to the “second” pulse width. Data is preferably preceded by a “start-of-packet” (SOP) bit pattern and followed with a “end-of-packet” (EOP) bit pattern.
    Type: Grant
    Filed: September 10, 2004
    Date of Patent: May 30, 2006
    Assignee: Analog Devices, Inc.
    Inventor: Andrew T. K. Tang
  • Patent number: 6940325
    Abstract: A DLL circuit synchronizes an external input clock applied from an outside of a system with an internal input clock used inside the system using a divider unit. The DLL circuit includes a detection unit for detecting whether a pulse width of the external input clock is narrower than a reference set value. The divider unit outputs a first divided signal when it is detected that the pulse width of the external input clock is wider than the reference set value, and outputs a second divided signal when it is detected that the pulse width of the external input clock is shorter than the reference set value. The DLL circuit can normally operate even when the period of the external input clock is short.
    Type: Grant
    Filed: September 26, 2003
    Date of Patent: September 6, 2005
    Assignee: Hynix Semiconductor Inc.
    Inventor: Jae Jin Lee
  • Patent number: 6930526
    Abstract: Devices, circuits, and methods generate a substantially constant output voltage. A power storage element generates a DC output voltage from an input voltage. The output is sampled to generate a feedback signal. An error amplifier generates an error signal from the feedback signal and a reference voltage. A ramp generator generates a ramp signal from the error signal. A comparator generates a pulse signal by comparing the ramp signal to a threshold voltage. The pulse signal is used to control a power switch, which switches the power storage element on and off. The pulse signal is generated such that, if the input voltage changes within a certain range, a width of its pulses changes so as to maintain the output voltage substantially constant.
    Type: Grant
    Filed: December 4, 2003
    Date of Patent: August 16, 2005
    Assignee: National Semiconductor Corporation
    Inventor: Faruk Jose Nome Silva
  • Patent number: 6925170
    Abstract: In known telephone subscriber end stations a caller_ID IC detects a tone alerting signal TAS alerting that successive caller_ID information can be received for displaying on a display of the phone. The known station applies narrow frequency band filters to detect tones indicating the end of TAS. Such a detection is not flexible as it can only be used for a specific caller_ID signal protocol. A flexible detector is proposed which can easily be adapted to widely varying protocols and which can also be used for other purposes such as the detection of power drops in an FSK signal. The detector comprises means for determining a time-domain signal representing the signal energy of a signal on the subscriber line in a predetermined time interval.
    Type: Grant
    Filed: October 30, 1998
    Date of Patent: August 2, 2005
    Assignee: Koninklijke Philips Electronics N.V.
    Inventors: Evert M. Bosma, Frank Van Dam, Franciscus J. M. Thus
  • Patent number: 6859912
    Abstract: Clock recovery from transmitted data signals is carried out entirely digitally, and in a manner that is essentially insensitive to dynamic changes in the phase of the data signal. To this end, at least four phase-shifted sample signals are produced from a predetermined time signal. At least two of these phase-shifted sample signals are selected as a function of the respective phase angles with respect to the data signal, and in each case are supplied separately to a device for time sampling of the data signal with the selected sample signal. One of the devices in each case is connected to an output device for the data signal as a function of the respective phase separations between the data signal and the selected phase-shifted sample signals.
    Type: Grant
    Filed: January 27, 2003
    Date of Patent: February 22, 2005
    Assignee: Lucent Technologies Inc.
    Inventors: Markus Brachmann, Thomas Eckart, Hans-Joachim Goetz, Marcus Putzer
  • Publication number: 20040217780
    Abstract: A pulse width detection circuit for accurately detecting a pulse width from an input signal. The detection circuit includes a first filter circuit for receiving the input signal and generating a first processed signal. The first processed signal includes a first component having an AC component of the input signal and a second component having a low frequency component or a DC component of the input signal. A second filter circuit is electrically connected to the first filter circuit. The second filter circuit includes a high pass filter for receiving the first processed signal and generating a second processed signal. A binary conversion circuit is electrically connected to the second filter circuit to receive the second processed signal and generate the binary signal.
    Type: Application
    Filed: May 21, 2004
    Publication date: November 4, 2004
    Applicant: Fujitsu Limited
    Inventor: Nobuyasu Mizuno
  • Patent number: 6650403
    Abstract: In a distance measuring device, reflected pulsed light beams with respect to one transmitted light beam are amplified by plural amplifiers (22a, 22b) of different gains. The retroreflection times of the reflected pulsed light beams are detected by retroreflection time detectors (30a, 30b) respectively connected to the amplifiers. Based on outputs of the retroreflection time detectors, distance calculator (40) judges the overlapping state of the reflected pulses and the power of reflection from first pulse widths of the reflected pulsed light beams, selects a distance calculating method in accordance with the state, and outputs distance measurement data of high reliability.
    Type: Grant
    Filed: October 19, 2001
    Date of Patent: November 18, 2003
    Assignee: Mitsubishi Denki Kabushiki Kaisha
    Inventors: Kenji Ogawa, Minoru Nishida, Shigekazu Okamura
  • Patent number: 6573759
    Abstract: Apparatus for determining nominal pulse duration values in a signal encoded with an AES3 data stream includes a first circuit for measuring duration of each pulse of the signal and providing a sequence of duration values. A second circuit detects a maximum duration value, corresponding to duration of three bit cells, and provides first and second duration values corresponding to one bit cell and two bit cells respectively.
    Type: Grant
    Filed: January 18, 2001
    Date of Patent: June 3, 2003
    Assignee: Nvision, Inc.
    Inventor: Kevin J. Shuholm
  • Publication number: 20030094975
    Abstract: This invention offers a signal-off detection circuit allowing arbitrary setting of an issuing time (response time) of a signal disconnection alarm without being affected by a time constant of a direct current feedback circuit giving an offset voltage to an amplifier for amplifying a data signal. Input data signals per a fixed time determined by a timer is counted by a counter, and a count value is compared with a predetermined set value in a comparator. A configuration is made such that a signal disconnection alarm may be issued by detecting a disconnection state of the data signal according to a comparison result. Thereby, an issuing time of a signal disconnection alarm can be set without being affected by a time constant of a direct current feedback circuit giving an offset voltage to an amplifier for amplifying a data signal of a preceding stage.
    Type: Application
    Filed: November 13, 2002
    Publication date: May 22, 2003
    Applicant: NEC CORPORATION
    Inventors: Hidemi Noguchi, Tetuo Tateyama, Madoka Kimura
  • Patent number: 6532260
    Abstract: A device for transmitting a pulse signal via a metallic line to a receiver end at which equalization is applied to the received pulse signal. The device includes a waveform adjustment unit which adjusts a pulse width in accordance with differences between characteristics of the metallic line and characteristics that are assumed for the equalization at the receiver end. The device further includes a transmission driver unit which transmits a pulse having the adjusted pulse width to the metallic line.
    Type: Grant
    Filed: October 26, 1999
    Date of Patent: March 11, 2003
    Assignee: Fujitsu Limited
    Inventor: Masakazu Oi
  • Publication number: 20020186053
    Abstract: The invention relates to a detector circuit (100) for detecting short-lasting voltage pulses (spikes) in a power supply voltage (VDD). An integrator (INT) forms the average value (VDD_AV) of the power supply voltage (VDD) and a corresponding energy is stored in a first memory (MEM1). A comparator (COMP) compares the power supply voltage (VDD) with a predetermined voltage interval ([Vref1, Vref2]) and closes a switch (S) when the power supply voltage is outside this interval. The energy from the first memory (MEM1) then flows into a second memory (MEM2) via the switch (S) and a delay circuit (DELAY). When the energy in the second memory (MEM2) exceeds a threshold value, an output stage (OUT) is thereby activated, whose output supplies a signal (SPIKE_DET) indicating a voltage spike.
    Type: Application
    Filed: April 23, 2002
    Publication date: December 12, 2002
    Inventor: Walter Einfeldt
  • Patent number: 6469544
    Abstract: A circuit for detecting abnormality of a subject clock signal, includes a frequency dividing circuit for frequency-dividing a monitoring clock signal to provide a frequency-divided monitoring clock signal; a shift register which stores the frequency-divided monitoring clock signal in synchronization with the subject clock signal; and a plurality of abnormality evaluation circuits. The abnormality evaluation circuits operate complementarily each other in accordance with an output signal of the shift register and detect abnormality of the subject clock signal for a period of time corresponding to the cycle of the monitoring clock signal.
    Type: Grant
    Filed: May 16, 2001
    Date of Patent: October 22, 2002
    Assignee: Oki Electric Industry Co, Ltd.
    Inventor: Naoya Kimura
  • Patent number: 6393069
    Abstract: The output from a digital signal amplitude regenerator circuit in which the amplitude of a transmitted burst data signal is amplified, and an initial potential generator circuit, are connected to a switch. While there are no burst data, the initial potential generator circuit provides a circuit for compensating for degradation in pulse width comprising a low-pass filter, a pulse width compensation threshold generator circuit, and a limiting amplifier, with an initial potential needed to set a threshold. When a carrier detection signal generator circuit detects the arrival of a burst data signal, a carrier detection signal is outputted, and the switch is switched over from the initial potential to the burst data signal. Thus, the circuit for compensating for the degradation in pulse width located at a later stage can detect a threshold from an optimal initial potential, and thereby the degradation in pulse width can be optimally compensated.
    Type: Grant
    Filed: June 16, 1998
    Date of Patent: May 21, 2002
    Assignee: Fujitsu Limited
    Inventor: Kohei Shibata
  • Patent number: 6392459
    Abstract: When continuously outputted pulses from a first pulse to an (N+1)th (where N is an integer) are received, a pulse specifying circuit specifies a number N of a pulse whose properties are to be measured. Further, a gate generating circuit generates a gate signal which is at high level during a period from the end of the (N−1)th pulse to the start of the Nth pulse and which is at low level during a period from the end of the Nth pulse to the start of the (N+1)th pulse. A semiconductor evaluating apparatus measures the width of the Nth pulse based on the generated gate signal.
    Type: Grant
    Filed: September 20, 2000
    Date of Patent: May 21, 2002
    Assignee: Mitsubishi Denki Kabushiki Kaisha
    Inventors: Masao Okubo, Dai Sasaki
  • Patent number: 6389548
    Abstract: A system and method for accurately measuring a pulse run length in a high frequency (HF) data signal while utilizing a low analog-to-digital conversion (ADC) sampling rate. Four bits are added to the most significant end of an oscillator's accumulator register so that the oscillator generates a sawtooth clock waveform ranging in phase from zero (0) to 32&pgr; radians. An interpolator detects a first zero-crossing transition of the HF data signal at the leading edge of the pulse run length, and a phase detector measures a first phase increment at that time. The MSBs of the accumulator register is then initialized to place the measured first phase increment in a range between zero (0) and 2&pgr; radians. The accumulator register then accumulates phase increments until the interpolator detects a second zero-crossing transition of the HF data signal at the trailing edge of the pulse run length, and the phase detector measures a second phase increment when the second zero-crossing transition is detected.
    Type: Grant
    Filed: April 12, 1999
    Date of Patent: May 14, 2002
    Inventor: Liam Bowles