Plural Metal Containing Coating (e.g., Indium Oxide/tin Oxide, Titanium Oxide/aluminum Oxide, Etc.) Patents (Class 427/255.32)
  • Patent number: 7959733
    Abstract: A film formation apparatus for a semiconductor process includes a source gas supply circuit to supply into a process container a source gas for depositing a thin film on target substrates, and a mixture gas supply circuit to supply into the process container a mixture gas containing a doping gas for doping the thin film with an impurity and a dilution gas for diluting the doping gas. The mixture gas supply circuit includes a gas mixture tank disposed outside the process container to mix the doping gas with the dilution gas to form the mixture gas, a mixture gas supply line to supply the mixture gas from the gas mixture tank into the process container, a doping gas supply circuit to supply the doping gas into the gas mixture tank, and a dilution gas supply circuit to supply the dilution gas into the gas mixture tank.
    Type: Grant
    Filed: July 16, 2009
    Date of Patent: June 14, 2011
    Assignee: Tokyo Electron Limited
    Inventors: Kazuhide Hasebe, Pao-Hwa Chou, Chaeho Kim
  • Patent number: 7927661
    Abstract: Methods of depositing a single or mixed metal oxide layer or film are described herein. The methods use a rare earth metal precursor are described herein. The rare earth metal precursors have a general formula M[OCR1(R2)(CH2)X]3, wherein M is a rare earth metal, R1 is H or an alkyl group, R2 is an optionally substituted alkyl group and X is selected from OR and NR, wherein R is an alkyl group or a substituted alkyl group.
    Type: Grant
    Filed: March 11, 2004
    Date of Patent: April 19, 2011
    Assignee: Sigma-Aldrich Co.
    Inventor: Anthony Copeland Jones
  • Publication number: 20110027465
    Abstract: Provided is a method for forming a dielectric film in a semiconductor device, wherein the method can improve a dielectric characteristic and a leakage current characteristic. According to specific embodiments of the present invention, the method for forming a dielectric film includes: forming a zirconium dioxide (ZrO2) layer over a wafer in a predetermined thickness that does not allow continuous formation of the ZrO2 layer; and forming an aluminum oxide (Al2O3) layer over portions of the wafer where the ZrO2 layer is not formed, in a predetermined thickness that does not allow continuous formation of the Al2O3 layer.
    Type: Application
    Filed: September 30, 2010
    Publication date: February 3, 2011
    Applicant: Hynix Semiconductor Inc.
    Inventors: Deok-Sin KIL, Kwon Hong, Seung-Jin Yeom
  • Patent number: 7862857
    Abstract: A novel lead zirconium titanate (PZT) material having unique properties and application for PZT thin film capacitors and ferroelectric capacitor structures, e.g., FeRAMs, employing such thin film material. The PZT material is scalable, being dimensionally scalable, pulse length scalable and/or E-field scalable in character, and is useful for ferroelectric capacitors over a wide range of thicknesses, e.g., from about 20 nanometers to about 150 nanometers, and a range of lateral dimensions extending to as low as 0.15 ?m. Corresponding capacitor areas (i.e., lateral scaling) in a preferred embodiment are in the range of from about 104 to about 10?2 ?m2. The scalable PZT material of the invention may be formed by liquid delivery MOCVD, without PZT film modification techniques such as acceptor doping or use of film modifiers (e.g., Nb, Ta, La, Sr, Ca and the like).
    Type: Grant
    Filed: April 27, 2010
    Date of Patent: January 4, 2011
    Assignee: Advanced Technology Materials, Inc.
    Inventors: Peter C. Van Buskirk, Jeffrey F. Roeder, Steven M. Bilodeau, Michael W. Russell, Stephen T. Johnston, Daniel J. Vestyck, Thomas H. Baum
  • Patent number: 7838084
    Abstract: The invention includes atomic layer deposition methods of depositing an oxide on a substrate. In one implementation, a substrate is positioned within a deposition chamber. A first species is chemisorbed onto the substrate to form a first species monolayer within the deposition chamber from a gaseous precursor. The chemisorbed first species is contacted with remote plasma oxygen derived at least in part from at least one of O2 and O3 and with remote plasma nitrogen effective to react with the first species to form a monolayer comprising an oxide of a component of the first species monolayer. The chemisorbing and the contacting with remote plasma oxygen and with remote plasma nitrogen are successively repeated effective to form porous oxide on the substrate. Other aspects and implementations are contemplated.
    Type: Grant
    Filed: July 20, 2006
    Date of Patent: November 23, 2010
    Assignee: Micron Technology, Inc.
    Inventors: Garo J. Derderian, Shuang Meng, Danny Dynka
  • Patent number: 7824744
    Abstract: A process and apparatus for depositing a ceramic coating, such as a thermal barrier coating (TBC) for a gas turbine engine component. The process deposits a coating whose composition includes multiple oxide compounds and a carbon-based constituent, e.g., elemental carbon, carbides, and carbon-based gases. The process uses at least one evaporation source to provide multiple different oxide compounds and at least one carbide compound comprising carbon and an element. The evaporation source is evaporated to produce a vapor cloud that contacts and condenses on the component surface to form the ceramic coating, and particularly so that the coating comprises the oxide compounds, an oxide of the element of the carbide compound, and the carbide compound and/or a carbon-containing gas. The process is carried out with an apparatus comprising a coating chamber in which the evaporation source is present, and a device for evaporating the evaporation source.
    Type: Grant
    Filed: December 16, 2003
    Date of Patent: November 2, 2010
    Assignee: General Electric Company
    Inventors: Ramgopal Darolia, Irene Spitsberg, Brett Allen Rohrer Boutwell
  • Publication number: 20100272895
    Abstract: A film deposition apparatus comprises: a process container 2; a table 3 on which a substrate W can be placed, the table 3 being disposed in the process container 2; and a gas showerhead 4 disposed so as to be opposed to the table 3, the gas showerhead 4 including a gas supply surface 40a having a first gas supply hole 51b for supplying a first process gas, a second gas supply hole 52b for supplying a second process gas, and a third gas supply hole 53b for supplying a third process gas. The gas supply surface 40a is divided into unit zones 401 formed of regular triangles of the same size, and the first gas supply hole 51b, the second gas supply hole 52b, and the third gas supply hole 53b are disposed on respective three apexes of each regular triangle constituting the unit zone.
    Type: Application
    Filed: September 11, 2008
    Publication date: October 28, 2010
    Applicant: Tokyo Electron Limited
    Inventor: Einosuke Tsuda
  • Publication number: 20100270519
    Abstract: The invention provides improved conditions for atmospheric pressure chemical vapour deposition (APCVD) of vanadium (IV) oxide. Specifically, higher quality vanadium oxide (particularly in the form of films) can be obtained by employing concentrations of precursors in the APCVD reaction which are substantially less than those used previously. These conditions improve the reproducibility of the films obtained by APCVD and also prevent particulate formation in the manufacturing apparatus, which in previous work had caused blockages. The films obtained have improved visual appearance, especially colour, and/or have improved adhesion to a substrate. The obtained films also show a greater difference in transmission above and below the switching temperature than previous films. The invention also provides doped vanadium oxide, particularly with tungsten. Substrates (e.g. glass substrates) coated with a film of vanadium oxide are also provided.
    Type: Application
    Filed: January 21, 2009
    Publication date: October 28, 2010
    Inventors: Christopher Stuart Blackman, Ivan Paul Parkin
  • Patent number: 7794787
    Abstract: The invention includes methods of utilizing supercritical fluids to introduce precursors into reaction chambers. In some aspects, a supercritical fluid is utilized to introduce at least one precursor into a chamber during ALD, and in particular aspects the supercritical fluid is utilized to introduce multiple precursors into the reaction chamber during ALD. The invention can be utilized to form any of various materials, including metal-containing materials, such as, for example, metal oxides, metal nitrides, and materials consisting of metal. Metal oxides can be formed by utilizing a supercritical fluid can be utilized to introduce a metal-containing precursor into reaction chamber, with the precursor then forming a metal-containing layer over a surface of a substrate. Subsequently, the metal-containing layer can be reacted with oxygen to convert at least some of the metal within the layer to metal oxide.
    Type: Grant
    Filed: May 7, 2009
    Date of Patent: September 14, 2010
    Assignee: Micron Technology, Inc.
    Inventors: Demetrius Sarigiannis, Garo J. Derderian, Cem Basceri
  • Publication number: 20100190331
    Abstract: A method for depositing a film onto a substrate is provided. The substrate is contained within a reactor vessel at a pressure of from about 0.1 millitorr to about 100 millitorr. The method comprises subjecting the substrate to a reaction cycle comprising i) supplying to the reactor vessel a gas precursor at a temperature of from about 20° C. to about 150° C. and a vapor pressure of from about 0.1 torr to about 100 torr, wherein the gas precursor comprises at least one organo-metallic compound; and ii) supplying to the reactor vessel a purge gas, an oxidizing gas, or combinations thereof.
    Type: Application
    Filed: September 15, 2009
    Publication date: July 29, 2010
    Inventors: Steven C. Selbrede, Martin Zucker, Vincent Venturo
  • Patent number: 7736446
    Abstract: A method for manufacturing a lanthanum oxide compound on a substrate includes: setting the number of H2O molecule, the number of CO molecule and the number of CO2 molecule to one-half or less, one-fifth or less and one-tenth or less per one lanthanum atom, respectively, the H2O molecule, the CO molecule and the CO2 molecule being originated from an H2O gas component, a CO gas component and a CO2 gas component in an atmosphere under manufacture; and supplying a metal raw material containing at least one selected from the group consisting of lanthanum, aluminum, titanium, zirconium and hafnium and an oxygen raw material gas simultaneously for the substrate under the condition that the number of O2 molecule are set to 20 or more per one lanthanum atom, thereby manufacturing the lanthanum oxide compound on the substrate.
    Type: Grant
    Filed: March 19, 2008
    Date of Patent: June 15, 2010
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Akira Takashima, Koichi Muraoka
  • Publication number: 20100117035
    Abstract: Tin oxide having high mobility and a low electron concentration, and methods for producing layers of the tin oxide layers on a substrate by atmospheric pressure chemical vapor deposition (APCVD) are disclosed. The tin oxide may undoped polycrystalline n-type tin oxide or it may be doped polycrystalline p-type tin oxide. When the layer of tin oxide is formed on a crystalline substrate, substantially crystalline tin oxide is formed. Dopant precursors for producing doped p-type tin oxide are also disclosed.
    Type: Application
    Filed: January 8, 2010
    Publication date: May 13, 2010
    Applicant: Arkema Inc.
    Inventors: Roman Y. Korotkov, David A. Russo, Thomas D. Culp, Gary S. Silverman, Pierre Beaujuge
  • Patent number: 7713584
    Abstract: Processes are provided for producing bismuth-containing oxide thin films by atomic layer deposition. In preferred embodiments an organic bismuth compound having at least one monodentate alkoxide ligand is used as a bismuth source material. Bismuth-containing oxide thin films can be used, for example, as ferroelectric or dielectric materials in integrated circuits and as superconductor materials.
    Type: Grant
    Filed: December 22, 2005
    Date of Patent: May 11, 2010
    Assignee: ASM International N.V.
    Inventors: Timo Hatanpaa, Marko Vehkamaki, Mikko Ritala, Markku Leskela
  • Patent number: 7709056
    Abstract: A method and system for preparing a light transmitting and electrically conductive oxide film. The method and system includes providing an atomic layer deposition system, providing a first precursor selected from the group of cyclopentadienyl indium, tetrakis (dimethylamino) tin and mixtures thereof, inputting to the deposition system the first precursor for reaction for a first selected time, providing a purge gas for a selected time, providing a second precursor comprised of an oxidizer, and optionally inputting a second precursor into the deposition system for reaction and alternating for a predetermined number of cycles each of the first precursor, the purge gas and the second precursor to produce the oxide film.
    Type: Grant
    Filed: May 16, 2007
    Date of Patent: May 4, 2010
    Assignee: UChicago Argonne, LLC
    Inventors: Jeffrey W. Elam, Alex B. F. Martinson, Michael J. Pellin, Joseph T. Hupp
  • Patent number: 7705382
    Abstract: A novel lead zirconium titanate (PZT) material having unique properties and application for PZT thin film capacitors and ferroelectric capacitor structures, e.g., FeRAMs, employing such thin film material. The PZT material is scalable, being dimensionally scalable, pulse length scalable and/or E-field scalable in character, and is useful for ferroelectric capacitors over a wide range of thicknesses, e.g., from about 20 nanometers to about 150 nanometers, and a range of lateral dimensions extending to as low as 0.15 ?m. Corresponding capacitor areas (i.e., lateral scaling) in a preferred embodiment are in the range of from about 104 to about 10?2 ?m2. The scalable PZT material of the invention may be formed by liquid delivery MOCVD, without PZT film modification techniques such as acceptor doping or use of film modifiers (e.g., Nb, Ta, La, Sr, Ca and the like).
    Type: Grant
    Filed: October 26, 2007
    Date of Patent: April 27, 2010
    Assignee: Advanced Technology Materials, Inc.
    Inventors: Peter C. Van Buskirk, Jeffrey F. Roeder, Steven M. Bilodeau, Michael W. Russell, Stephen T. Johnston, Daniel J. Vestyck, Thomas H. Baum
  • Patent number: 7670646
    Abstract: Atomic-Layer deposition systems and methods provide a variety of electronic products. In an embodiment, a method uses an atomic-layer deposition system that includes an outer chamber, a substrate holder, and a gas-distribution fixture that engages or cooperates with the substrate holder to form an inner chamber within the outer chamber. The inner chamber has a smaller volume than the outer chamber, which leads to less time to fill and purge during cycle times for deposition of materials.
    Type: Grant
    Filed: January 5, 2007
    Date of Patent: March 2, 2010
    Assignee: Micron Technology, Inc.
    Inventors: Kie Y. Ahn, Leonard Forbes
  • Patent number: 7651732
    Abstract: Films of magnesium mixed with titanium are produced by non-equilibrium alloying processes such as electron beam evaporation of magnesium and titanium ingots in a very low pressure chamber. Such magnesium-titanium films form as single phase solid solutions. Titanium is inherently resistant to corrosion and its admixture with magnesium in solid solution provides a new composition that is less subject to intra-film galvanic corrosion. The magnesium-titanium films also provide relatively hard and strong coatings.
    Type: Grant
    Filed: September 7, 2007
    Date of Patent: January 26, 2010
    Assignee: GM Global Technology Operations, Inc.
    Inventors: Yang T. Cheng, Mark W. Verbrugge, Michael P. Balogh, Daniel E. Rodak, Michael Lukitsch
  • Publication number: 20100015335
    Abstract: A substrate is arranged in a processing chamber, the substrate is heated, and an Sr material, a Ti material and an oxidizing agent are introduced into the processing chamber in the form of gas, the gases are reacted on the heated substrate, and an SrTiO3 film is formed on the substrate. As the Sr material, an Sr amine compound or an Sr imine compound is used.
    Type: Application
    Filed: February 27, 2008
    Publication date: January 21, 2010
    Applicant: TOKYO ELECTRON LIMITED
    Inventors: Akinobu Kakimoto, Yumiko Kawano
  • Patent number: 7638157
    Abstract: A method of fabricating an electrode assembly of a sensor is described. The sensor has a field effect transistor. The electrode assembly is separated from the field effect transistor by only a conductive line. The sensor is functioned to detect different glucose concentrations. A solid layer of tin oxide is deposited on a substrate board. A ?-D-glucose oxidase and polyvinyl alcohol bearing styrylpyridinium groups are placed in 100 ?l of sulfuric acid, to form an enzyme mixture. The enzyme mixture is dropped on the solid layer of tin oxide. The enzyme mixture is dried. The enzyme mixture is exposed to a UV ray. The enzyme mixture is dried and stabilized. The enzyme mixture is immersed in a sulfuric buffer.
    Type: Grant
    Filed: September 19, 2006
    Date of Patent: December 29, 2009
    Assignee: Chung Yuan Christian University
    Inventors: Shen-Kan Hsiung, Jung-Chuan Chou, Tai-Ping Sun, Wen-Yaw Chung, Li-Te Yin, Chung-We Pan
  • Patent number: 7618681
    Abstract: A process for producing bismuth-containing oxide thin films by Atomic Layer Deposition, including using an organic bismuth compound having at least one silylamido ligand as a source material for the bismuth oxide. Bismuth-containing oxide thin films produced by the preferred embodiments can be used, for example, as ferroelectric or dielectric material in integrated circuits and/or as superconductor materials.
    Type: Grant
    Filed: October 28, 2003
    Date of Patent: November 17, 2009
    Assignee: ASM International N.V.
    Inventors: Marko Vehkamäki, Timo Hatanpää, Mikko Ritala, Markku Leskelä
  • Patent number: 7615251
    Abstract: A processing device, comprising a processing container, a shower head structure provided at the ceiling part of the processing container and having a plurality of gas jetting holes for jetting specified processing gas into the processing container formed in the gas jetting surface thereof facing the inside of the processing container, and a placing stand disposed in the processing container so as to face the shower head structure, wherein a head distance between the gas jetting surface and the placing stand and the blowing speed of gas from the gas jetting holes are set within the range surrounded by connecting, in a square shape with straight lines in a plane coordinate system having the head distance plotted on an abscissa and the gas jetting speed plotted on a coordinate, a point where the blowing speed of the gas from the gas jetting holes at the head distance of 15 mm is 32 m/sec, a point where the blowing speed of the gas from the gas jetting holes at the head distance of 15 mm is 67 m/sec, a point wher
    Type: Grant
    Filed: April 22, 2003
    Date of Patent: November 10, 2009
    Assignee: Tokyo Electron Limited
    Inventors: Akinobu Kakimoto, Kentaro Oshimo, Masahiko Matsudo
  • Patent number: 7608301
    Abstract: This relates to an improvement to the process of aluminization or activated cementation in which a donor cement containing the aluminium is attacked at high temperature and in a neutral or reducing atmosphere by a gaseous ammonium halide to form a gaseous aluminium halide which decomposes on contact with a nickel-based substrate depositing aluminium metal thereon. According to the invention the aluminium halide is at least partly replaced by a zirconium halide leading to the inclusion of zirconium in the deposit. Improvement in the protection of the hot parts of aircraft engines made of nickel-based superalloy. No figure is to be published.
    Type: Grant
    Filed: March 31, 2004
    Date of Patent: October 27, 2009
    Assignees: ONERA (Office National d'Etudes et de Recherches Aerospatiales), SNECMA Moteurs
    Inventors: Marie-Pierre Bacos, Pierre Josso, Serge Naveos
  • Patent number: 7597951
    Abstract: The present invention relates to a metal cutting tool insert with a coating comprising a metal oxide multilayer, which exhibits especially high resistance to plastic deformation as well as excellent resistance to flank and crater wear and high resistance to flaking, particular when used for machining of low carbon steel and stainless steel. The invention also relates to a method of making such a cutting tool insert.
    Type: Grant
    Filed: March 20, 2006
    Date of Patent: October 6, 2009
    Assignee: Sandvik Intellectual Property AB
    Inventors: Carl Björmander, Markus Rodmar
  • Publication number: 20090233105
    Abstract: Certain example embodiments relate to the combustion deposition depositing of coatings comprising metal oxide matrices loaded with hollow metal oxide particles. The hollow metal oxide particles may be produced by combusting an emulsion including an aqueous phase and an oil phase, and an optional surfactant. The aqueous and/or oil phase may include a first metal oxide precursor. A second metal oxide precursor may be combusted in addition to the emulsion to produce a dense binder layer, acting as a “glue” to hold the hollow particles together. The matrix and the hollow particles comprising the coating may be of or include the same metal or a different metal. In certain example embodiments, the microstructure of the final deposited coating may resemble the microstructure of coatings produced by wet chemical (e.g., sol gel) techniques.
    Type: Application
    Filed: May 1, 2008
    Publication date: September 17, 2009
    Inventors: Michael P. Remington, JR., David D. McLean
  • Patent number: 7582574
    Abstract: A method for forming a metal silicate as a high k dielectric in an electronic device, comprising the steps of: providing diethylsilane to a reaction zone; concurrently providing a source of oxygen to the reaction zone; concurrently providing a metal precursor to the reaction zone; reacting the diethylsilane, source of oxygen and metal precursor by chemical vapor deposition to form a metal silicate on a substrate comprising the electronic device. The metal is preferably hafnium, zirconium or mixtures thereof. The dielectric constant of the metal silicate film can be tuned based upon the relative atomic concentration of metal, silicon, and oxygen in the film.
    Type: Grant
    Filed: May 10, 2007
    Date of Patent: September 1, 2009
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Robert Daniel Clark, Hareesh Thridandam, Kirk Scott Cuthill, Arthur Kenneth Hochberg
  • Patent number: 7569251
    Abstract: A method of forming a gas turbine part includes forming a bonding underlayer on a superalloy metal substrate, the underlayer including an intermetallic compound of aluminum, nickel, and platinum, and forming a ceramic outer layer on the alumina film formed on the bonding underlayer. The bonding underlayer essentially comprises an Ni—Pt—Al ternary system constituted by an aluminum-enriched ?-NiPt type structure, in particular an Ni—Pt—Al ternary system having a composition NizPtyAlx in which z, y, and x are such that 0.05?z?0.40, 0.30?y?0.06, and 0.15?x?0.40.
    Type: Grant
    Filed: October 12, 2006
    Date of Patent: August 4, 2009
    Assignee: Snecma
    Inventors: Bertrand Saint-Ramond, Manuel Silva, John Nicholls, Maxime Carlin
  • Patent number: 7544388
    Abstract: The invention includes methods of utilizing supercritical fluids to introduce precursors into reaction chambers. In some aspects, a supercritical fluid is utilized to introduce at least one precursor into a chamber during ALD, and in particular aspects the supercritical fluid is utilized to introduce multiple precursors into the reaction chamber during ALD. The invention can be utilized to form any of various materials, including metal-containing materials, such as, for example, metal oxides, metal nitrides, and materials consisting of metal. Metal oxides can be formed by utilizing a supercritical fluid can be utilized to introduce a metal-containing precursor into reaction chamber, with the precursor then forming a metal-containing layer over a surface of a substrate. Subsequently, the metal-containing layer can be reacted with oxygen to convert at least some of the metal within the layer to metal oxide.
    Type: Grant
    Filed: April 13, 2006
    Date of Patent: June 9, 2009
    Assignee: Micron Technology, Inc.
    Inventors: Demetrius Sarigiannis, Garo J. Derderian, Cem Basceri
  • Patent number: 7537804
    Abstract: In some embodiments, the invention may include utilization of at least one iteration of an ALD pulse sequence that has the pulse subsets M2-M1-R- and M1-(R-M2-)x: where x is at least 2; where M1 is a first metal-containing precursor comprising a first metal, M2 is a second metal-containing precursor comprising a second metal different from the first metal, and R is a reactant which reacts with one or both of the first and second metals. The ALD pulse sequence forms material over a substrate, and such material includes the first and second metals. The hyphen between pulses means that the second pulse directly follows the first pulse, with the term “directly follows” indicating that the second pulse either immediately follows the first pulse or that only a purge separates the first and second pulses.
    Type: Grant
    Filed: April 28, 2006
    Date of Patent: May 26, 2009
    Assignee: Micron Technology, Inc.
    Inventors: Cancheepuram V. Srividya, Noel Rocklein, John Vernon, Jeff Nelson, F. Daniel Gealy, David Korn
  • Patent number: 7531213
    Abstract: A method for making a coated cutting tool insert by depositing by CVD, onto a cemented carbide, titanium based or ceramic substrate a hard layer system, having a total thickness of from about 2 to about 50 ?m, comprising at least one layer selected from titanium carbide, titanium nitride, titanium carbonitride, titanium carboxide and aluminum oxide, and an outer, from about 1 to about 15 ?m thick, aluminum oxide layer or (Al2O3+ZrO2)*N multilayer, a penultimate outermost layer of TiOx, where x ranges from about 1 to about 2, and an outermost, from about 0.3 to about 2 ?m thick, TiCxNyOz layer, where x+y+z=1, x?0, y?0, and z?0, followed by a post-treatment removing at least said outermost layer on the edge-line and on the rake face.
    Type: Grant
    Filed: April 13, 2006
    Date of Patent: May 12, 2009
    Assignee: Sandvik Intellectual Property AB
    Inventor: Carl Björmander
  • Patent number: 7488514
    Abstract: A chemical vapor deposition method of forming a barium strontium titanate comprising dielectric layer. A substrate is positioned within a reactor. Barium and strontium are provided within the reactor by flowing at least one metal organic precursor to the reactor. Titanium is provided within the reactor. At least one oxidizer is flowed to the reactor under conditions effective to deposit a barium strontium titanate comprising dielectric layer on the substrate. In one implementation, the oxidizer comprises H2O. In one implementation, the oxidizer comprises H2O2. In one implementation, the oxidizer comprises at least H2O and at least another oxidizer selected from the group consisting of O2, O3, NOx, N2O, and H2O2, where “x” is at least 1. In one implementation, the oxidizer comprises at least H2O2 and at least another oxidizer selected from the group consisting of O2, O3, NOx, and N2O, where “x” is at least 1.
    Type: Grant
    Filed: January 3, 2005
    Date of Patent: February 10, 2009
    Assignee: Micron Technology, Inc.
    Inventors: Cem Basceri, Nancy Alzola
  • Patent number: 7482037
    Abstract: A method of forming a metal containing layer on a substrate, particularly a semiconductor substrate or substrate assembly for use in manufacturing a semiconductor or memory device structure, using one or more precursor compounds that include niobium and/or vanadium and using an atomic layer deposition process including a plurality of deposition cycles.
    Type: Grant
    Filed: August 20, 2004
    Date of Patent: January 27, 2009
    Assignee: Micron Technology, Inc.
    Inventors: Garo J. Derderian, Donald L. Westmoreland, Stefan Uhlenbrock
  • Publication number: 20090022997
    Abstract: A variety of new n-type TCO films including films with dopants having ionic sizes that approximate those of the metal oxide host material, films with stabilized rutile MO2, and films with AxMOy. The films are deposited by APCVD.
    Type: Application
    Filed: December 30, 2004
    Publication date: January 22, 2009
    Inventors: David A. Russo, Jeffery L. Stricker, Ryan C. Smith, Thomas D. Culp, Roman Y. Korotkov, Gary S. Silverman
  • Patent number: 7462372
    Abstract: A method of manufacturing a light emitting device of upward emission type and a thin film forming apparatus used in the method are provided. A plurality of film forming chambers are connected to a first transferring chamber. The plural film forming chambers include a metal material evaporation chamber, an EL layer forming chamber, a sputtering chamber, a CVD chamber, and a sealing chamber. By using this thin film forming apparatus, an upward emission type EL element can be fabricated without exposing the element to the outside air. As a result, a highly reliable light emitting device is obtained.
    Type: Grant
    Filed: September 7, 2001
    Date of Patent: December 9, 2008
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Toshimitsu Konuma, Hiroko Yamazaki
  • Patent number: 7452569
    Abstract: In a method of manufacturing a metal wiring, an organic aluminum precursor that includes aluminum as a central metal is applied to a substrate. The organic aluminum precursor applied to the substrate is thermally decomposed to form aluminum. The aluminum is deposited on the substrate to form an aluminum wiring having a low resistance. The organic aluminum precursor includes a chemical structure in accordance with one of the chemical formulae: wherein R1, R2, R3, R4 and R5 are independently H or a C1-C5 alkyl functional group, n is an integer of 1 to 5, x is 1 or 2, and y is 0 or 1, or wherein R1, R2, R3, R4 R5, R6, R7 and R8 are independently H or a C1-C5 alkyl functional group, and Y is boron.
    Type: Grant
    Filed: September 21, 2006
    Date of Patent: November 18, 2008
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jung-Ho Lee, Jung-Sik Choi, Jun-Hyun Cho, Youn-Joung Cho, Tae-Sung Kim, Mi-Ae Kim, Kyoo-Chul Cho
  • Patent number: 7445813
    Abstract: A vapor deposition process for depositing TiO2 and a vapor desposition process for depositing SiO2 are alternately repeated in a multi-layer film forming process. A refractive index that a thin film formed by each vapor depositing will provide is individually determined prior to each relative vapor depositing, and vapor deposition control data is prepared based on such a refractive index. Each vapor deposition is controlled by using a relative vapor deposition control data thus prepared. Therefore, each vapor deposition process can be accurately controlled according to the refractive index of a thin film even if repeated vapor deposition processes change the refractive index. Accordingly, a multilayer film having desired optical characteristics can be formed.
    Type: Grant
    Filed: July 3, 2002
    Date of Patent: November 4, 2008
    Assignee: Hamamatsu Photonics K.K.
    Inventor: Yasushi Ohbayashi
  • Patent number: 7431966
    Abstract: The invention includes atomic layer deposition methods of depositing an oxide on a substrate. In one implementation, a substrate is positioned within a deposition chamber. A first species is chemisorbed onto the substrate to form a first species monolayer within the deposition chamber from a gaseous precursor. The chemisorbed first species is contacted with remote plasma oxygen derived at least in part from at least one of O2 and O3 and with remote plasma nitrogen effective to react with the first species to form a monolayer comprising an oxide of a component of the first species monolayer. The chemisorbing and the contacting with remote plasma oxygen and with remote plasma nitrogen are successively repeated effective to form porous oxide on the substrate. Other aspects and implementations are contemplated.
    Type: Grant
    Filed: December 9, 2003
    Date of Patent: October 7, 2008
    Assignee: Micron Technology, Inc.
    Inventors: Garo J. Derderian, Shuang Meng, Danny Dynka
  • Patent number: 7429404
    Abstract: A method for forming multi-metallic sites on a substrate is disclosed and described. A substrate including active groups such as hydroxyl can be reacted with a pretarget metal complex. The target metal attached to the active group can then be reacted with a secondary metal complex such that an oxidation-reduction (redox) reaction occurs to form a multi-metallic species. The substrate can be a highly porous material such as aerogels, xerogels, zeolites, and similar materials. Additional metal complexes can be reacted to increase catalyst loading or control co-catalyst content. The resulting compounds can be oxidized to form oxides or reduced to form metals in the ground state which are suitable for practical use.
    Type: Grant
    Filed: August 29, 2005
    Date of Patent: September 30, 2008
    Assignee: University of Utah Research Foundation
    Inventors: Richard D. Ernst, Edward M. Eyring, Gregory C. Turpin, Brian C. Dunn
  • Patent number: 7422771
    Abstract: A method for applying a hybrid thermal barrier coating, comprising masking at least a portion of a first surface of a component with a first maskant; applying a first coating material to at least a portion of a second surface of said component; removing said first maskant; optionally masking at least a portion of said second surface of said component with a second maskant; applying a second coating material to at least a portion of said first surface of said component; and removing said second maskant.
    Type: Grant
    Filed: September 1, 2005
    Date of Patent: September 9, 2008
    Assignee: United Technologies Corporation
    Inventors: Edward F. Pietraszkiewicz, Kevin W. Schlichting, David A. Litton, Heather A. Terry
  • Patent number: 7396565
    Abstract: Embodiments of the present invention relate to an apparatus and method of cyclical deposition utilizing three or more precursors in which delivery of at least two of the precursors to a substrate structure at least partially overlap. One embodiment of depositing a ternary material layer over a substrate structure comprises providing at least one cycle of gases to deposit a ternary material layer. One cycle comprises introducing a pulse of a first precursor, introducing a pulse of a second precursor, and introducing a pulse of a third precursor in which the pulse of the second precursor and the pulse of the third precursor at least partially overlap. In one aspect, the ternary material layer includes, but is not limited to, tungsten boron silicon (WBxSiy), titanium silicon nitride (TiSixNy), tantalum silicon nitride (TaSixNy), silicon oxynitride (SiOxNy), and hafnium silicon oxide (HfSixOy).
    Type: Grant
    Filed: August 6, 2004
    Date of Patent: July 8, 2008
    Assignee: Applied Materials, Inc.
    Inventors: Michael Xi Yang, Hyungsuk Alexander Yoon, Hui Zhang, Hongbin Fang, Ming Xi
  • Patent number: 7288217
    Abstract: An electroconductive compound in a flake form, characterized in that it comprises a titanium oxide which has an average long diameter of 1 to 100 ?m and an average thickness of 0.01 to 1.5 ?m, and contains potassium in an amount of 0.3 to 5 wt % in terms of potassium oxide (K2O) and, formed on the surface thereof, a first electroconductive layer comprising a tin oxide containing antimony and, formed on the first electroconductive layer, a second electroconductive layer comprising a tin oxide.
    Type: Grant
    Filed: July 16, 2003
    Date of Patent: October 30, 2007
    Assignee: Otsuka Chemical Co., Ltd.
    Inventors: Yukiya Hareyama, Hidetoshi Ogawa
  • Patent number: 7258895
    Abstract: The invention includes methods of forming material on a substrate and methods of forming a field effect transistor gate oxide. In one implementation, a first species monolayer is chemisorbed onto a substrate within a chamber from a gaseous first precursor. The first species monolayer is discontinuously formed over the substrate. The substrate having the discontinuous first species monolayer is exposed to a gaseous second precursor different from the first precursor effective to react with the first species to form a second species monolayer, and effective to form a reaction product of the second precursor with substrate material not covered by the first species monolayer. The substrate having the second species monolayer and the reaction product is exposed to a third gaseous substance different from the first and second precursors effective to selectively remove the reaction product from the substrate relative to the second species monolayer. Other implementations are contemplated.
    Type: Grant
    Filed: August 6, 2003
    Date of Patent: August 21, 2007
    Assignee: Micron Technology, Inc.
    Inventor: Gurtej S. Sandhu
  • Patent number: 7241479
    Abstract: The present invention is generally directed to a novel process for the production of nanowires and nanobelts and the novel nanostructures which can be produced according to the disclosed processes. The process can be carried out at ambient pressure and includes locating a metal in a reaction chamber, heating the chamber to a temperature at which the metal becomes molten, and flowing a vapor-phase reactant through the chamber. The vapor-phase reactant and the molten metal can react through a thermal CVD process, and nanostructures can form on the surface of the molten metal. Dimensions of the nanostructures can be controlled by reaction temperature.
    Type: Grant
    Filed: August 22, 2003
    Date of Patent: July 10, 2007
    Assignee: Clemson University
    Inventors: Apparao M. Rao, Rahul Rao
  • Patent number: 7208198
    Abstract: The invention includes a chemical vapor deposition method of forming a barium strontium titanate comprising dielectric layer having a varied concentration of barium and strontium, and/or titanium, within the layer. A substrate is positioned within a chemical vapor deposition reactor. Barium and strontium are provided within the reactor by flowing at least one metal organic precursor to the reactor. Titanium is provided within the reactor. One or more oxidizers are flowed to the reactor. In one aspect, conditions are provided within the reactor to be effective to deposit a barium strontium titanate comprising dielectric layer on the substrate from the reactants.
    Type: Grant
    Filed: June 28, 2004
    Date of Patent: April 24, 2007
    Assignee: Micron Technology, Inc.
    Inventors: Cem Basceri, Nancy Alzola
  • Patent number: 7208195
    Abstract: A method for depositing a thin film includes the steps of providing a vapor including at least one selected vapor phase component into an evacuated chamber and condensing the vapor onto a heated substrate to form a liquid phase deposit wherein a temperature of the substrate is lower than the condensation temperature of the component. The liquid deposit is then cooled to produce a solid phase film. The invention can provide two or more vapor phase components. The invention can be used to deposit a wide variety of layers, including thin films of metallic, semiconductor and nonmetallic inorganic materials. The invention is useful for forming solid electrolytes and the electrodes for batteries, fuel cells and other electromagnetically active devices.
    Type: Grant
    Filed: March 27, 2002
    Date of Patent: April 24, 2007
    Assignee: Ener1Group, Inc.
    Inventors: Yevgen Kalynushkin, Elena Shembel, Peter Novak, Chris Flury
  • Patent number: 7196211
    Abstract: A hafnium-containing material is presented for forming a film having excellent vaporization stability and higher film formation rate. Also a method for producing the film is presented. The hafnium-containing material for film formation has a bond of a hafnium atom with a nitrogen atom, or a bond of a hafnium atom and an oxygen atoms. Zr content contained in the material is equal to or less than 650 ppm.
    Type: Grant
    Filed: September 9, 2004
    Date of Patent: March 27, 2007
    Assignee: Mitsubishi Materials Corporation
    Inventors: Atsushi Itsuki, Nobuyuki Soyama, Akio Yanagisawa
  • Patent number: 7157111
    Abstract: A method of selectively depositing a ferroelectric thin film on an indium-containing substrate in a ferroelectric device includes preparing a silicon substrate; depositing an indium-containing thin film on the substrate; patterning the indium containing thin film; annealing the structure; selectively depositing a ferroelectric layer by MOCVD; annealing the structure; and completing the ferroelectric device.
    Type: Grant
    Filed: September 30, 2003
    Date of Patent: January 2, 2007
    Assignee: Sharp Laboratories of America, Inc.
    Inventors: Tingkai Li, Sheng Teng Hsu, Bruce Dale Ulrich
  • Patent number: 7087266
    Abstract: A thermal barrier coating, or TBC, and method for forming the TBC. The TBC is formed of a thermal-insulating material that contains yttria-stabilized zirconia (YSZ) alloyed with at least a third oxide. The TBC is formed to also contain elemental carbon, and may potentially contain carbides and/or a carbon-containing gas that forms from the thermal decomposition of carbon. The TBC is characterized by lower density and thermal conductivity, high temperature stability and improved mechanical properties. To exhibit the desired effect, the third oxide is more particularly one that increases the lattice strain energy of the TBC microstructure as a result of having an ion size that is sufficiently different than a zirconium ion.
    Type: Grant
    Filed: June 18, 2004
    Date of Patent: August 8, 2006
    Assignee: General Electric Company
    Inventors: Ramgopal Darolia, Boris A. Movchan, Yuriy E. Rudoy, Leonella M. Nerodenko, Irene Spitsberg, David John Wortman
  • Patent number: 7048836
    Abstract: Thermal-insulating material provided on a metal substrate by means of an EB-PVD process includes a metal having a substantially magnetoplumbitic crystal structure and having a chemical composition according to general formula: Ln3+M2+1+xQ44+A111?2xO19. The thermally-insulated metal substrate may advantageously include an adhesive layer provided between the surface of the metal substrate and the thermal-insulating layer. The process for producing the thermal-insulated metal substrate includes applying the thermal-insulating material onto a surface of the metal substrate employing an EB-PVD process.
    Type: Grant
    Filed: May 9, 2002
    Date of Patent: May 23, 2006
    Assignee: Deutsches Zentrum fur Luft-und Raumfahrt e.V.
    Inventors: Bilge Saruhan-Brings, Uwe Schulz, Claus Jürgen Kroder
  • Patent number: 7048968
    Abstract: The invention includes methods of utilizing supercritical fluids to introduce precursors into reaction chambers. In some aspects, a supercritical fluid is utilized to introduce at least one precursor into a chamber during ALD, and in particular aspects the supercritical fluid is utilized to introduce multiple precursors into the reaction chamber during ALD. The invention can be utilized to form any of various materials, including metal-containing materials, such as, for example, metal oxides, metal nitrides, and materials consisting of metal. Metal oxides can be formed by utilizing a supercritical fluid to introduce a metal-containing precursor into a reaction chamber, with the precursor then forming a metal-containing layer over a surface of a substrate. Subsequently, the metal-containing layer can be reacted with oxygen to convert at least some of the metal within the layer to metal oxide.
    Type: Grant
    Filed: August 22, 2003
    Date of Patent: May 23, 2006
    Assignee: Micron Technology, Inc.
    Inventors: Demetrius Sarigiannis, Garo J. Derderian, Cem Basceri
  • Patent number: 7037555
    Abstract: A method of manufacturing a glazing panel having a solar factor (FS) of less than 70% and being composed of a vitreous substrate and a tin/antimony oxide coating layer provided on the vitreous substrate and having a Sb/Sn molar ratio ranging from 0.01 to 0.5, preferable 0.03 to 0.5, the method including the steps of providing reactants in gaseous phase which comprise tin and antimony compounds, which are present in an amount effective to form the tin/antimony oxide coating layer; and forming the tin/antimony oxide coating layer pyrolytically on the vitreous substrate from the reactants in gaseous phase to provide the glazing panel having a solar factor (FS) of less than 70%.
    Type: Grant
    Filed: April 10, 2001
    Date of Patent: May 2, 2006
    Assignee: Glaverbel
    Inventors: Robert Terneu, Philippe Legrand, Michel Hannotiau, Alain Schutz