Plasma (e.g., Cold Plasma, Corona, Glow Discharge, Etc.) Patents (Class 427/535)
  • Patent number: 9415614
    Abstract: A recording apparatus includes a supply reel configured and arranged to supply a recording medium, a recording section configured and arranged to record an image to the recording medium, a first conveyance route along which the recording medium is conveyed to the recording section, a post-treatment section configured and arranged to carry out a post-treatment on the recording medium after recording the image to the recording medium, a third conveyance route along which the recording medium is conveyed from the recording section to the post-treatment section, a take-up reel configured and arranged to take-up the recording medium, and a fourth conveyance route along which the recording medium is conveyed from the post-treatment section to the take-up reel, the third conveyance route including a third bend section at a location between an outlet of the recording section and an inlet of the post-treatment section.
    Type: Grant
    Filed: October 21, 2015
    Date of Patent: August 16, 2016
    Assignee: Seiko Epson Corporation
    Inventor: Yoichiro Irie
  • Patent number: 9384971
    Abstract: Provided is a technique including forming a film by performing a cycle a predetermined number of times. The cycle includes: forming a first layer by supplying a gas containing a first element under a condition where chemical adsorption of a molecule constituting the gas containing the first element is not saturated; forming a second layer including the first layer and a layer including a second element stacked on the first layer by supplying a gas containing the second element under a condition where chemical adsorption of a molecule constituting the gas containing the second element is not saturated; and forming a third layer by supplying a gas containing a third element to modify the second layer under a condition where a modifying reaction of the second layer by the gas containing the third element is not saturated.
    Type: Grant
    Filed: April 6, 2015
    Date of Patent: July 5, 2016
    Assignee: Hitachi Kokusai Electric Inc.
    Inventors: Yushin Takasawa, Hajime Karasawa, Yoshiro Hirose
  • Patent number: 9384969
    Abstract: Provided is a technique including forming a film on a substrate, the film including a first element and a second element different from the first element, by performing a cycle a predetermined number of times. The cycle includes: forming a first layer including the first element by supplying a gas containing the first element to the substrate, wherein the first layer is a discontinuous layer, a continuous layer, or a layer in which at least one of the discontinuous layer or the continuous layer is overlapped; and forming a second layer including the first element and the second element by supplying a gas containing the second element to the substrate to modify the first layer under a condition where a modifying reaction of the first layer by the gas containing the second element is not saturated.
    Type: Grant
    Filed: April 6, 2015
    Date of Patent: July 5, 2016
    Assignee: Hitachi Kokusai Electric Inc.
    Inventors: Yushin Takasawa, Hajime Karasawa, Yoshiro Hirose
  • Patent number: 9384966
    Abstract: Provided is a technique of forming a film on a substrate by performing a cycle a predetermined number of times. The cycle includes: forming a first layer by supplying a gas containing a first element to the substrate, wherein the first layer is a discontinuous layer, a continuous layer, or a layer in which at least one of the discontinuous layer or the continuous layer is overlapped; forming a second layer including the first layer and a discontinuous layer including a second element stacked on the first layer; and forming a third layer by supplying a gas containing a third element to the substrate to modify the second layer under a condition where a modifying reaction of the second layer by the gas containing the third element is not saturated.
    Type: Grant
    Filed: April 1, 2015
    Date of Patent: July 5, 2016
    Assignee: Hitachi Kokusai Electric Inc.
    Inventors: Yushin Takasawa, Hajime Karasawa, Yoshiro Hirose
  • Patent number: 9384968
    Abstract: Provided is a technique of forming a film on a substrate by performing a cycle a predetermined number of times. The cycle includes: forming a first layer by supplying a gas containing a first element to the substrate, wherein the first layer is a discontinuous layer, a continuous layer, or a layer in which at least one of the discontinuous layer or the continuous layer is overlapped; forming a second layer including the first layer and a discontinuous layer including a second element stacked on the first layer; forming a third layer including the second layer and a discontinuous layer including a third element stacked on the second layer; and forming a fourth layer including the first element, the second element, the third element and a fourth element by supplying a gas containing the fourth element to the substrate to modify the third layer.
    Type: Grant
    Filed: April 6, 2015
    Date of Patent: July 5, 2016
    Assignee: Hitachi Kokusai Electric Inc.
    Inventors: Yushin Takasawa, Hajime Karasawa, Yoshiro Hirose
  • Patent number: 9384967
    Abstract: Provided is a technique of forming a film on a substrate by performing a cycle a predetermined number of times. The cycle includes: forming a first layer including a first element, wherein the first layer is a discontinuous layer, a continuous layer, or a layer in which at least one of the discontinuous layer or the continuous layer is overlapped; forming a second layer including the first layer and a discontinuous layer including a second element stacked on the first layer; forming a third layer by supplying a gas containing a third element to the substrate to modify the second layer; and forming a fourth layer including the first element, the second element, the third element and a fourth element by supplying a gas containing the fourth element to the substrate to modify the third layer.
    Type: Grant
    Filed: April 1, 2015
    Date of Patent: July 5, 2016
    Assignee: Hitachi Kokusai Electric Inc.
    Inventors: Yushin Takasawa, Hajime Karasawa, Yoshiro Hirose
  • Patent number: 9384970
    Abstract: Provided is a technique including forming a film on a substrate, the film including a first element and a second element different from the first element, by performing a cycle a predetermined number of times. The cycle includes: forming a first layer including a discontinuous chemical adsorption layer of a molecule constituting a gas containing the first element by supplying the gas containing the first element to the substrate under a condition where chemical adsorption of the molecule on a surface of the substrate is not saturated; and forming a second layer including the first element and the second element by supplying a gas containing the second element to the substrate to modify the first layer under a condition where a modifying reaction of the first layer by the gas containing the second element is not saturated.
    Type: Grant
    Filed: April 6, 2015
    Date of Patent: July 5, 2016
    Assignee: Hitachi Kokusai Electric Inc.
    Inventors: Yushin Takasawa, Hajime Karasawa, Yoshiro Hirose
  • Patent number: 9384972
    Abstract: Provided is a technique of forming a film on a substrate by performing a cycle a predetermined number of times. The cycle includes: forming a first layer by supplying a gas containing a first element to the substrate, wherein the first layer is a discontinuous layer, a continuous layer, or a layer in which at least one of the discontinuous layer or the continuous layer is overlapped; forming a second layer by supplying a gas containing a second element to the substrate to modify the first layer under a condition where a modifying reaction of the first layer by the gas containing the second element is not saturated; and forming a third layer by supplying a gas containing a third element to the substrate to modify the second layer under a condition where a modifying reaction of the second layer by the gas containing the third element is not saturated.
    Type: Grant
    Filed: April 8, 2015
    Date of Patent: July 5, 2016
    Assignee: Hitachi Kokusai Electric Inc.
    Inventors: Yushin Takasawa, Hajime Karasawa, Yoshiro Hirose
  • Patent number: 9362034
    Abstract: The present invention relates to a core-shell structured nanoparticle having hard-soft heterostructure, magnet prepared from the nanoparticle, and preparing method thereof. The core-shell structured nanoparticle having hard-soft magnetic heterostructure of present invention has some merits such as independence from resource supply problem of rare earth elements and low price and can overcome physical and magnetic limitations possessed by the conventional ferrite mono-phased material.
    Type: Grant
    Filed: January 9, 2013
    Date of Patent: June 7, 2016
    Assignees: LG ELECTRONICS INC., INDUSTRY-UNIVERSITY COOPERATION FOUNDATION HANYANG UNIVERSITY ERICA CAMPUS
    Inventors: Jongryoul Kim, Jinbae Kim, Namseok Kang, Sanggeun Cho
  • Patent number: 9353437
    Abstract: The present invention relates to a diazadiene (DAD)-based metal compound, to a method for preparing the same and to a method for forming a thin film using the same. The diazadiene (DAD)-based metal compound of the present invention is provided in a gaseous state to be formed into a metal thin film or a metal oxide thin film by chemical vapor deposition or atomic layer deposition. Particularly, the diazadiene-based organic metal compound of the present invention has advantages in that it may be formed into a metal thin film or a metal oxide thin film and it can be prepared in a relatively inexpensive way without using highly toxic ligands.
    Type: Grant
    Filed: November 17, 2011
    Date of Patent: May 31, 2016
    Assignee: UP Chemical Co., Ltd.
    Inventor: Won Seok Han
  • Patent number: 9112088
    Abstract: Disclosed is a method for manufacturing a thin-film solar cell using plasma between a couple of parallel electrodes. In the method, a base member is placed in a chamber between a first electrode and a second electrode facing each other. A hydrogen gas is heated, and thus heated hydrogen gas and a silicon-based gas are introduced into a space between the first electrode and the second electrode. A ratio of a flow rate of the heated hydrogen gas to that of the silicon-based gas is at least 25 and no more than 58. A plasma is generated between the first electrode and the second electrode by applying high-frequency power to the second electrode while a pressure in the chamber is 1000 Pa or higher, and an optically active layer containing crystalline silicon is deposited on the base material.
    Type: Grant
    Filed: April 22, 2011
    Date of Patent: August 18, 2015
    Assignee: KYOCERA Corporation
    Inventors: Koichiro Niira, Norikazu Ito, Shinichiro Inaba
  • Patent number: 9074111
    Abstract: Described herein is a method of making a multi-layer article and paint protective films, wherein a mixture comprising a polyurethane coating solution and a plurality of nanoparticles is coated onto a casting liner to form a first layer; and a thermoplastic polyurethane is disposed onto the first layer opposite the casting liner. Multi-layer articles by the process of the present disclosure have been found to be resistant to compositions comprising strong acids and/or a functionalized organosilane.
    Type: Grant
    Filed: November 20, 2012
    Date of Patent: July 7, 2015
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventor: Charlie C. Ho
  • Patent number: 9067171
    Abstract: The present invention discloses a process for producing a membrane for separating methane or carbon dioxide, having excellent heat resistance, durability and anti-chemical agent resistance (anti-corrosion resistance). The present invention is related to a process for producing a membrane for separating methane or carbon dioxide, which comprises the following steps: (a) preparing a metal alkoxide solution by (i) mixing an acid catalyst, water and an organic solvent, (ii) adding thereto tetraalkoxysilane and mixing, and (iii) then adding thereto a hydrocarbon group-containing trialkoxysilane, of which a hydrocarbon group is selected from the group consisting of an alkyl group having 1 to 6 carbon atoms and a phenyl group, and mixing, (b) applying the metal alkoxide solution on an inorganic porous support, and then (c) calcining the inorganic porous support having metal alkoxide solution layer at a temperature of 30 to 300° C.
    Type: Grant
    Filed: April 24, 2012
    Date of Patent: June 30, 2015
    Assignee: TOYO TIRE & RUBBER CO., LTD.
    Inventors: Tomohiko Kurahashi, Masaji Ishino, Kouji Kuraoka
  • Publication number: 20150147484
    Abstract: Provided are methods for the deposition of films comprising SiCN. Certain methods involve exposing a substrate surface to a silicon precursor, wherein the silicon precursor is halogenated with Cl, Br or I, and the silicon precursor comprises a halogenated silane, a halogenated carbosilane, an halogenated aminosilane or a halogenated carbo-sillyl amine. Then, the substrate surface can be exposed to a nitrogen-containing plasma or a nitrogen precursor and densification plasma.
    Type: Application
    Filed: November 5, 2014
    Publication date: May 28, 2015
    Inventors: Victor Nguyen, Ning Li, Mihaela Balseanu, Li-Qun Xia, Mark Saly, David Thompson
  • Publication number: 20150147482
    Abstract: Methods and apparatus disclosed herein relate to the formation and use of undercoats on the interior surfaces of reaction chambers used to deposit films on substrates. The undercoats are deposited through atomic layer deposition methods. The disclosed undercoats help prevent metal contamination, provide improved resistance to flaking, and are relatively thin. Because of the superior resistance to flaking, the disclosed undercoats allow more substrates to be processed between subsequent cleaning operations, thereby increasing throughput.
    Type: Application
    Filed: November 25, 2013
    Publication date: May 28, 2015
    Applicant: Lam Research Corporation
    Inventors: Hu Kang, Jun Qian, Adrien LaVoie
  • Publication number: 20150147483
    Abstract: A method for forming a film on a patterned surface of a substrate by atomic layer deposition (ALD) processing includes: adsorbing onto a patterned surface a first precursor containing silicon or metal in its molecule; adsorbing onto the first-precursor-adsorbed surface a second precursor containing no silicon or metal in its molecule; exposing the second-precursor-adsorbed surface to an excited reactant to oxidize, nitride, or carbonize the precursors adsorbed on the surface of the substrate; and repeating the above cycle to form a film on the patterned surface of the substrate.
    Type: Application
    Filed: November 26, 2013
    Publication date: May 28, 2015
    Applicant: ASM IP Holding B.V.
    Inventor: Atsuki Fukazawa
  • Publication number: 20150140233
    Abstract: Methods for depositing cobalt in features of a substrate include providing a substrate to a process chamber, the substrate having a first surface, a feature formed in the first surface comprising an opening defined by one or more sidewalls, a bottom surface, and upper corners, and the substrate having a first layer formed atop the first surface and the opening, wherein a thickness of the first layer is greater proximate the upper corners of the opening than at the sidewalls and bottom of the opening; exposing the substrate to a plasma formed from a silicon-containing gas to deposit a silicon layer predominantly onto a portion of the first layer atop the first surface of the substrate; and depositing a cobalt layer atop the substrate to fill the opening, wherein the silicon layer inhibits deposition of cobalt on the portion of the first layer atop the first surface of the substrate.
    Type: Application
    Filed: November 17, 2014
    Publication date: May 21, 2015
    Inventors: BHUSHAN N. ZOPE, AVGERINOS V. GELATOS
  • Publication number: 20150141293
    Abstract: The invention provides a method for increasing the order of an array of polymeric micelles or of nanoparticles on a substrate surface comprising a) providing an ordered array of micelles or nanoparticles coated with a polymer shell on a substrate surface and b) annealing the array of micelles or nanoparticles by ultrasonication in a liquid medium which is selected from the group comprising H2O, a polar organic solvent and a mixture of H2O and a polar organic solvent. In a related aspect, the invention provides the highly ordered arrays of micelles or nanoparticles obtainable by the methods of the invention.
    Type: Application
    Filed: May 15, 2013
    Publication date: May 21, 2015
    Inventors: Christian Williges, Christoph Morhard, Joachim P. Spatz, Robert B. Brunner
  • Patent number: 9034414
    Abstract: The object of the present invention is to provide a joint prosthesis, bearing material and a production method thereof, which suppresses wear in a sliding section and suppresses the production of abrasive powder even during repeated daily operation. To achieve the object, there is provided a biomaterial comprising: a substrate made of metal, alloy or ceramic; and a biocompatible material layer laminated on the substrate, wherein hydroxyl groups are formed on the substrate by surface-treating, while the biocompatible material layer comprises a polymer containing phosphorylcholine groups, the substrate and the biocompatible material layer are bound via a binder layer which is combined with the hydroxyl groups of the substrate and with the biocompatible material layer.
    Type: Grant
    Filed: February 21, 2014
    Date of Patent: May 19, 2015
    Assignees: KYOCERA MEDICAL CORPORATION, THE UNIVERSITY OF TOKYO, NATIONAL UNIVERSITY CORPORATION TOKYO MEDICAL AND DENTAL UNIVERSITY
    Inventors: Masayuki Kyomoto, Kazuhiko Ishihara, Yasuhiko Iwasaki, Toru Moro, Kozo Nakamura, Yoshio Takatori, Hiroshi Kawaguchi, Tomohiro Konno, Noboru Yamawaki
  • Publication number: 20150123518
    Abstract: A plastic member, on which a metal layer is formed on a surface of a plastic object, a method of manufacturing the same, and an electronic product including the same are provided. The method of manufacturing a multilayer thin film includes modifying a surface of a plastic object using a plasma treatment, depositing a reflective metal layer on the surface of the plastic object, and depositing a transparent ceramic layer on the reflective metal layer.
    Type: Application
    Filed: October 31, 2014
    Publication date: May 7, 2015
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Seo Joon LEE, Jin Sub KIM, Hyong Jun YOO, Min Chul JUNG, Jin Hyun CHO
  • Publication number: 20150125621
    Abstract: The disclosure relates to processes of preparing coated carrier particles by means of plasma activation and apparatus for use thereof.
    Type: Application
    Filed: November 4, 2013
    Publication date: May 7, 2015
    Applicant: XEROX CORPORATION
    Inventors: Joo T. Chung, Bernard A. Kelly, Brian S. Giannetto, Chieh-Min Cheng, Thomas C. Dombroski
  • Publication number: 20150125640
    Abstract: A manufacturing method that forms a multilayer thin film on the inner surface of a housing forming a transparent appearance of an electronic product to provide a deep metal texture and an electronic product having a metal texture provided at the inner surface of the housing. The multilayer thin film manufacturing method includes reforming an inner surface of a housing having an outer surface and the inner surface through plasma processing, depositing at least one hardness reinforcement layer on the inner surface, and depositing a color layer on the hardness reinforcement layer.
    Type: Application
    Filed: October 31, 2014
    Publication date: May 7, 2015
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Seo Joon LEE, Jin Sub KIM, Hyong Jun YOO, Min Chul JUNG, Jin Hyun CHO
  • Publication number: 20150124325
    Abstract: A glazing unit including a transparent substrate equipped with an antireflection coating, which coating includes at least one film of a porous material essentially including silicon, oxygen, carbon and possibly hydrogen, in which the atomic proportion PC of carbon, relative to the sum of the atomic contributions of silicon, oxygen and carbon, varies locally in the thickness direction of the film, from a first surface to a second surface thereof: increasing between a first minimum value PCmin1 and a maximum value PCmax, the ratio of the maximum value PCmax to the first minimum value PCmin1 being at least 1.2; and the proportion of carbon then decreasing, between the maximum value PCmax and a second minimum value PCmin2, the ratio of the maximum value PCmax to the second minimum value PCmin2 being at least 1.2.
    Type: Application
    Filed: August 6, 2012
    Publication date: May 7, 2015
    Applicant: SAINT-GOBAIN GLASS FRANCE
    Inventors: Jean-Christophe Giron, Christian Bernhard Petersen, Martin Melcher, Nicolas Nadaud
  • Publication number: 20150118408
    Abstract: A wet coating method is described, which includes the following steps. A film coating is applied to at least one surface of a substrate using a wet process. A plasma-assisted filling treatment is performed on the film coating to crystallize the film coating into a film. The plasma-assisted filling treatment includes using a filling coating.
    Type: Application
    Filed: December 19, 2013
    Publication date: April 30, 2015
    Applicant: NATIONAL CHENG KUNG UNIVERSITY
    Inventors: Chau-Nan HONG, Chun-Chia YEH, Hsiang-En HSU, Ke-Fong LI, Cyun-Jhe YAN, Chung-Sheng CHIANG, Yu-Ling CHENG
  • Patent number: 9017773
    Abstract: A method is described for depositing nanostructures, such as nanostructures of conducting polymers, carbon nanostructures, or combinations thereof. The process comprises placing the nanostructures in a liquid composition comprising an immiscible combination of aqueous phase and an organic phase. The mixture is mixed for a period of time sufficient to form an emulsion and then allowed to stand undisturbed so that the phases are allowed to separate. As a result the nanostructure materials locate at the interface of the forming phases and are uniformly dispersed along that interface. A film of the nanostructure materials will then form on a substrate intersecting the interface, said substrate having been placed in the mixture before the phases are allowed to settle and separate.
    Type: Grant
    Filed: January 13, 2011
    Date of Patent: April 28, 2015
    Assignee: The Regents of the University of California
    Inventors: Julio M. D'Arcy, Richard B. Kaner
  • Publication number: 20150110969
    Abstract: A process for a low temperature, ion-assisted, evaporation technique (IAD), whereby the coating stress of a silicon film may be manipulated from compressive to tensile, in order to produce a near-zero net stress for the complete layer. A Si cladding with little intrinsic stress is essential to allow thick coatings to be manufactured without cracking. A low stress coating also minimizes substrate bending that would otherwise distort the figure of very lightweight mirrors.
    Type: Application
    Filed: October 1, 2014
    Publication date: April 23, 2015
    Inventor: David A. Sheikh
  • Publication number: 20150110968
    Abstract: A method includes flowing reactant gases into a process chamber. Plasma having a first power level is supplied using a plasma source. The process chamber is dosed with the precursor. The first power level is sufficient to enhance adsorption of the precursor on a surface of the substrate and is insufficient to decompose the precursor that is adsorbed. After a first predetermined period, the method includes removing a portion of the precursor that does not adsorb onto the substrate. The precursor that is adsorbed is activated using plasma having a second power level using the plasma source. The second power level is greater than the first power level and is sufficient to decompose the precursor.
    Type: Application
    Filed: October 22, 2013
    Publication date: April 23, 2015
    Applicant: Lam Research Corporation
    Inventors: Adrien LaVoie, Hu Kang, Karl Leeser
  • Publication number: 20150111039
    Abstract: The embodiments described herein pertain generally to a preparing method of a reduced graphene oxide film, a reduced graphene oxide film prepared by the preparing method, a graphene electrode including the reduced graphene oxide film, an organic thin film transistor including the graphene electrode, and an antistatic film including the reduced graphene oxide film.
    Type: Application
    Filed: March 20, 2014
    Publication date: April 23, 2015
    Applicant: SNU R&DB FOUNDATION
    Inventors: Sung Hyun KIM, Jyongsik JANG, Kyoung-Hwan SHIN
  • Publication number: 20150104636
    Abstract: A method for manufacturing a transparent conductive film, said method comprising: forming a compound layer containing a silazane compound on a substrate; supplying energy to the compound layer and thus converting at least a part of the silazane compound into a compound having a siloxane bond to thereby modify the compound layer; and then forming a metal layer, that is configured from silver or an alloy comprising silver as the main component, on the unmodified compound layer or the modified compound layer.
    Type: Application
    Filed: April 15, 2013
    Publication date: April 16, 2015
    Applicant: Konica Minolta, Inc.
    Inventor: Chiyoko Takemura
  • Patent number: 9005552
    Abstract: Provided is a new catalyst capable of removing carbon monoxide economically without adding particular reaction gas externally. Also provided are a process for producing and an apparatus using such a catalyst. Impregnation of a Ni—Al composite oxide precursor of a nonstoichiometric composition prepared by the solution-spray plasma technique with a ruthenium salt to be supported and performing reduction treatment allows CO methanation reaction to selectively proceed even in the high-temperature range in which CO2 methanation reaction and reverse water-gas-shift reaction proceed preferentially with conventional catalysts. Selective CO methanation reaction occurs reproducibly with another Ni—Al composite oxide precursor or an additive metallic species.
    Type: Grant
    Filed: October 21, 2011
    Date of Patent: April 14, 2015
    Assignee: University of Yamanashi
    Inventors: Masahiro Watanabe, Hisao Yamashita, Kazutoshi Higashiyama, Toshihiro Miyao, Aihua Chen
  • Patent number: 9005847
    Abstract: A method for fabricating a fuel cell component includes the steps of providing a mask having a plurality of radiation transparent apertures, a radiation-sensitive material having a sensitivity to the plurality of radiation beams, and a flow field layer. The radiation-sensitive material is disposed on the flow field layer. The radiation-sensitive material is then exposed to the plurality of radiation beams through the radiation transparent apertures in the mask to form a diffusion medium layer with a micro-truss structure.
    Type: Grant
    Filed: June 2, 2011
    Date of Patent: April 14, 2015
    Assignees: GM Global Technology Operations LLC, HRL Laboratories, LLC
    Inventors: Jeffrey A. Rock, Yeh-Hung Lai, Keith E. Newman, Gerald W. Fly, Ping Liu, Alan J. Jacobsen, William B. Carter, Peter D. Brewer
  • Patent number: 9005718
    Abstract: A process for the simultaneous deposition of films onto both sides of a substrate (2), which comprises in particular introducing a substrate (2) into a reaction chamber (106, 206) or making said substrate run therethrough, in which chamber at least two electrodes (110, 210) are placed. At least one dielectric barrier (14, 114) is placed between these at least two electrodes (110, 210). An adjustable inductor (L) is placed in the secondary circuit of the transformer in parallel with the circuit comprising the at least two electrodes. A high-frequency electrical voltage is generated, said voltage being such that it generates a filamentary plasma (112, 212) on each side of the substrate between the at least two electrodes (110, 210).
    Type: Grant
    Filed: July 16, 2009
    Date of Patent: April 14, 2015
    Assignee: AGC Glass Europe
    Inventors: Eric Tixhon, Joseph Leclercq, Eric Michel
  • Publication number: 20150099060
    Abstract: Disclosed herein is a method of coating and curing, including conveying a substantially flat substrate to be coated with a conveyor system through a combination roll coating and curing facility, wherein the combination roll coating and curing facility comprises at least one roll coating facility and at least one curing facility, roll coating the substantially flat substrate with a continuous sol gel coating material with the at least one roll coating facility, and curing the sol gel coating material on the substantially flat substrate with an air knife of the at least one curing facility, wherein the air knife is adapted to direct a heated stream of air to cure the continuous sol gel coating material while an interior of the substantially flat substrate remains at a temperature substantially lower than a temperature of air from the air knife.
    Type: Application
    Filed: December 8, 2014
    Publication date: April 9, 2015
    Inventors: Brenor L. Brophy, Peter R. Gonsalves, Yu S. Yang, Patrick J. Neyman
  • Patent number: 8999456
    Abstract: A method for manufacturing a drug-releasing stent is provided. The method includes providing a titanium precursor, a carrier gas and a reactant gas in a plasma vacuum chamber, and generating a plasma for 1 to 6 hours to form a titanium oxide thin film on the surface of a stent. The method further includes providing steam or oxygen and hydrogen in the plasma vacuum chamber and generating a low-temperature plasma for 10 minutes to 2 hours to modify the surface of the titanium oxide thin film. The method further includes reacting the titanium oxide thin film of the stent with a drug in an acidic solution and under an inert gas atmosphere at room temperature to 100° C. for 30 minutes to 4 hours to attach the drug.
    Type: Grant
    Filed: November 9, 2012
    Date of Patent: April 7, 2015
    Assignee: Industry Foundation of Chonnam National University
    Inventors: Dong Lyun Cho, Sun-Jung Song, Myung Ho Jeong, Kyoung Seok Kim, Yu Jeong Park
  • Publication number: 20150093522
    Abstract: A method for creating a condensation image on a piece of jewelry using chemical patterning techniques which create covalently attached (or other strong chemical bond), ultrathin (less than 10 nm), hydrophobic/hydrophilic monolayer patterns on a surface. These techniques allow the deposition of ultrathin films (e.g. less than 10 nanometers thick) which are invisible to the naked eye making the patterns only visible when condensation has formed at the surface.
    Type: Application
    Filed: September 22, 2014
    Publication date: April 2, 2015
    Inventors: Warren Taylor, Sienna Cordoba-Taylor
  • Patent number: 8993071
    Abstract: Embodiments of the present invention provide a manufacturing method that can form a track guide separation area of a magnetic disk substrate constituting a patterned medium represented by a discrete track medium or bit patterned medium suitable for high recording density, uniformly on the whole surface of the magnetic disk substrate, and accurately according to the mask. According to one embodiment, a soft magnetic film, an under coating film, and a magnetic film are formed on a substrate. A mask having an arbitrary pattern shape provided for forming the track guide separation area in the magnetic film is formed on the magnetic film, and the track guide separation area is formed by irradiating ions and electrons onto the surface of the magnetic film and applying an intermittent voltage to the substrate, thereby non-magnetizing the area irradiated.
    Type: Grant
    Filed: October 20, 2008
    Date of Patent: March 31, 2015
    Assignee: HGST Netherlands B.V.
    Inventors: Hiroshi Inaba, Hiroshi Kanai, Nobuto Yasui, Toshinori Ono
  • Publication number: 20150086460
    Abstract: Provided is a method for producing a high-quality boron nitride film grown by using a borazine oligomer as a precursor through a metal catalyst effect. The method solves the problems, such as control of a gaseous precursor and vapor pressure control, occurring in CVD(Chemical vapor deposition) according to the related art, and a high-quality hexagonal boron nitride film is obtained through a simple process at low cost. In addition, the hexagonal boron nitride film may be coated onto various structures and materials. Further, selective coating is allowed so as to carry out coating in a predetermined area and scale-up is also allowed. Therefore, the method may be useful for coating applications of composite materials and various materials.
    Type: Application
    Filed: November 18, 2013
    Publication date: March 26, 2015
    Applicant: KOREA INSTITUTE OF SCIENCE AND TECHNOLOGY
    Inventors: Myung Jong KIM, Sungchan PARK, Hyunjin CHO, Sukang BAE, Jin-Hyung PARK, Jung Ho KANG, Sang Ook KANG, Changhyup LEE
  • Patent number: 8986776
    Abstract: The invention relates to a method for producing a microbial substance-releasing layer on a technical surface. The inventive method comprises three steps: a) producing a solution from polyvinylacetate, a preservative agent and a solvent, b) applying the solution to the technical surface, and c) drying the solution applied to the technical surface while forming the layer. The inventive method is characterized by using benzoic acid, sorbic acid, natamycin, bacteriocines, plant extracts or mixtures thereof as the preservative agent and an ethanol/water mixture, ethyl acetate or acetone as the solvent.
    Type: Grant
    Filed: September 21, 2011
    Date of Patent: March 24, 2015
    Assignee: Fraunhofer-Gesellschaft zur Förderung der Angewandten Forschung e.V.
    Inventors: Eva Kensbock, Theresa Sandmeier, Barbara Maria Sandmeier, Ulrich Matthias Sandmeier, Stephan Maximillian Sandmeier
  • Publication number: 20150078704
    Abstract: An optical device includes: an optical element with a surface including one of a light-receiving portion and a light-emitting portion; a resin layer provided over the one of light-receiving portion and the light-emitting portion; and a resin lens provided over the resin layer, wherein the resin layer includes a first shape larger than a second shape of the resin lens in a direction parallel to the surface.
    Type: Application
    Filed: July 17, 2014
    Publication date: March 19, 2015
    Inventors: Mariko Kase, Takashi Shiraishi
  • Publication number: 20150077500
    Abstract: An ink-based digital printing system suitable for use with hydrophilic and/or aqueous dampening fluids includes an imaging member having an imaging member material that is hydrophilic at the imaging surface.
    Type: Application
    Filed: September 16, 2013
    Publication date: March 19, 2015
    Applicant: XEROX CORPORATION
    Inventors: Sarah J. VELLA, Carolyn MOORLAG
  • Patent number: 8974868
    Abstract: A method for processing a substrate includes disposing the substrate in a deposition chamber configured to perform a deposition process and depositing a film on the substrate using the deposition process. The substrate having the film thereon is then transferred from the deposition chamber into a treatment chamber and a plasma cleaning process is performed on the substrate in the treatment chamber. Further processing of the substrate is performed after the plasma cleaning process.
    Type: Grant
    Filed: March 21, 2005
    Date of Patent: March 10, 2015
    Assignee: Tokyo Electron Limited
    Inventors: Tadahiro Ishizaka, Audunn Ludviksson
  • Patent number: 8974870
    Abstract: Methods for fabricating porous low-k materials are provided, such as plasma enhanced chemically vapor deposited (PE-CVD) and chemically vapor deposited (CVD) low-k films used as dielectric materials in between interconnect structures in semiconductor devices. More specifically, a new method is provided which results in a low-k material with significant improved chemical stability and improved elastic modulus, for a porosity obtained.
    Type: Grant
    Filed: September 6, 2011
    Date of Patent: March 10, 2015
    Assignee: IMEC
    Inventors: Mikhail Baklanov, Quoc Toan Le, Laurent Souriau, Patrick Verdonck
  • Patent number: 8968873
    Abstract: A microfluidic device to produce polymersomes having three coaxial passageways of increasing size with fluid flowing in one direction. The first and smallest passageway contains the content of the polymersome, the middle passageway contains a block copolymer, and the largest and outer passageway contains an aqueous medium or water. The device can produce polymersomes with control of size and membrane thickness. The device will allow quantitative loading of the polymersomes in high quantities. The device is robust and easily assembled and has the ability to independently control the three streams involved in making the polymersomes.
    Type: Grant
    Filed: August 12, 2011
    Date of Patent: March 3, 2015
    Assignees: University of Connecticut, Princeton University
    Inventors: Douglas H. Adamson, Michael Stredney, Robert K. Prud'homme, Mustafa Erhan Yildiz
  • Publication number: 20150056381
    Abstract: A method for forming a conductive film on a substrate includes forming a precursor-containing film on the substrate; and irradiating plasma of a treatment gas to the precursor-containing film by an atmospheric pressure plasma treatment device, removing the organic substances and forming a conductive film from the metallic fine particles or the metallic compounds, the atmospheric pressure plasma treatment device including: a microwave generator, a hollow waveguide, a gas supply device, and an antenna portion configured to discharge to the outside, whereby the treatment gas being converted to plasma by the microwaves, the plasma thus generated being irradiated to the precursor-containing film on the substrate, and a hydrogen radical density of the plasma at a position spaced apart 7 mm from the slot holes being equal to or higher than 2×1014/cm3.
    Type: Application
    Filed: February 14, 2013
    Publication date: February 26, 2015
    Inventors: Masaru Hori, Hirotaka Toyoda, Makoto Sekine, Keigo Takeda, Hiroki Kondo, Kenji Ishikawa, Yusuke Kubota, Hitoshi Itoh, Hidenori Miyoshi
  • Patent number: 8962097
    Abstract: A film deposition process comprising exposing a surface of a substrate to a first plasma treatment having plasma reactants in a plasma chamber to form an activated substrate surface. The activated surface has a lower water contact angle than the substrate surface before the surface activating. The process comprises introducing water vapor into the plasma chamber to form a water layer on the activated surface. The process comprises introducing pre-cursors molecules into the plasma chamber in the presence of a second plasma to graft a layer of reacted pre-cursor molecules on the water layer.
    Type: Grant
    Filed: October 31, 2012
    Date of Patent: February 24, 2015
    Inventors: Edward Maxwell Yokley, Yaw Samuel Obeng
  • Patent number: 8963019
    Abstract: A circuit board and a manufacturing method thereof are provided. According to the method, a dielectric layer is formed on a dielectric substrate, and the dielectric layer contains active particles. A surface treatment is performed on a surface of the dielectric first conductive layer is formed on the activated surface of the dielectric layer. A conductive via is formed in the dielectric substrate and the dielectric layer. A patterned mask layer is formed on the first conductive layer, in which the patterned mask layer exposes the conductive via and a part of the first conductive layer. A second conductive layer is formed on the first conductive layer and conductive via exposed by the patterned mask layer. The patterned mask layer and the first conductive layer below the patterned mask layer are removed.
    Type: Grant
    Filed: August 9, 2012
    Date of Patent: February 24, 2015
    Assignee: Unimicron Technology Corp.
    Inventors: Cheng-Po Yu, Shang-Feng Huang, Chang-Ming Lee, Young-Sheng Bai
  • Patent number: 8962133
    Abstract: An object of the present invention is to provide: an electrophotographic member which enhances image quality, prevents the lowering of a grade of an image even when images have been repeatedly output, and can remarkably enhance the stability of the grade of the image; an intermediate transfer member; and an image forming apparatus. The electrophotographic member includes a base layer and a surface layer, wherein the surface layer has a binder resin, perfluoropolymer fine particles, a fluorocarbon resin dispersing agent and a particular fluorine compound, wherein the perfluoropolymer fine particle has a fluorine compound carried on its surface.
    Type: Grant
    Filed: December 5, 2012
    Date of Patent: February 24, 2015
    Assignee: Canon Kabushiki Kaisha
    Inventors: Koichi Sato, Naoto Kameyama, Kenji Onuma, Koichi Nakamura, Tadanobu Yoshikawa, Hiroshi Tominaga, Akira Watanabe, Yasushi Shimizu, Rieko Sakamoto
  • Publication number: 20150047885
    Abstract: Provided is a patterned conductive film may include a conductive interconnected nano-structure film. The conductive interconnected nano-structure film may include a first region and a second region adjacent to the first region. A conductivity of the first region may be at least 1000 times a conductivity of the second region.
    Type: Application
    Filed: November 15, 2013
    Publication date: February 19, 2015
    Applicant: Industrial Technology Research Institute
    Inventors: Yu-Pei Chang, Ming-Huan Yang, Chun-Yi Chiu
  • Publication number: 20150037566
    Abstract: A laminate having excellent abrasion resistance to physical stimuli such as dust. The laminate comprises a base layer, a hard coat layer and a top coat layer containing flaky metal oxide fine particles all of which are formed in the mentioned order. The flaky metal oxide fine particles are hardened by at least one method selected from the group consisting of ionizing material exposure, ionizing radiation exposure, infrared exposure, microwave exposure and high-temperature vapor exposure.
    Type: Application
    Filed: February 20, 2013
    Publication date: February 5, 2015
    Applicant: CENTRAL JAPAN RAILWAY COMPANY
    Inventors: Tatsuya Ekinaka, Takehiro Suga, Toshio Kita, Ryo Nimi, Yuta Toyoshima, Tetsuya Shichi, Daisuke Yoshioka, Makoto Yamashita, Sohei Okazaki, Yuji Kaneko
  • Patent number: 8945684
    Abstract: The invention relates to a process for depositing an anti-fouling top coat onto the outermost coating layer of a coated optical article, comprising the following steps: a) providing an optical article having two main faces, at least one of which being coated with an outermost layer; b) treating said outermost layer with energetic species resulting in surface physical attack and/or chemical modification; and c) vacuum evaporating a liquid coating material for an anti-fouling top coat by means of an evaporation device, resulting in the deposition of the evaporated coating material onto the treated outermost layer of the optical article, wherein prior to the vacuum evaporation step of the liquid coating material, said liquid coating material has been treated with energetic species.
    Type: Grant
    Filed: November 4, 2005
    Date of Patent: February 3, 2015
    Assignee: Essilor International (Compagnie Generale d'Optique)
    Inventor: Gérald Fournand