Superconductor Patents (Class 427/62)
  • Patent number: 5462762
    Abstract: A method of fabricating a superconducting quantum interference device (DC-SQUID) constructed from short weak links with untrafine wires. The method comprises the following steps: successive forming a niobium nitride film and a silicon nitride film on a substrate; oblique etching of the niobium nitride film and said silicon nitride film with respect to the substrate by a reactive ion etching process using a mixture of oxygen and CF.sub.4 gases to form an olique edge; and successive forming a barrier thin film and a counterelectrode of niobium on the said edge. The short weak links wire fabricated by field evaporation technique. The counterelectrode material were field-evaporated and formed the conductive paths in the pinholes in the insulating thin film.
    Type: Grant
    Filed: June 13, 1994
    Date of Patent: October 31, 1995
    Assignee: Shinko Electric Industries Co., Ltd.
    Inventors: Yoshio Onuma, Katsuyoshi Hamasaki
  • Patent number: 5455451
    Abstract: Superconductized electronic devices, such as a Josephson junction device, or superconductized optical devices represented by a light emitting and receiving devices of semiconductor laser are available using semiconductor materials which normally have no superconducting characteristics. The devices can operate by controlling the behavior of a Cooper pair in an active region which is formed in the semiconductor in advance using the penetrating phenomenon of the Cooper pair caused in the semiconductor proximate to the superconductor.
    Type: Grant
    Filed: April 22, 1993
    Date of Patent: October 3, 1995
    Assignee: Hitachi, Ltd.
    Inventors: Toshiyuki Usagawa, Masashi Kawasaki, Kensuke Ogawa, Toshiyuki Aida
  • Patent number: 5453306
    Abstract: The generation of a reaction product is suppressed between a metallic substrate and plasma in depositing a ceramic intermediate layer on the metallic substrate in a process for depositing an oxide film on the metallic substrate by thermal plasma flash evaporation method. Thus, there is no reaction phase in the ceramic intermediate layer and the metallic substrate, and an intermediated buffer layer of only oxide ceramic is deposited on a flat surface of the metallic substrate. The intermediate ceramic layer is deposited in inert atmosphere of a low oxygen concentration at a temperature of less than 600.degree. C. for the metallic substrate. Then, a superconducting thin film is deposited on the ceramic intermediate layer.
    Type: Grant
    Filed: June 30, 1994
    Date of Patent: September 26, 1995
    Assignees: International Superconductivity Technology Center, Hokkaido Electric Power Co., Inc., Fujikura Ltd., Tokyo Gas Co., Ltd., Hitachi Cable, Ltd.
    Inventors: Noriyuki Tatsumi, Jiro Tsujino, Atsushi Kume, Yuh Shiohara, Shoji Tanaka, Shigenori Yuhya, Kei Kikuchi
  • Patent number: 5449659
    Abstract: A method for producing multilayer structures comprised of materials with incompatible processing parameters is disclosed. A bonding layer of arbitrary dielectric constant is applied to each of two substructures. Each substructure is composed of a substrate and at least one epitaxial crystalline layer. Examples of particular bonding materials used are polyimide, fluorocarbon polymers, other organic materials, and glass. The bonding material may be applied like photoresist, or sputtered, or applied in any appropriate manner consistent with the processing constraints of the crystalline materials. Structures formable in this way include superconductor-amorphous dielectric-superconductor and ferroelectric-insulator-semiconductor trilayers, as well as microwave resonators and multichip modules.
    Type: Grant
    Filed: November 9, 1992
    Date of Patent: September 12, 1995
    Assignee: Conductus, Inc.
    Inventors: Stephen M. Garrison, Randy W. Simon
  • Patent number: 5447906
    Abstract: Superconducting transition metal oxide films are provided which exhibit very high onsets of superconductivity and superconductivity at temperatures in excess of 40.degree. K. These films are produced by vapor deposition processes using pure metal sources for the metals in the superconducting compositions, where the metals include multi-valent nonmagnetic transition metals, rare earth elements and/or rare earth-like elements and alkaline earth elements. The substrate is exposed to oxygen during vapor deposition, and, after formation of the film, there is at least one annealing step in an oxygen ambient and slow cooling over several hours to room temperature. The substrates chosen are not critical as long as they are not adversely reactive with the superconducting oxide film. Transition metals include Cu, Ni, Ti and V, while the rare earth-like elements include Y, Sc and La. The alkaline earth elements include Ca, Ba and Sr.
    Type: Grant
    Filed: June 23, 1994
    Date of Patent: September 5, 1995
    Assignee: International Business Machines Corporation
    Inventors: Praveen Chaudhari, Richard J. Gambino, Roger H. Koch, James A. Lacey, Robert B. Laibowitz, Joseph M. Viggiano
  • Patent number: 5447910
    Abstract: An oxide superconducting film is formed using laser deposition of applying an excimer laser beam (1, 21) onto a target (3, 23) through a converging lens (2, 22) and depositing atoms and/or molecules scattered from the target (3, 23) on the base material (5). The converging lens (2) is prepared by a cylindrical lens, or the converging lens (22) is moved, so that a portion (4, 25) irradiated with the laser beam (1, 21) on the target (3, 23) is linearized. Thus, it is possible to form an oxide superconducting film which is homogeneous over a region having a relatively large area on the base material (5) not only in film thickness but also in property.
    Type: Grant
    Filed: October 4, 1993
    Date of Patent: September 5, 1995
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Noriki Hayashi, Noriyuki Yoshida
  • Patent number: 5447909
    Abstract: A superconducting thin oxide film is formed by the steps of mixing a gas of the organometal compound of the alkali earth metal, a gas of at least one organometal compound of the element of the group IIIa and/or a halogenide thereof, and a gas of at least one organometal compound of a transition metal and/or a halogenide thereof, with an inert gas, to produce a gas mixture; mixing an oxygen-containing gas to said gas mixture to produce a gas mixture having a predetermined oxygen partial pressure; and thermally decomposing said gas mixture having the predetermined oxygen partial pressure on a substrate to form a thin film of a complex oxide on said substrate.
    Type: Grant
    Filed: September 9, 1991
    Date of Patent: September 5, 1995
    Assignee: Kawasaki Steel Corporation
    Inventors: Makoto Takahashi, Hiroshi Umino
  • Patent number: 5446016
    Abstract: A method for forming a patterned oxide superconductor thin film on a substrate comprises steps of forming a metal or semi-metal layer on a portion of the substrate, on which the oxide superconductor thin film will be formed, forming a layer of a material including silicon on a portion of the substrate, on which an insulating layer will be formed, removing the metal or semi-metal layer and depositing an oxide superconductor thin film over the substrate.
    Type: Grant
    Filed: February 15, 1994
    Date of Patent: August 29, 1995
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: So Tanaka, Takao Nakamura, Michitomo Iiyama
  • Patent number: 5441926
    Abstract: A superconducting transistor having a source region and a drain region are formed by a YBCO film on a barrier layer, which is composed of a PBCO film formed on an STO substrate. A gate electrode is disposed on the thinner wall at the back of the STO substrate. In a superconducting transistor so constructed the electric field created by the gate voltage works effectively at an interface with the barrier layer, more carriers can be drawn out relative to the applied gate voltage, and it becomes possible for a large superconduction current to flow.
    Type: Grant
    Filed: November 12, 1993
    Date of Patent: August 15, 1995
    Assignee: Fuji Electric Co., Ltd.
    Inventors: Hiroshi Kimura, Toshiyuki Matsui, Takeshi Suzuki, Kazuo Mukae, Akihiko Ohi
  • Patent number: 5442195
    Abstract: A superconducting device may include a superconducting weak link equipped with plural superconducting devices that are used as input-output terminals formed on the same plane and at least one current source for applying current to at least one of these superconducting electrodes. A superconducting device suitable for high integration can be realized as it enables structuring of a superconducting weak link 1 equipped with plural superconducting electrodes 101, 102, 103 and 104 that can be used as input-output terminals and changing symmetry of superconducting electrode arrangement through the form of a normal conductor 201 which is forming a superconducting weak link. In addition, when this superconducting device is used as a quasi-particle injection type device, a superconducting device with plural superconducting electrodes that can be used for a gate electrode, drain electrode or control electrode can be realized. Further, a superconducting device equipped with new functions (e.g.
    Type: Grant
    Filed: October 18, 1993
    Date of Patent: August 15, 1995
    Assignee: Hitachi, Ltd.
    Inventors: Kazuo Saitoh, Toshikazu Nishino, Mutsuko Hatano
  • Patent number: 5439877
    Abstract: In-situ process are provided for 1) depositing on a substrate a crystalline thin film of a high temperature superconducting oxide by exposing the back surface of the substrate, i.e., the surface of the substrate opposite the surface on which the thin film is deposited, to radiation from a direct radiant heat source, thereby heating the substrate to the desired growth temperature, and maintaining the radiation and thereby the desired growth temperature during the deposition of the thin film, and 2) depositing a crystalline thin film of high temperature superconducting oxides onto both the front and back surfaces of a substrate.
    Type: Grant
    Filed: March 24, 1994
    Date of Patent: August 8, 1995
    Assignee: E. I. Du Pont de Nemours and Company
    Inventor: Dean W. Face
  • Patent number: 5438037
    Abstract: A method for depositing a thin film of a material on an oxide thin film having a perovskite type crystal structure formed on a substrate comprising steps of depositing a seed layer of a single crystal of the material having an extremely thin thickness at a relatively high substrate temperature on the oxide thin film having a perovskite type crystal structure and depositing a thin film of the material on the seed layer at a lower substrate temperature.
    Type: Grant
    Filed: April 14, 1994
    Date of Patent: August 1, 1995
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventor: So Tanaka
  • Patent number: 5434126
    Abstract: A thin-film superconductor includes a substrate, a ferroelectric film, and a superconducting oxide film. The ferroelectric film extends on the substrate. The ferroelectric film is made of a crystal contains Bi and O. The superconducting oxide film extends on the ferroelectric film, and containing Bi, Cu, and an alkaline-earth metal element. The superconducting oxide film may contain at least two different alkaline-earth metal elements.
    Type: Grant
    Filed: March 25, 1994
    Date of Patent: July 18, 1995
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Yo Ichikawa, Koichi Mizuno, Toshifumi Sato, Hideaki Adachi, Kentaro Setsune
  • Patent number: 5434129
    Abstract: A method of producing a high temperature long length coil of superconductor wire is disclosed. The method utilizes the "powder-in-tube" method or a similar method to form a wire. The wire is then shaped into rectangular form and wound around a mandrell. Rings, having a gap exposing the superconductor inside the silver or silver alloy tube are formed by cutting the wound wire and the rings are pressed to their final thickness. Each ring is then coated with an insulator and filed on both an outer side of one end of the gap and on an inner side of the other end of the gap. The rings are then positioned adjacent one another such that the gaps are staggered. They are placed in a manner in which the exposed superconductor on an outer side of one ring is in contact with the exposed superconductor on the inner side of an adjacent ring. The rings are then clamped together and heated to merge the superconducting material by diffusion. A long length coil is thus formed from the rings that are clamped.
    Type: Grant
    Filed: September 23, 1993
    Date of Patent: July 18, 1995
    Assignee: Advanced Superconductors, Inc.
    Inventors: Leszek Motowidlo, Pradeep Haldar
  • Patent number: 5434127
    Abstract: For manufacturing a superconducting device, a first c-axis orientated oxide superconductor thin film having a very thin thickness is formed on a principal surface of a substrate, and a stacked structure of a gate insulator and a gate electrode is formed on a portion of the first oxide superconductor thin film. An a-axis orientated oxide superconductor thin film is grown, using the gate electrode as a mask, so that second and third superconducting regions having a relatively thick thickness are formed at both sides of the gate electrode, electrically isolated from the gate electrode. The superconducting device thus formed can functions as a super-FET.
    Type: Grant
    Filed: July 25, 1994
    Date of Patent: July 18, 1995
    Assignee: Sumitomo Electric Industries, ltd.
    Inventors: Takao Nakamura, Hiroshi Inada, Michitomo Iiyama
  • Patent number: 5432151
    Abstract: A process for depositing a biaxially aligned intermediate layer over a non-single crystal substrate is disclosed which permits the subsequent deposition thereon of a biaxially oriented superconducting film. The process comprises depositing on a substrate by laser ablation a material capable of being biaxially oriented and also capable of inhibiting the migration of substrate materials through the intermediate layer into such a superconducting film, while simultaneously bombarding the substrate with an ion beam. In a preferred embodiment, the deposition is carried out in the same chamber used to subsequently deposit a superconducting film over the intermediate layer. In a further aspect of the invention, the deposition of the superconducting layer over the biaxially oriented intermediate layer is also carried out by laser ablation with optional additional bombardment of the coated substrate with an ion beam during the deposition of the superconducting film.
    Type: Grant
    Filed: July 12, 1993
    Date of Patent: July 11, 1995
    Assignee: Regents of the University of California
    Inventors: Richard E. Russo, Ronald P. Reade, Stephen M. Garrison, Paul Berdahl
  • Patent number: 5432149
    Abstract: A weak link is patterned from a high-temperature superconducting film using standard lithographic techniques. Once the area in which the weak link is to be located is defined, the remainder of the film is covered with an oxygen-impermeable material. The oxygen is then removed in the weak link area by placing the sample in a vacuum furnace at a sufficient temperature to drive out the oxygen. Once the oxygen is removed, the weak link becomes non-superconducting. A high power solid state laser is placed in front of the weak link, and superconductivity is restored in the weak link area, in situ. The process is performed in a liquid nitrogen environment.
    Type: Grant
    Filed: April 8, 1994
    Date of Patent: July 11, 1995
    Assignee: Regents of the University of California
    Inventors: Ivan K. Schuller, Gladys L. Nieva, Julio J. Guimpel, Eduardo Osquiguil, Yvan Bruynseraede
  • Patent number: 5430011
    Abstract: A superconducting thin film formed on a substrate, comprising at least one oxide superconductor layer formed on the principal surface of said substrate and at least one oxide layer formed of an oxide which compensates for crystalline incompleteness at the surface of said oxide superconductor layer, and which is arranged on or under the superconducting layer.
    Type: Grant
    Filed: September 17, 1992
    Date of Patent: July 4, 1995
    Assignee: Sumitomi Electric Industries, Ltd.
    Inventors: So Tanaka, Michitomo Iiyama
  • Patent number: 5430014
    Abstract: c-axis oriented YBa.sub.2 Cu.sub.3 O.sub.7 layers are grown with intervening SrTiO.sub.3 layers bridged over steps at which there is a transformation to a-axis crystal-oriented growth. The multilayer superconductor has YBa.sub.2 Cu.sub.3 O.sub.7 layers which are not thicker than 500 nm while the intervening layers of SrTiO.sub.3 have thicknesses of 20 to 30 nm.
    Type: Grant
    Filed: October 30, 1992
    Date of Patent: July 4, 1995
    Assignee: Forschungszentrum Julich GmbH
    Inventors: Helmut Soltner, Ulrich Poppe, Knut Urban
  • Patent number: 5424281
    Abstract: An oxide-superconducting device comprises first and second electrodes of oxide-superconductor which are connected through a tunnel barrier layer. The oxide-superconductor is formed on a substrate having a recess, and it includes grain boundaries along the recess. The tunnel barrier layer is formed along the grain boundaries, and it is made of any material of an element F, Cl, Br, I, C, O, S, P or N, a mixture consisting of such elements, and a compound containing such an element, the material being introduced into the grain boundaries and/or lattice interstices near the grain boundaries.
    Type: Grant
    Filed: January 26, 1993
    Date of Patent: June 13, 1995
    Assignee: Hitachi, Ltd.
    Inventors: Yoshinobu Tarutani, Ushio Kawabe
  • Patent number: 5424282
    Abstract: A process for producing a composite oxide superconducting wire is disclosed, which comprises the steps of compacting material powder for an oxide superconductor in a noble metal pipe; heating the metal pipe filled with the material powder at a temperature ranging between an upper limit corresponding to the lowest melting point of any one of constituent components in the material powder and a lower limit which is lower by 100.degree. C. than said upper limit to sinter the material powder and cooling the product at a cooling velocity of less than 50.degree. C./min, and further including a series of wire-drawing, annealing and sintering steps. Furthermore, an intermediate layer of noble metal can be interposed between the oxide superconductor and the metal pipe.
    Type: Grant
    Filed: February 22, 1994
    Date of Patent: June 13, 1995
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Susumu Yamamoto, Teruyuki Murai, Nozomu Kawabe, Tomoyuki Awazu, Shuji Yazu, Tetsuji Jodai
  • Patent number: 5422336
    Abstract: A superconducting transistor with superior withstand voltage having source region and a drain region formed of oxide superconductors 3, a PrBa.sub.2 Cu.sub.3 O.sub.7-x layer 2 or an ScBa.sub.2 Cu.sub.3 O.sub.7-x layer 2 forming an intermediate region sandwiched by the source and drain regions. The regions are disposed on a substrate 1. An insulation layer 4 is disposed on the intermediate region. A transistor uses the intermediate region as an insulator when the gate is turned off, and as a superconductor when the gate is turned on.
    Type: Grant
    Filed: September 22, 1993
    Date of Patent: June 6, 1995
    Assignee: Fuji Electric Co., Ltd.
    Inventors: Koichi Tsuda, Toshiyuki Matsui, Takeshi Suzuki, Hiroshi Kimura, Takashi Ishii, Akihiko Ohi, Kazuo Mukae
  • Patent number: 5422338
    Abstract: A thin film device comprising a substrate and an oxide superconductor film formed thereon, wherein said oxide superconductor film comprises atomic monolayers each composed of at least one kind of element of the oxide superconductor, which are deposited substantially in a vertical direction to the substrate so that the pereodicy of the lattice structure of the oxide superconductor is substantially maintained, and at an intermediate portion of the oxide superconductor film, at least a part of the atoms of the oxide superconductor is substituted by other element in the lattice structure of the oxide superconductor to form a non-superconductor interlayer, and the pereodicy of the lattice structure of the oxide superconductor film is substantially maintained across the interface between the oxide superconductor and said non-superconductor interlayer.
    Type: Grant
    Filed: January 10, 1994
    Date of Patent: June 6, 1995
    Assignee: Mitsubishi Chemical Corporation
    Inventor: Yukio Watanabe
  • Patent number: 5420101
    Abstract: The invention relates to a structured superconductive track and a process for making it from epitaxial high temperature superconductor (HTSC) layers using lift off technique, in which a HTSC track deposited on an elevated substrate region is surrounded by an insulating layer of doped HTSC lying on a lower substrate region, and the substrate region with the superconductive track formed thereon is elevated such that the superconductive track is isolated from the insulating layer.
    Type: Grant
    Filed: December 23, 1993
    Date of Patent: May 30, 1995
    Assignee: Forschungszentrum Julich GmbH
    Inventors: Carlo Copetti, Jurgen Schubert, Willi Zander, Christoph Buchal
  • Patent number: 5416063
    Abstract: Disclosed is a method for forming a superconductive oxide layer on a substrate. The method comprises applying a precursor solution to a major surface of the substrate such that a metal-containing layer is formed on the surface, and heat treating the substrate/layer combination such that at least a substantial portion of the layer material is transformed into superconductive oxide. Exemplarily, the precursor solution is formed by dissolving Ba--, Y--, and Cu-containing compounds in acetic acid and water, spinning the solution on a MgO substrate, driving of unwanted constituents of the resulting layer at 400.degree. C., heating the combination to about 830.degree. C. in O.sub.2 such that the (perovskite) phase that is associated with superconductivity in YBa.sub.2 Cu.sub.3 O.sub.7 is formed, and oxygenating the layer at about 400.degree. C. in O.sub.2.
    Type: Grant
    Filed: November 30, 1987
    Date of Patent: May 16, 1995
    Assignee: AT&T Corp.
    Inventors: Michal E. Gross, Catherine E. Rice
  • Patent number: 5416072
    Abstract: A superconducting device has a superconducting channel formed of an oxide superconductor on the principal surface of a substrate. A source electrode and a drain electrode likewise formed of oxide superconductor, are electrically connected by the channel to provide for superconducting current flow. A superconducting gate electrode is isolated by a side insulating region which completely covers each of opposite side surfaces of the gate electrode. The relative thicknesses of both the source and drain electrodes are much greater than that of the channel thickness. The superconducting channel and the gate insulator are both formed by one oxide thin film, and in a preferred embodiment, the gate electrode likewise is provided by the same film which forms the gate insulator and channel.
    Type: Grant
    Filed: July 26, 1993
    Date of Patent: May 16, 1995
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Hiroshi Inada, Takao Nakamura, Michitomo Iiyama
  • Patent number: 5413988
    Abstract: An oxide superconductor thin film of Y.sub.1.+-..alpha. Ba.sub.2.+-..beta. Cu.sub.3.+-..gamma. O.sub.7-.delta. with a smooth surface having a low density of particles being generated without decreasing superconductivity is produced by the steps of applying a pulsed laser beam to the target formed of an oxide material having an apparent density of 95% or more, substantially composed of Y.sub.1.+-..alpha. Ba.sub.2.+-..beta. Cu.sub.3.+-..gamma. O.sub.7-.delta., which is obtained from a molded body of an amorphous powder by subjecting it to partial melting, followed by gradual cooling, depositing and accumulating an irradiated and evaporated oxide material of the target on a substrate.
    Type: Grant
    Filed: April 13, 1994
    Date of Patent: May 9, 1995
    Assignees: International Superconductivity Technology Center, Mitsubishi Materials Corporation
    Inventors: Kunihiko Hayashi, Shuichi Fujino, Youichi Enomoto, Shoji Tanaka
  • Patent number: 5413982
    Abstract: A superconducting device comprising a substrate having a principal surface, a non-superconducting oxide layer having a similar crystal structure to that of the oxide superconductor, an extremely thin superconducting channel formed of a c-axis oriented oxide superconductor thin film on the non-superconducting oxide layer, a superconducting source region and a superconducting drain region formed of an a-axis oriented oxide superconductor thin film at the both sides of the superconducting channel separated from each other, which are electrically connected each other by the superconducting channel, so that superconducting current can flow through the superconducting channel between the superconducting source region and the superconducting drain region, and a gate electrode of a material which includes silicon through a gate insulator on the superconducting channel for controlling the superconducting current flowing through the superconducting channel, in which the gate electrode is embedded between the supercondu
    Type: Grant
    Filed: December 14, 1992
    Date of Patent: May 9, 1995
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Hiroshi Inada, So Tanaka, Michitomo Iiyama
  • Patent number: 5411938
    Abstract: A method and article of manufacture of a lead oxide based glass coating on a high temperature superconductor. The method includes preparing a dispersion of glass powders in a solution, applying the dispersion to the superconductor, drying the dispersion before applying another coating and heating the glass powder dispersion at temperatures below oxygen diffusion onset and above the glass melting point to form a continuous glass coating on the superconductor to establish compressive stresses which enhance the fracture strength of the superconductor.
    Type: Grant
    Filed: July 30, 1993
    Date of Patent: May 2, 1995
    Assignee: University of Chicago
    Inventors: Weite Wu, Cha Y. Chu, Kenneth C. Goretta, Jules L. Routbort
  • Patent number: 5403819
    Abstract: A method for preparing a thin film formed of an oxide superconductor on a substrate by emitting molecular beams of constituent elements of the oxide superconductor to the substrate under high vacuum, wherein at first a molecular beam of one of the constituent elements of the oxide superconductor, of which an oxide thin film can be deposited so as to have a smooth surface, is emitted so as to form the oxide thin film of one or two unit cells. And then, all the molecular beams of constituent elements of the oxide superconductor are emitted to the oxide thin film so as to form the oxide superconductor thin film.
    Type: Grant
    Filed: November 16, 1993
    Date of Patent: April 4, 1995
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventor: Takao Nakamura
  • Patent number: 5401530
    Abstract: A process for producing a Josephson device is disclosed, wherein a Josephson junction is formed over a recess step by oblique deposition and a protective layer of conducting material or semiconducting material is formed on the Josephson junction. The actual thickness of the Josephson junction is controlled to be smaller due to the proximity effect.
    Type: Grant
    Filed: March 3, 1994
    Date of Patent: March 28, 1995
    Assignee: Osaka Gas Company, Ltd.
    Inventors: Itsuro Tamura, Satoshi Fujita, Masao Wada
  • Patent number: 5401717
    Abstract: This invention is related to the preparation of an elongate conductor having a silver sheath, and a core of an aligned polycrystalline oxide superconductor having the approximate formula Bi.sub.2-x Pb.sub.x Sr.sub.2-a L.sub.a+b Ca.sub.1-b Cu.sub.2 O.sub.y where y is from 7.5 to 8.5, and L is a lanthanide. A powder mixture is formed comprised of a first portion of a superconducting bismuth oxide compound that can be reaction-sintered to form the core oxide superconductor, and a second portion of oxides suitable for reacting with the first portion to form the core oxide superconductor. An elongate body is formed having a silver sheath, and a core of the mixture. The body is deformed to align the first portion, and heated to reaction-sinter the first and second portions to form the core oxide superconductor.
    Type: Grant
    Filed: February 14, 1994
    Date of Patent: March 28, 1995
    Assignee: General Electric Company
    Inventor: Kenneth W. Lay
  • Patent number: 5399547
    Abstract: The present invention provides a methodology for increasing the critical current density carried by high transition temperature; superconductive materials. The methodology is employed using any Noble metal to form an electrically conductive coating; and is used with any high transition temperature superconductive material conventionally known. The resulting improved superconducting material demonstrates an enhanced critical current density capability in the order of 48%; and substantially decreases the degradation of the critical current density in the presence of an applied magnetic field; and offers a range of other advantages including environmental degradation protection, an increased mechanical strength, and an improved capability for adding electrical contacts.
    Type: Grant
    Filed: September 17, 1993
    Date of Patent: March 21, 1995
    Assignee: Trustees of Boston University
    Inventors: Yehia Z. Negm, George O. Zimmerman, Robert E. Powers, Jr.
  • Patent number: 5389606
    Abstract: An in-situ process for preparing thin films which contain relatively volatile and involatile oxides is disclosed, in particular, crystalline thin films of oxides of conductors, superconductors or ferroelectric materials, wherein separate sources of the relatively volatile and involatile oxides during depositon of the thin film are employed.
    Type: Grant
    Filed: November 12, 1993
    Date of Patent: February 14, 1995
    Assignee: E. I. du Pont de Nemours and Company
    Inventor: Dean W. Face
  • Patent number: 5384307
    Abstract: A method of forming the superconducting body comprises forming a body comprised of a precursor deposit of an oxide superconductor on a substrate formed from a silver alloy comprised of a solute metal from the group consisting of yttrium, aluminum, lithium, zirconium, alkaline earths, lanthanides, and mixtures thereof in an effective amount to form oxide particles that increase the hardness of the substrate, and the balance silver. The body is annealed in an oxidizing atmosphere to form the oxide particles in the substrate, and the deposit into a continuous oxide superconductor.
    Type: Grant
    Filed: January 18, 1994
    Date of Patent: January 24, 1995
    Assignee: General Electric Company
    Inventor: Kenneth W. Lay
  • Patent number: 5379019
    Abstract: An apparatus for manufacturing embossed foil for use in controlling the flow of the molten metal tin plating provided in forming laminated tape for use in superconducting magnets utilizing meshing knurling rollers with truncated paramydical elements arranged to provide and embossed pattern for uniform and controlled flow of the tin.
    Type: Grant
    Filed: October 12, 1993
    Date of Patent: January 3, 1995
    Assignee: General Electric Company
    Inventors: Neil G. Fiddes, Christopher G. King, Gerhard S. Kobus, Anthony Mantone, Frank D. Shaffer
  • Patent number: 5376627
    Abstract: Provided herein is a method of efficiently preparing a thin film having a higher critical temperature as to an oxide superconducting material containing Tl. A thin film of an oxide containing Tl is formed and then heat treated at a temperature of about 850.degree. to 950.degree. C. for a short time, and thereafter further heat treated at a temperature, which is lower than the preceding heat treatment temperature, of at least about 750.degree. C. for a long time. The thin film is heat treated in an atmosphere having an oxygen partial pressure of not more than about 0.1 atm. In formation of a Tl superconducting thin film, on the other hand, a 1212 phase layer is reacted with an amorphous Ca--Cu--O layer to form a 1223 phase layer, or a layer containing volatile metal elements (Tl, Bi and Pb, for example) and oxygen is reacted with another layer containing other elements than the volatile metal elements to form a superconducting film having a high critical temperature.
    Type: Grant
    Filed: March 5, 1993
    Date of Patent: December 27, 1994
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Yasuko Torii, Katsuya Hasegawa, Hiromi Takei
  • Patent number: 5376625
    Abstract: A thin film superconductor assembly is disclosed along with a method of fabricating same. The assembly comprises a self-supporting substrate defining at least a portion of a containment for a flow of cryogenic fluid, a dielectric layer adherent to a surface of the substrate, a thin film superconductor adherent to the dielectric layer and a moisture and oxygen impervious electrically insulating coating covering the thin film superconductor. A method of forming such thin film superconductor assembly, wherein the dielectric layer consists essentially of aluminum nitride, comprises growing the aluminum nitride dielectric layer integrally on the surface of the substrate.
    Type: Grant
    Filed: February 20, 1992
    Date of Patent: December 27, 1994
    Assignee: Ford Motor Company
    Inventor: Robert C. McCune
  • Patent number: 5376628
    Abstract: Herein is disclosed a method of improving or producing an oxide superconductor. An oxide superconductor or starting material of oxide superconductor as an object material is irradiated with active oxygen species. The irradiation process is carried out while keeping the object material at a temperature at which the object material is effectively oxidized with the active oxygen species. The active oxygen species are formed on the inside or in the peripheral portion of a nonequilibrium or equilibrium, high-temperature plasma.
    Type: Grant
    Filed: March 9, 1992
    Date of Patent: December 27, 1994
    Assignee: Anelva Corporation
    Inventors: Atsushi Sekiguchi, Hideo Mito
  • Patent number: 5374613
    Abstract: A method for manufacturing an oxide superconductor thin film is disclosed, which comprises the steps of: (1) preparing a substrate; depositing an oxide superconductor thin film on said substrate by directing a beam containing constituent elements of an oxide superconductor to said substrate; and supplying excited oxygen to or near a thin film deposition site on said substrate during the deposition of said thin film, wherein said beam is selected from the group consisting of an ion beam, neutral particle beam, molecular beam, cluster beam and cluster ion beam, and wherein said excited oxygen is produced by means of generating discharge in an oxygen gas or oxygen-containing gas or by irradiating an oxygen gas or oxygen-containing gas with a beam.
    Type: Grant
    Filed: October 25, 1993
    Date of Patent: December 20, 1994
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Etsuo Noda, Setsuo Suzuki, Osami Morimiya, Kazuo Hayashi
  • Patent number: 5372089
    Abstract: Disclosed herein is a method of forming a single-crystalline thin film having excellent crystallinity on a base material without depending on the material for and crystallinity of the base material. In this method, a base material is provided thereon with a mask which can prevent chemical species contained in a vapor phase from adhering to the base material. The base material is continuously moved along arrow A, to deliver a portion covered with the mask into the vapor phase for crystal growth. Thus, a thin film is successively deposited on the portion of the base material, which is delivered from under the mask, from the vapor phase. A crystal growth end is formed on a boundary region between a portion of the base material which is covered with the mask and that which is exposed to the vapor phase, so that a crystal having the same orientation as the growth end is grown on a portion of the base material newly exposed by the movement.
    Type: Grant
    Filed: July 26, 1993
    Date of Patent: December 13, 1994
    Assignees: Sumitomo Electric Industries, Ltd., The Tokyo Electric Power Company Incorporated
    Inventors: Noriyuki Yoshida, Satoshi Takano, Kousou Fujino, Shigeru Okuda, Tsukushi Hara, Hideo Ishii
  • Patent number: 5369088
    Abstract: In order to prevent inflation of a metallic coating during heat treatment so that no ununiformity is caused in the critical current density in a method of preparing an oxide superconducting wire which is obtained by heat treating and sintering metal-coated raw material powder for an oxide superconductor, raw material powder (5) for an oxide superconductor is filled up in a metal billet (1), which in turn is degassed and sealed in the degassed state, elongated with application of hydrostatic extrusion, and then heat treated.
    Type: Grant
    Filed: March 19, 1992
    Date of Patent: November 29, 1994
    Assignee: Sumitomo Electric Industries, Inc.
    Inventors: Hidehito Mukai, Kenichi Sato, Nobuhiro Shibuta
  • Patent number: 5369089
    Abstract: Disclosed herein is a method of preparing an oxide superconducting wire comprising the steps of coating a powder material for forming an oxide superconductor with a metal, performing deformation processing on the metal-coated powder material thereby obtaining a tape-type wire material, superposing a plurality of such tape-type wire materials, performing first heat treatment on the plurality of superposed tape-type wire materials while simultaneously diffusion-bonding the metallic coats to each other, then performing deformation processing on the plurality of superposed tape-type wire materials, and performing second heat treatment on the plurality of deformation-processed tape-type wire materials. Preferably the oxide superconductor to be obtained is a bismuth oxide superconductor having a 2223 composition in a composition of Bi--Sr--Ca--Cu or (Bi,Pb)--Sr--Ca--Cu, and the powder material consists of a superconducting phase, which is mainly composed of a 2212 phase, and non-superconducting phases.
    Type: Grant
    Filed: September 27, 1993
    Date of Patent: November 29, 1994
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Kenichi Sato, Hidehito Mukai, Takeshi Hikata
  • Patent number: 5366770
    Abstract: An atmospheric process for the production of a coating of film upon a nickel-containing substrate. In the first step of this process, an aerosol mist containing reactants necessary to form the coating is provided. Thereafter, the mist is subjected to radio-frequency radiation while in the plasma region. Thereafter, the vaporized mixture is then deposited onto a nickel substrate. In subsequent steps, one or more other layers of vaporized material may be deposited onto the coated substrate.
    Type: Grant
    Filed: September 13, 1993
    Date of Patent: November 22, 1994
    Inventor: Xingwu Wang
  • Patent number: 5364835
    Abstract: A method of producing an oxide superconducting material comprises the steps of adding a halogen element to an oxide superconducting material by ion injection and thermal diffusion, forming a film either on the oxide material before or after the adding step, and applying heat treatment after the forming step to improve the electric property in the near-surface portion.
    Type: Grant
    Filed: February 16, 1993
    Date of Patent: November 15, 1994
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Shunpei Yamazaki
  • Patent number: 5362710
    Abstract: A process for preparing a thin film of superconducting material is disclosed in which films are deposited from a defined target. The thin films prepared by the process are characterized by high critical temperature of superconductivity and a smaller discrepancy between the critical temperature and the onset temperature at which superconductivity is observed.
    Type: Grant
    Filed: December 28, 1992
    Date of Patent: November 8, 1994
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Nobuhiko Fujita, Tadakazu Kobayashi, Hideo Itozaki, Saburo Tanaka, Shuji Yazu, Tetsuji Jodai
  • Patent number: 5362711
    Abstract: A process for forming a single crystal superconducting LnA.sub.2 Cu.sub.3 O.sub.7-x film, wherein Ln is at least one rare earth element and A is at least one alkaline earth element, is disclosed, which comprises simultaneously evaporating Ln, A and Cu in an atomic ratio of about 1:2:3 from discrete evaporation sources of Ln, A and Cu onto a heated substrate in a vacuum vessel while blowing an oxygen gas onto the substrate to form an oxygen-containing atmosphere, thereby forming the single crystal superconducting film on the substrate.
    Type: Grant
    Filed: April 27, 1993
    Date of Patent: November 8, 1994
    Assignees: Kanegafuchi Chemical Industry Co., Ltd., Matsushita Electric Inductris Co., Ltd., NEC Corporation, Nippon Mining Co., Ltd., Nippon Steel Corporation, TDK Corporation, Tosoh Corporation, Toyo Boseki Kabushiki Kaisha, Seisan Kaihatsu Kagaku Kenkyusho, Ube Industries, Ltd.
    Inventors: Toshio Takada, Takahito Terashima, Yoshichika Bando
  • Patent number: 5360784
    Abstract: An oxide superconducting material is coated with silver or an alloy thereof and shaped into a linear body, and the linear body is subjected to diameter reduction by means of groove roll rolling, a swaging machine and the like, and then differential speed rolling and heat treatment are repeatedly performed, whereby the linear body is shaped into a tape-shaped wire material. The microstructure control in the longitudinal direction is performed uniformly and efficiently, and a superconducting wire having a high c-axis orientation ratio and a large critical current density Jc at a service temperature is obtained.
    Type: Grant
    Filed: July 31, 1992
    Date of Patent: November 1, 1994
    Assignee: Mitsubishi Materials Corporation
    Inventors: Toshio Kimura, Takuo Takeshita, Motokazu Suzuki
  • Patent number: 5360785
    Abstract: In a method of preparing an oxide superconducting thin film having a composition of Y-Ba-Cu-O, for example, using laser ablation, which comprises the steps of applying a laser beam to a target containing components of an oxide superconductive material and depositing particles, being thereby scattered from the target, on a substrate, the oxygen gas flow rate during film deposition is set to be at least 50 SCCM, the oxygen gas pressure during film deposition is set to be 10 to 1000 mTorr, the distance between a target 9 and a substrate 10 is set to be 40 to 100 mm, the temperature of the substrate 10 is set to be 600.degree. to 800.degree. C., the energy density of a laser beam 7 on the surface of the target 9 is set to be at least 1 J/cm.sup.2, and the laser pulse energy is set to be at least 10 mJ.
    Type: Grant
    Filed: May 7, 1993
    Date of Patent: November 1, 1994
    Assignees: Sumitomo Electric Industries, Ltd., The Toyko Electric Power Company, Incorporated
    Inventors: Noriyuki Yoshida, Satoshi Takano, Shigeru Okuda, Noriki Hayashi, Tsukushi Hara, Kiyoshi Okaniwa, Takahiko Yamamoto
  • Patent number: 5358926
    Abstract: Novel articles are provided of thin super-conductive thallium-based copper oxide layers on inorganic, usually crystalline substrates. Novel methods are provided for ease of producing such articles, particularly involving sol-gel techniques and laser ablation. The articles have a highly oriented superconductive thallium-based copper oxide film, particularly epitaxial, with high superconductive transition temperatures and desirable electrical properties. The subject articles find use in a wide variety of electronic applications, particularly in microwave and millimeter wave devices.
    Type: Grant
    Filed: July 29, 1993
    Date of Patent: October 25, 1994
    Assignee: Superconductor Technologies Inc.
    Inventors: William L. Olson, Michael M. Eddy, Robert B. Hammond, Timothy W. James, McDonald Robinson