Refractory (group Ivb, Vb, Or Vib) Metal-base Component Patents (Class 428/660)
  • Patent number: 8486542
    Abstract: An coated article includes a substrate; and a coating deposited on the substrate, wherein the coating being a zirconium layer co-doped with M and R. M is at least one element selected from a group consisting of iron, cobalt, nickel, copper, niobium, hafnium and tantalum. R is at least one element selected from a group consisting of scandium, yttrium and lanthanide.
    Type: Grant
    Filed: June 27, 2011
    Date of Patent: July 16, 2013
    Assignees: Hong Fu Jin Precision Industry (ShenZhen) Co., Ltd., Hon Hai Precision Industry Co., Ltd.
    Inventors: Hsin-Pei Chang, Wen-Rong Chen, Huann-Wu Chiang, Cheng-Shi Chen, Shun-Mao Lin
  • Publication number: 20130143066
    Abstract: The present invention provides a steel sheet for a can exhibiting excellent corrosion resistance, adhesive properties, and weldability, including a steel sheet, an Ni—Cu alloy plating layer formed on at least one surface of the steel sheet; and a chromate film layer formed on a surface of the Ni—Cu alloy plating layer, in which the Ni—Cu alloy plating layer has Ni attached thereto in an amount of from 0.30 g/m2 to 3.0 g/m2, and Cu contained therein in an amount of from 0.5 mass % to 20 mass %; and the chromate film layer has Cr attached thereto in an amount of from 1.0 mg/m2 to 40 mg/m2 in equivalent units of Cr.
    Type: Application
    Filed: August 15, 2011
    Publication date: June 6, 2013
    Applicant: NIPPON STEEL & SUMITOMO METAL CORPORATION
    Inventors: Shigeru Hirano, Makoto Kawabata
  • Publication number: 20130130055
    Abstract: A coated steel sheet includes a corrosion-resistant coating composed of at least one layer selected from the group consisting of a Ni layer, a Sn layer, an Fe—Ni alloy layer, an Fe—Sn alloy layer, and an Fe—Ni—Sn alloy layer disposed on at least one surface of a steel sheet, and an adhesive coating disposed on the corrosion-resistant coating, the adhesive coating containing Zr and further containing at least one metal element selected from the group consisting of Co, Fe, Ni, V, Cu, Mn, and Zn, in total, at a ratio by mass of 0.01 to 10 with respect to Zr. The coated steel sheet has excellent humid resin adhesion and corrosion resistance, in which streaky surface defects do not occur.
    Type: Application
    Filed: March 24, 2011
    Publication date: May 23, 2013
    Applicant: JFE STEEL CORPORATION
    Inventors: Yuka Miyamoto, Takeshi Suzuki, Hiroki Iwasa, Norihiko Nakamura, Masao Inose, Hisato Noro, Yoichi Tobiyama
  • Publication number: 20130114059
    Abstract: A metal component (262M, 300M) is designed for use in an EUV lithography apparatus, for example as a spectral purity filter (260) or a heating element (300) in a hydrogen radical generator. An exposed surface of the metal is treated (262P, 300P) to inhibit the formation of an oxide of said metal in an air environment prior to operation. This prevents contamination of optical components by subsequent evaporation of the oxide during operation of the component at elevated temperatures.
    Type: Application
    Filed: June 6, 2011
    Publication date: May 9, 2013
    Applicant: ASML Netherlands B.V.
    Inventors: Martin Jacobus Johan Jak, Vadim Yevgenyevich Banine, Wouter Anthon Soer, Andrei Mikhailovich Yakunn, Maarten Van Kampen, Gerard Frans Jozef Schasfoort
  • Publication number: 20130106123
    Abstract: A welded assembly characterized by improved structural integrity includes a first component disposed along a first plane. The first component includes first and second substantially parallel surfaces, and also includes a channel arranged on the first surface. The welded assembly also includes a second component disposed along a second plane, wherein the second component includes a leading edge. The leading edge of the second component is inserted into the channel of the first component such that an interface is formed between the first and second components. A weld generated on the second surface joins the first component with the second component at the interface such that the assembly is formed. The subject weld may be a friction-stir type of a weld. The subject welded assembly may be a vehicle bumper support. A method of forming such a welded assembly is also disclosed.
    Type: Application
    Filed: October 27, 2011
    Publication date: May 2, 2013
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Blair E. Carlson, Mark Allan Cunningham, Robert T. Szymanski
  • Publication number: 20130108888
    Abstract: A cutting tool having a metallic glass thin film (MGTF) coated thereon, a metallic glass cutting tool, and methods of fabricating the same are disclosed. The cutting tool having metallic glass thin film coated thereon comprises: a cutting element having a sharpened portion, and the cutting element is made of metal; and a metallic glass thin film coated on the cutting element, and the metallic glass is represented by the following formula 1 or formula 2, (ZraCubNicAld)100-xSix,??[formula 1] wherein 45=<a=<75, 25=<b=<35, 5=<c=<15, 5=<d=<15, 0.1=<x=<10, (ZreCufAggAlh)100-ySiy,??[formula 2] 35=<e=<55, 35=<f=<55, 5=<g=<15, 5=<h=<15, 0.1=<y=<10. The metallic glass cutting tool of the present invention comprises: a cutting element having a sharpened portion, and the cutting element is made of a metallic glass represented by the above formula 1 or formula 2.
    Type: Application
    Filed: September 6, 2012
    Publication date: May 2, 2013
    Inventors: Jason Shiang Ching JANG, Pei Hua TSAI, Jia Bin LI, Yu Ze Lin, Chih Chiang FU, Jinn P. CHU
  • Patent number: 8415023
    Abstract: A coated article is described. The coated article includes a substrate, a combining layer formed on the substrate, a plurality of chromium nitride layers and a plurality of copper-titanium alloy layers formed on the combining layer. The combining layer is a chromium layer. Each chromium nitride layer interleaves with one copper-titanium alloy layer. A method for making the coated article is also described.
    Type: Grant
    Filed: July 25, 2011
    Date of Patent: April 9, 2013
    Assignees: Hong Fu Jin Precision Industry (ShenZhen) Co., Ltd., Hon Hai Precision Industry Co., Ltd.
    Inventors: Hsin-Pei Chang, Wen-Rong Chen, Huann-Wu Chiang, Cheng-Shi Chen, Cong Li
  • Patent number: 8404357
    Abstract: Laminated steel sheet for a container material with a small environmental load container material and coating pre-coated steel sheet for a container material characterized by comprising steel sheet having on it a tin layer or iron-tin alloy layer which has on it a tin oxide layer of a thickness measured by an electric stripping method of 0 mC/cm2 to 3.5 mC/cm2 and has further formed on that a foundation layer including a zirconium compound not including fluorine or nitrate nitrogen, having an amount of coating converted to zirconium of 1 mg/m2 to 30 mg/m2, and having an amount of sulfuric acid radicals (SO42?) of 0 mg/m2 to 7 mg/m2.
    Type: Grant
    Filed: August 21, 2008
    Date of Patent: March 26, 2013
    Assignee: Nippon Steel & Sumitomo Metal Corporation
    Inventors: Nobuo Kadowaki, Toshio Senda
  • Publication number: 20130065081
    Abstract: A coated wear-resistant member, as well as a method for making the same, includes a substrate and a coating scheme. The coating scheme has a region of alternating coating sublayers. One coating sublayer is TixAlySi100-x-yN wherein 40 atomic percent?x?80 atomic percent; 15 atomic percent?y?55 atomic percent; 4 atomic percent?100-x-y?15 atomic percent. The other coating sublayer is TipAl100-pN wherein 45 atomic percent?p?100 atomic percent. The method for making a coated wear-resistant member includes the steps of providing the substrate, and depositing the region of alternating coating sublayers.
    Type: Application
    Filed: September 14, 2011
    Publication date: March 14, 2013
    Applicant: Kennametal Inc.
    Inventors: Wangyang Ni, Ronald M. Penich, Yixiong Liu
  • Patent number: 8394508
    Abstract: A plated article has an alloy thin film formed on a substrate and having a catalytically active metal (A) for electroless plating and a metal (B) capable of undergoing displacement plating with a metal ion contained in an electroless plating solution, and a metal thin film formed on the alloy thin film by electroless displacement and reduction plating. The alloy thin film of the catalytically active metal (A) and the metal (B) capable of displacement plating has a composition comprising 5 at % to 40 at % of the metal (A). The metal thin film formed by electroless displacement and reduction plating is a metal thin film having a thickness no greater than 10 nm and a resistivity no greater than 10 ??·cm. Preferably, the metal (B) has a barrier function with respect to a metal of the metal thin film.
    Type: Grant
    Filed: July 18, 2008
    Date of Patent: March 12, 2013
    Assignee: Nippon Mining & Metals Co., Ltd.
    Inventors: Atsushi Yabe, Junichi Ito, Yoshiyuki Hisumi, Junnosuke Sekiguchi, Toru Imori
  • Patent number: 8394509
    Abstract: Object is to provide a surface-treated copper foil free from chromium in the surface-treatment layer and excellent in peel strength of a circuit and chemical resistance against to degradation of the peel strength after processing into a printed wiring board. To achieve the object, the surface-treated copper foil having a surface-treatment layer on a bonding surface of a copper foil for manufacturing a copper-clad laminate by laminating it to an insulating resin substrate has the surface-treatment layer formed by depositing a metal component having high melting point not lower than 1400° C. by dry process film formation method to the bonding surface of the copper foil after the cleaning treatment and further depositing a carbon component to the surface.
    Type: Grant
    Filed: June 26, 2009
    Date of Patent: March 12, 2013
    Assignee: Mitsui Mining & Smelting Co., Ltd.
    Inventors: Seiji Nagatani, Hiroshi Watanabe, Kazufumi Izumida
  • Patent number: 8383248
    Abstract: A coated article is described. The coated article includes a substrate, a combining layer formed on the substrate, a plurality of titanium dioxide layers and a plurality of copper-zinc alloy layers formed on the combining layer. The combining layer is a titanium layer. Each titanium dioxide layer interleaves with one copper-zinc alloy layer. A method for making the coated article is also described.
    Type: Grant
    Filed: July 25, 2011
    Date of Patent: February 26, 2013
    Assignees: Hong Fu Jin Precision Industry (ShenZehen) Co., Ltd., Hon Hai Precision Industry Co., Ltd.
    Inventors: Hsin-Pei Chang, Wen-Rong Chen, Huann-Wu Chiang, Cheng-Shi Chen, Cong Li
  • Patent number: 8377568
    Abstract: A coated article includes a substrate, a catalyst layer and a self-cleaning layer. The catalyst layer made of nickel is formed on the substrate. The self-cleaning layer is formed on the catalyst layer, including titanium, nickel, nickel oxide and titanium dioxide.
    Type: Grant
    Filed: June 7, 2011
    Date of Patent: February 19, 2013
    Assignees: Hong Fu Jin Precision Industry (ShenZhen) Co., Ltd., Hon Hai Precision Industry Co., Ltd.
    Inventors: Hsin-Pei Chang, Wen-Rong Chen, Huann-Wu Chiang, Cheng-Shi Chen, Jia Huang
  • Publication number: 20130040160
    Abstract: A method for manufacturing a plate including multiple metal layers is provided. The method includes: disposing a semi-finished plate formed of a first metal in a mold, wherein a surface of the semi-finished plate is roughened; and injecting a second metal in liquid form onto the roughened surface of the semi-finished plate, so as to form a second metal layer on the semi-finished plate, wherein the second metal in liquid form covers and fills the roughened surface of the semi-finished plate. Not only does the multi-layer metal plate manufactured according to the method have the strength and elasticity of a composite metal, but also increase the joining, bonding or engagement strength between the first and second metal layers without laser welding.
    Type: Application
    Filed: October 15, 2012
    Publication date: February 14, 2013
    Applicants: Dongguan Grand Fame Industry, Zoltrix Material (Guangzhou) limited
    Inventors: Zoltrix Material (Guangzhou) limited, Dongguan Grand Fame Industry
  • Patent number: 8372525
    Abstract: There is provided an active layer containing a dopant material and a host material, wherein the host material has an HPLC purity of at least 99.9% and an impurity absorbance no greater than 0.01. There is also provided an electronic device containing the active layer.
    Type: Grant
    Filed: November 13, 2007
    Date of Patent: February 12, 2013
    Assignee: E I du Pont de Nemours and Company
    Inventors: Daniel David Lecloux, Reid John Chesterfield, Jeffrey A. Merlo, Eric Maurice Smith, Nora Sabina Radu
  • Patent number: 8372522
    Abstract: A process for joining a brass part and a silicon carbide ceramic part comprising: providing a brass part, a SiC ceramic part, a Ti foil and a Ni foil; placing the SiC ceramic part, the Ti foil, the Ni foil, and the brass part into a mold, the Ti foil and the Ni foil located between the SiC ceramic part and the brass part, the Ti foil abutting against the SiC ceramic part, the Ni foil abutting against the brass part and the Ti foil; placing the mold into a chamber of an hot press sintering device, heating the chamber and pressing the brass part, the SiC ceramic part, the Ti foil, and the Ni foil at least until the brass part, the SiC ceramic part, the Ti foil and the Ni foil form a integral composite article.
    Type: Grant
    Filed: June 29, 2011
    Date of Patent: February 12, 2013
    Assignees: Hong Fu Jin Precision Industry (ShenZhen) Co., Ltd., Hon Hai Precision Industry Co., Ltd.
    Inventors: Hsin-Pei Chang, Wen-Rong Chen, Huann-Wu Chiang, Cheng-Shi Chen, Wen-Feng Hu
  • Publication number: 20130029178
    Abstract: An active solder is revealed. The active solder includes an active material and a metal substrate. There are two kinds of active materials, titanium together with rare earth elements and magnesium. The metal substrate is composed of a main component and an additive. The main component is tin-zinc alloy and the additive is selected from bismuth, indium, silver, copper or their combinations. The active solder enables targets and backing plates to be joined with each other directly in the atmosphere. The target is ceramic or aluminum with low wetting properties. The bonding temperature of the active solder ranges from 150° C. to 200° C. so that the problem of thermal stress can be avoided.
    Type: Application
    Filed: July 27, 2011
    Publication date: January 31, 2013
    Inventors: Shih-Ying CHANG, Lung-Chuan Tsao, Tung-Han Chuang, Yen-Huan Lei, Cheng-Kai Li, Wei-Chia Huang
  • Patent number: 8354056
    Abstract: A method of securing a precast refractory shape within a refractory structure, comprising the steps of forming a precast refractory shape by casting a refractory shape to have a plurality of spaced-apart cavities formed in an outer surface thereof; positioning the precast refractory within a refractory structure; and casting a refractory material around the precast refractory shape such that the refractory material covers the outer surface of the precast refractory and fills the cavities.
    Type: Grant
    Filed: January 30, 2008
    Date of Patent: January 15, 2013
    Assignee: North American Refractories Co.
    Inventor: Ronald L. Barrett
  • Patent number: 8349469
    Abstract: A process for joining a stainless steel part and a silicon carbide ceramic part comprising: providing a SUS part, a SiC ceramic part, a Mo foil and a Ti foil; placing the SiC ceramic part, the Mo foil, the Ti foil, and the SUS part into a mold, the Mo foil and the Ti foil located between the SiC ceramic part and the SUS part, the Mo foil abutting the SiC ceramic part, the Ti foil abutting the SUS part and the Mo foil; placing the mold into a chamber of an hot press sintering device, heating the chamber and pressing the SUS part, the SiC ceramic part, the Mo foil, and the Ti foil at least until the SUS part, the SiC ceramic part, the Mo foil and the Ti foil form a integral composite article.
    Type: Grant
    Filed: June 20, 2011
    Date of Patent: January 8, 2013
    Assignees: Hong Fu Jin Precision Industry (ShenZhen) Co., Ltd., Hon Hai Precision Industry Co., Ltd.
    Inventors: Hsin-Pei Chang, Wen-Rong Chen, Huann-Wu Chiang, Cheng-Shi Chen, Wen-Feng Hu
  • Patent number: 8329315
    Abstract: The present invention relates to an ultra thin copper foil with a very low profile copper foil as a carrier, comprising a carrier foil a release layer and an ultra thin copper foil. The copper foil with the Very Low Profile, smooth on both sides (i.e. VLP copper foil) is used as the carrier foil, the said very low profile copper foil for supporting the ultra thin copper foil can bring advantages of no pinhole, excellent thickness uniformity and low surface roughness. The impact of a release layer on the bond strength between the carrier foil and the ultra thin copper foil is very significant, the release layer is composed of a quaternary metal alloy with peelability.
    Type: Grant
    Filed: January 31, 2011
    Date of Patent: December 11, 2012
    Assignee: Nan Ya Plastics Corporation
    Inventors: Ming Jen Tzou, Ya Mei Lin
  • Patent number: 8313585
    Abstract: A method for diffusing titanium and nitride into a sports equipment component. The method generally includes the steps of providing a sports equipment component providing a salt bath which includes sodium dioxide and a salt selected from the group consisting of sodium cyanate and potassium cyanate; dispersing metallic titanium formed by electrolysis of a titanium compound in the bath, heating the salt bath to a temperature ranging from about 430° C. to about 670° C.; and soaking the sports equipment component in the salt bath for a time of from about 10 minutes to about 24 hours. In accordance with another aspect of the present invention, the sports equipment component may further be treated with conventional surface treatments or coatings.
    Type: Grant
    Filed: September 5, 2007
    Date of Patent: November 20, 2012
    Inventors: Philos Jongho Ko, Bongsub Samuel Ko
  • Publication number: 20120251838
    Abstract: A coated article is described. The coated article includes a substrate, a titanium bonding layer, a titanium-chromium alloy transition layer, and a titanium-chromium-nitrogen hard layer formed thereon, and in that order. The titanium bonding layer is a titanium layer. The titanium-chromium alloy transition layer is a titanium-chromium alloy layer. The titanium-chromium-nitrogen hard layer is a titanium-chromium-nitrogen layer. The titanium bonding layer, titanium-chromium alloy transition layer, and the titanium-chromium-nitrogen hard layer are formed by ion beam assisted sputtering.
    Type: Application
    Filed: September 7, 2011
    Publication date: October 4, 2012
    Applicants: FIH (HONG KONG) LIMITED, SHENZHEN FUTAIHONG PRECISION INDUSTRY CO., LTD.
    Inventors: CHWAN-HWA CHIANG, JIA-LIN CHEN, YI-JUN HUANG, HAI-BO PAN, XU LI
  • Patent number: 8277951
    Abstract: A device housing is provided. The device housing includes a substrate, a barrier layer formed on the substrate, an illuminating layer formed on the barrier layer, and a protective layer formed on the illuminating layer. The barrier layer is made of titanium. The illuminating layer is made of rare-earth aluminates. The protective layer is made of silica dioxide. A method for making the device housing is also described there.
    Type: Grant
    Filed: June 1, 2011
    Date of Patent: October 2, 2012
    Assignees: Hong Fu Jin Precision Industry (ShenZhen) Co., Ltd., Hon Hai Precision Industry Co., Ltd.
    Inventors: Hsin-Pei Chang, Wen-Rong Chen, Huann-Wu Chiang, Cheng-Shi Chen, Cong Li
  • Publication number: 20120244385
    Abstract: A surface treating method of a metal housing includes the following steps. First, a workpiece is provided. The workpiece includes a surface formed by a metal material. Thereafter, the workpiece is pre-treated to clean the surface of the metal material. Next, a titanium diffusion treating is performed on the workpiece to form a titanium-containing diffusion layer on the surface of the metal material.
    Type: Application
    Filed: October 18, 2011
    Publication date: September 27, 2012
    Applicant: HON HAI PRECISION INDUSTRY CO., LTD.
    Inventors: MU-CHI HSU, SHAO-MING FU
  • Publication number: 20120244386
    Abstract: A coated article is described. The coated article includes a substrate, an antibacterial layer formed on the substrate, and an anti-oxidation layer formed on the antibacterial layer. The antibacterial layer includes a plurality of alternating titanium films and copper films. A method for making the coated article is also described.
    Type: Application
    Filed: August 16, 2011
    Publication date: September 27, 2012
    Applicants: HON HAI PRECISION INDUSTRY CO., LTD., HONG FU JIN PRECISION INDUSTRY (ShenZhen) CO., LTD `
    Inventors: HSIN-PEI CHANG, WEN-RONG CHEN, HUANN-WU CHIANG, CHENG-SHI CHEN, ZHI-JIE HU
  • Publication number: 20120231294
    Abstract: A housing for an electronic device is described. The housing includes a substrate made of metal and an amorphous alloy film formed on the substrate. The bonding layer is a nickel-chromium alloy layer. The amorphous alloy film consists of an amorphous alloy having a super-cooled liquid region of 10 K or more. The amorphous alloy film defines a pattern on an outer surface thereof. The pattern is defined by recesses or protrusions formed on the outer surface. A method for making the housing is also described.
    Type: Application
    Filed: September 7, 2011
    Publication date: September 13, 2012
    Applicants: HON HAI PRECISION INDUSTRY CO., LTD., HONG FU JIN PRECISION INDUSTRY (SHENZHEN) CO., LTD.
    Inventors: HSIN-PEI CHANG, WEN-RONG CHEN, HUANN-WU CHIANG, CHENG-SHI CHEN, SHUN-MAO LIN
  • Patent number: 8257834
    Abstract: A process for joining a stainless steel part and a silicon nitride ceramic part comprising: providing a stainless steel part, a SiN ceramic part, a Mo foil and a Fe foil; placing the SiN ceramic part, the Mo foil, the Fe foil, and the stainless steel part into a mold, the Mo foil and the Fe foil located between the SiN ceramic part and the stainless steel part, the Mo foil abutting the SiN ceramic part, the Fe foil abutting the stainless steel part and the Mo foil; placing the mold into a chamber of an hot press sintering device, heating the chamber and pressing the stainless steel part, the SiN ceramic part, the Mo foil, and the Fe foil at least until the stainless steel part, the SiN ceramic part, the Mo foil and the Fe foil form a integral composite article.
    Type: Grant
    Filed: July 21, 2011
    Date of Patent: September 4, 2012
    Assignees: Hong Fu Jin Precision Industry (ShenZhen) Co., Ltd., Hon Hai Precision Industry Co., Ltd.
    Inventors: Hsin-Pei Chang, Wen-Rong Chen, Huann-Wu Chiang, Cheng-Shi Chen, Wen-Feng Hu
  • Patent number: 8247081
    Abstract: A process for joining a stainless steel part and a titanium carbide ceramic part comprising: providing a SUS part, a TiC ceramic part, a Ti foil and a Fe foil; placing the TiC ceramic part, the Ti foil, the Fe foil, and the SUS part into a mold, the Ti foil and the Fe foil located between the TiC ceramic part and the SUS part, the Ti foil abutting the TiC ceramic part, the Fe foil abutting the SUS part and the Ti foil; placing the mold into a chamber of an hot press sintering device, heating the chamber and pressing the SUS part, the TiC ceramic part, the Ti foil, and the Fe foil at least until the SUS part, the TiC ceramic part, the Ti foil and the Fe foil form a integral composite article.
    Type: Grant
    Filed: June 13, 2011
    Date of Patent: August 21, 2012
    Assignees: Hong Fu Jin Precision Industry (ShenZhen) Co., Ltd., Hon Hai Precision Industry Co., Ltd.
    Inventors: Hsin-Pei Chang, Wen-Rong Chen, Huann-Wu Chiang, Cheng-Shi Chen, Wen-Feng Hu
  • Patent number: 8216691
    Abstract: Metal, ceramic and cermet articles produced from low viscosity suspensions. The articles include micro diameter hollow fibers, meshes and open cell foams. The articles are useful for filters, catalyst media, fuel cell electrodes, body implantation devices, structural materials, vibration and noise control, heat exchangers, heat sinks, heat pipes, heat shields and other applications.
    Type: Grant
    Filed: September 2, 2010
    Date of Patent: July 10, 2012
    Inventors: Alexander Lobovsky, Mohammad Behi
  • Publication number: 20120171516
    Abstract: An coated article includes a substrate; and a coating deposited on the substrate, wherein the coating being a zirconium layer co-doped with M and R. M is at least one element selected from a group consisting of iron, cobalt, nickel, copper, niobium, hafnium and tantalum. R is at least one element selected from a group consisting of scandium, yttrium and lanthanide.
    Type: Application
    Filed: June 27, 2011
    Publication date: July 5, 2012
    Applicants: HON HAI PRECISION INDUSTRY CO., LTD., HONG FU JIN PRECISION INDUSTRY (ShenZhen) CO., LTD
    Inventors: HSIN-PEI CHANG, WEN-RONG CHEN, HUANN-WU CHIANG, CHENG-SHI CHEN, SHUN-MAO LIN
  • Patent number: 8206837
    Abstract: According to one aspect, an interventional medical device includes a first wire disposed at a distal end and made of an alloy containing Ti and a transition metal other than Ti and Cr, and a second wire disposed at a proximal end of the first wire and made of an alloy containing Cr and a transition metal other than Cr and Ti. The device may include the first wire and the second wire being brazed to each other by a brazing material. The brazing material contains a metal whose ionization tendency is more basic than Ti and Cr. The brazing material is preferably an Ag—Mg alloy or an Ni—Mg alloy, and preferably has a composition near the eutectic point.
    Type: Grant
    Filed: September 27, 2007
    Date of Patent: June 26, 2012
    Assignee: Terumo Kabushiki Kaisha
    Inventor: Katsuro Mishima
  • Publication number: 20120135265
    Abstract: Procedure for the manufacture of metal articles with a laser includes the following phases. Prepare at least a metal substrate, deposit on said substrate at least a layer of commercially pure zirconium or its alloys in the form of powder. Said layer is cut with at least a laser beam having a ratio between power and translation speed between 0.12-0.20 W·s/mm.
    Type: Application
    Filed: July 7, 2009
    Publication date: May 31, 2012
    Inventor: Emanuele Magalini
  • Publication number: 20120135272
    Abstract: A method for applying a low residual stress damping coating to a surface of a substrate is provided. The method includes heating a ferromagnetic damping material in powder form such that the ferromagnetic damping material is at least partially molten. Next, the at least partially molten ferromagnetic damping material is directed at a surface of the substrate at an application velocity so that it adheres to the surface of the substrate to create a ferromagnetic damping coating on the surface of the substrate, resulting in a coated substrate. The ferromagnetic damping coating has a balanced coating residual stress, including a tensile quenching stress component and a compressive peening stress component. The balanced coating residual stress is within a range of ±50 MPa without having to subject the coated substrate to a high temperature annealing process. The resulting coated substrate exhibits a high damping capacity.
    Type: Application
    Filed: June 27, 2011
    Publication date: May 31, 2012
    Inventor: Mo-How Herman SHEN
  • Patent number: 8187722
    Abstract: An object of the present invention is to provide a copper foil with carrier sheet which permits releasing of the carrier sheet from the copper foil layer even when hot pressing at a temperature exceeding 300° C. is applied in the production of a printed wiring board. In order to achieve the object, a copper foil with physically releasable carrier sheet having a copper foil layer on the surface of the carrier sheet through a bonding interface layer, characterized in that the bonding interface layer is composed of a metal layer and a carbon layer. It is preferable for the bonding interface layer to be composed of a metal layer of 1 nm to 50 nm thick and a carbon layer of 1 nm to 20 nm thick.
    Type: Grant
    Filed: May 18, 2007
    Date of Patent: May 29, 2012
    Assignee: Mitsui Mining & Smelting Co., Ltd.
    Inventors: Seiji Nagatani, Hiroshi Watanabe, Kazufumi Izumida
  • Publication number: 20120127629
    Abstract: A composite dielectric material including an early transition metal or metal oxide base material and a dopant, co-deposited, alloying or layering secondary material, selected from among Nb, Ge, Ta, La, Y, Ce, Pr, Nd, Gd, Dy, Sr, Ba, Ca, and Mg, and oxides of such metals, and alumina as a dopant or alloying secondary material. Such composite dielectric material can be formed by vapor deposition processes, e.g., ALD, using suitable precursors, to form microelectronic devices such as ferroelectric high k capacitors, gate structures, DRAMs, and the like.
    Type: Application
    Filed: April 14, 2010
    Publication date: May 24, 2012
    Applicant: ADVANCED TECHNOLOGY MATERIALS, INC.
    Inventors: Jeffrey F. Roeder, Bryan C. Hendrix, Steven M. Bilodeau, Gregory T. Stauf, Tianniu Chen, Thomas M. Cameron, Chongying Xu
  • Patent number: 8173269
    Abstract: In an alloy coating film having a diffusion barrier layer and an aluminum reservoir layer on a substrate, the diffusion barrier layer is composed of a single phase that is a Re—Cr—Ni—Al system ? phase containing Al by less than 1 atomic %, or composed of a first phase which is the Re—Cr—Ni—Al system ? phase and one or more second phases selected from a ? phase, ?? phase and ? phase.
    Type: Grant
    Filed: December 17, 2007
    Date of Patent: May 8, 2012
    Assignee: DBC System Co., Ltd.
    Inventor: Toshio Narita
  • Publication number: 20120093944
    Abstract: The method for surface inclusions detection, enhancement of endothelial and osteoblast cells adhesion and proliferation and sterilization of electropolished and magnetoelectropolished Nitinol implantable medical device surfaces uses an aqueous solution of chemical compounds containing halogenous oxyanions as hypochlorite (ClO?) and hypobromite (BrO?) preferentially 6% sodium hypochlorite (NaClO).
    Type: Application
    Filed: December 1, 2011
    Publication date: April 19, 2012
    Inventor: Ryszard Rokicki
  • Publication number: 20120088122
    Abstract: A galvanized steel sheet includes a surface-treatment film with 50 to 1200 mg/m2, wherein the surface-treatment film is obtained by applying a surface-treatment agent to a surface of a galvanized steel sheet and drying the surface-treatment agent by heating; and the surface-treatment agent is prepared as a mixture having a pH of 8 to 10 and containing, with specific proportions, a water-soluble zirconium compound, a tetraalkoxysilane, an epoxy-group-containing compound, a chelating agent, a silane coupling agent, vanadic acid, and a metal compound.
    Type: Application
    Filed: March 31, 2010
    Publication date: April 12, 2012
    Applicant: JFE STEEL CORPORATION
    Inventors: Takeshi Matsuda, Akira Matsuzaki, Masato Sasaki, Katsutoshi Takashima
  • Patent number: 8142898
    Abstract: The present invention relates to an electrocatalytic coating and an electrode having the coating thereon, wherein the coating is a mixed metal oxide coating, preferably ruthenium, titanium and tin or antimony oxides. The coating uses water as a solvent that provides for a smoother surface than alcohol based solvents. The electrocatalytic coating can be used especially as an anode component of an electrolysis cell and in particular a cell for the electrolysis of aqueous chlor-alkali solutions.
    Type: Grant
    Filed: October 29, 2009
    Date of Patent: March 27, 2012
    Assignee: De Nora Tech, Inc.
    Inventors: Richard C. Carlson, Kenneth L. Hardee, Dino F. DiFranco, Michael S. Moats
  • Publication number: 20120064368
    Abstract: A coated article includes a substrate, a catalyst layer and a self-cleaning layer. The catalyst layer made of nickel is formed on the substrate. The self-cleaning layer is formed on the catalyst layer, including titanium, nickel, nickel oxide and titanium dioxide.
    Type: Application
    Filed: June 7, 2011
    Publication date: March 15, 2012
    Applicants: HON HAI PRECISION INDUSTRY CO., LTD., HONG FU JIN PRECISION INDUSTRY (ShenZhen) CO., LTD.
    Inventors: HSIN-PEI CHANG, WEN-RONG CHEN, HUANN-WU CHIANG, CHENG-SHI CHEN, JIA HUANG
  • Patent number: 8133594
    Abstract: Steel sheet for container use able to realize superior corrosion resistance and canmaking ability, wherein at least one side of the steel sheet is provided with a chemical conversion coating film including a mixture of a zirconium oxide compound and a zirconium phosphate compound, the zirconium oxide compound is segregated at part or all of a region of 40 to 100% from the surface with respect to the total thickness of the chemical conversion coating film, and the zirconium phosphate compound is segregated at part or all of a region of 0 to 40% from the surface with respect to the total thickness of the chemical conversion coating film.
    Type: Grant
    Filed: June 4, 2010
    Date of Patent: March 13, 2012
    Assignee: Nippon Steel Corporation
    Inventors: Akira Tachiki, Shigeru Hirano, Hiroshi Nishida, Hirokazu Yokoya, Hironobu Miyazaki, Masakazu Noda
  • Patent number: 8133595
    Abstract: Disclosed is a multilayer alloy coating film capable of maintaining heat resistance, high-temperature oxidation resistance and creep resistance for a long time even in an ultra high temperature environment. The multilayer alloy coating film comprises a barrier layer formed on a base surface, and an aluminum reservoir layer formed on the barrier layer and composed of an alloy containing Al. The barrier layer comprises an inner sacrificial barrier layer composed of an alloy containing Re, an inner stabilization layer formed on the inner sacrificial barrier layer, a diffusion barrier layer formed on the inner stabilization layer and composed of an alloy containing Re, an outer stabilization layer formed on the diffusion barrier layer, and an outer sacrificial barrier layer formed on the outer stabilization layer and composed of an alloy containing Re.
    Type: Grant
    Filed: November 16, 2007
    Date of Patent: March 13, 2012
    Assignee: National University Corporation Hokkaido University
    Inventor: Toshio Narita
  • Publication number: 20120058363
    Abstract: The invention relates to a coated lightweight metal disk, in particular a brake disk, comprising a support disk made of a thermally resistant lightweight metal alloy, and a heat-insulating friction layer formed from a metal alloy that includes nanocrystals. The friction layer can be applied directly to the support disk without adding an insulating intermediate layer. Because of the thermally insulating effect of the friction layer, only a moderate amount of heat is transferred to the support disk.
    Type: Application
    Filed: April 19, 2010
    Publication date: March 8, 2012
    Applicant: FORD GLOBAL TECHNOLOGIES, LLC
    Inventors: Clemens Maria Verpoort, Maik Broda
  • Publication number: 20120049372
    Abstract: A titanium-nickel-palladium solderable metal system for silicon power semiconductor devices (10), which may be used for one or both of the anode (20) or cathode (30). The metal system includes an outer layer of palladium (40,70), an intermediate layer of nickel (50,80), and an inner layer of titanium (60,90). For certain applications, the nickel may be alloyed with vanadium. The metal system may be deposited on bare silicon (100) or on one or more additional layers of metal (110) which may include aluminum, aluminum having approximately 1% silicon, or metal silicide. The use of palladium, rather than gold or silver, reduces cost, corrosion, and scratching.
    Type: Application
    Filed: August 27, 2010
    Publication date: March 1, 2012
    Inventor: Roman HAMERSKI
  • Patent number: 8114526
    Abstract: A composite substrate for superconductors and methods for making the same are described. The composite substrate of the present invention includes at least a core layer having and a sheath layer having a cube texture on at least a portion its surface. In certain embodiments, the core layer can include a nickel-tungsten-molybdenum alloy having about 2-10 atomic percent tungsten and 2-15 atomic percent molybdenum. In some embodiments, the sheath layer can include nickel or a nickel-tungsten alloy having about 0 to 6 atomic percent tungsten. Generally, the core layer is stronger than the sheath layer and an interdiffusion zone can exist between the core layer and the sheath layer.
    Type: Grant
    Filed: April 2, 2008
    Date of Patent: February 14, 2012
    Assignee: American Superconductor Corporation
    Inventors: Cornelis Leo Hans Thieme, Elliott D. Thompson
  • Patent number: 8114525
    Abstract: A component capable of being exposed to a plasma in a process chamber has a structure having an electroplated coating comprising yttrium-containing species. The electroplated coating can include zirconium oxide, or can have an oxide layer thereon. In another embodiment the electroplated coating comprises a first species and is coated with a second electroplated coating comprising a second species that is different from the first species. The electroplated coating is resistant to corrosion in the plasma. In another embodiment, the electroplated coating has an interface having a thickness with a first concentration gradient of an yttrium-containing species and a second concentration gradient of a second species. An electroplated coating having a layer comprising first and second concentration gradients of first and second metals can be formed by varying the concentration of the first and second metal electrolyte species in the electroplating bath to electroplate the coating.
    Type: Grant
    Filed: May 8, 2008
    Date of Patent: February 14, 2012
    Assignee: Applied Materials, Inc.
    Inventors: Nianci Han, Li Xu, Hong Shih, Yang Zhang, Danny Lu, Jennifer Y. Sun
  • Publication number: 20120034490
    Abstract: An article includes a titanium substrate, a metallic layer diffusion bonded with the titanium substrate and a residual stress region that extends through the metallic layer and at least partially into the titanium substrate.
    Type: Application
    Filed: October 19, 2011
    Publication date: February 9, 2012
    Inventors: Aaron T. Nardi, Blair A. Smith, Timothy R. Boysen
  • Publication number: 20120028074
    Abstract: A coating includes a nano-composite base comprising a number of films, the films stacked together one after another. Each film includes a nickel-titanium carbonitride layer and a titanium carbonitride layer.
    Type: Application
    Filed: December 15, 2010
    Publication date: February 2, 2012
    Applicants: HON HAI PRECISION INDUSTRY CO., LTD., HONG FU JIN PRECISION INDUSTRY (ShenZhen) CO., LTD .
    Inventors: HSIN-PEI CHANG, WEN-RONG CHEN, HUAN-WU CHIANG, CHENG-SHI CHEN, CHUANG MA
  • Publication number: 20120017481
    Abstract: Firearms and firearm components are constructed from bonded multi-metallic base materials comprising at least two dissimilar metallic materials having different properties, such as weight, density, wear resistance, durability, hardness, and the like, bonded to one another. The components are fabricated such that the metallic material having higher impact- and wear-resistance is positioned at areas that experience impact, or that include bearing points, wear points, and interfaces with other components, while a lighter weight metallic material is positioned at component locations that don't have rigorous material property requirements. The bonded multi-metallic materials may be explosively bonded multi-metallic materials.
    Type: Application
    Filed: July 7, 2011
    Publication date: January 26, 2012
    Applicant: PACIFIC AEROSPACE & ELECTRONICS, INC.
    Inventors: Nelson Clare SETTLES, Shaun Michael McGUIRE
  • Patent number: 8084127
    Abstract: Proposed are molybdenum or tungsten particles having a stable face-centered cubic structure of molybdenum and tungsten belonging to a VI group in a periodic table or a thin film formed from the foregoing particles, and a manufacturing method thereof. Specifically, provided are molybdenum or tungsten particles having a face-centered cubic (fcc) crystal structure or a thin film formed from the foregoing particles, wherein the particles have a large-diameter particle structure that is thermodynamically stable or metastable; and molybdenum or tungsten particles having a face-centered cubic (fcc) crystal structure or a thin film formed from the foregoing particles, wherein the particles have a pentagonal and star-shaped particle structure.
    Type: Grant
    Filed: February 25, 2008
    Date of Patent: December 27, 2011
    Assignee: National Institute of Advanced Industrial Science and Technology
    Inventors: Yoshiki Shimizu, Takeshi Sasaki, Naoto Koshizaki, Kazuo Tereshima