Chemically Specified Organic Solvent Containing Patents (Class 429/324)
  • Patent number: 7722995
    Abstract: A carbonate-modified silane or siloxane is combined with a non-aqueous solvent and an electrolyte salt to form a non-aqueous electrolytic solution, which is used to construct a secondary battery having improved charge/discharge characteristics.
    Type: Grant
    Filed: August 22, 2006
    Date of Patent: May 25, 2010
    Assignee: Shin-Etsu Chemical Co., Ltd.
    Inventors: Tetsuo Nakanishi, Meguru Kashida, Satoru Miyawaki, Mikio Aramata
  • Patent number: 7722990
    Abstract: An electrochemical cell comprises as an anode, a lithium transition metal oxide or sulphide compound which as a [B2]X4n? spinel-type framework structure of an A[B2]S4 spinel wherein A and B are metal cations selected from Li, Ti, V, Mn, Fe and Co, X is oxygen or sulphur, and n? refers to the overall charge of the structural unit [B2]X4 of the framework structure. The transition metal cation in the fully discharged state has a mean oxidation state greater than +3 for Ti, +3 for V, +3.5 for Mn, +2 for Fe and +2 for Co. The cell includes as a cathode, a lithium metal oxide or sulphide compound. An electrically insulative lithium containing liquid or polymeric electronically conductive electrolyte is provided between the anode and the cathode.
    Type: Grant
    Filed: May 21, 2009
    Date of Patent: May 25, 2010
    Assignee: Technology Finance Corporation (Proprietary) Limited
    Inventors: Michael M. Thackeray, Rosalind J. Gummow, Ernest E Ferg
  • Patent number: 7722994
    Abstract: A rechargeable lithium-ion battery includes an anode, a cathode and an electrolyte containing one or more dispersed lithium salts. The electrolyte is composed of one or more solvent materials. A principal solvent constituent compound is at least one of ?-valerolactone, methyl isobutyryl acetate, 2-methoxyethyl acetate, 2-ethoxyethyl acetate, and diethyl oxalate.
    Type: Grant
    Filed: March 28, 2007
    Date of Patent: May 25, 2010
    Assignee: GM Global Technology Operations, Inc.
    Inventor: Ion C. Halalay
  • Patent number: 7718311
    Abstract: A battery capable of improving battery characteristics such as cycle characteristics is provided. An electrolytic solution is impregnated in a separator. The electrolytic solution contains 4-fluoro-1,3-dioxolane-2-one. Fluorine ion content in the electrolytic solution is preferably from 10 weight ppm to 3200 weight ppm. Thereby, chemical stability of the electrolytic solution is improved, and cycle characteristics are improved. The present invention is effective for the case using an anode active material containing Sn or Si as an element for an anode.
    Type: Grant
    Filed: November 3, 2005
    Date of Patent: May 18, 2010
    Assignee: Sony Corporation
    Inventors: Akira Yamaguchi, Tadahiko Kubota, Atsumichi Kawashima, Akinori Kita, Satoshi Mizutani, Hiroshi Inoue
  • Patent number: 7718322
    Abstract: Disclosed in an electrolyte for a rechargeable lithium battery, including a mixture of organic solvents including a cyclic solvent and a nitrile-based solvent represented by formula 1 and a lithium salt.
    Type: Grant
    Filed: August 20, 2004
    Date of Patent: May 18, 2010
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Yong-Beom Lee, Eui-Hwan Song, Kwang-Sup Kim, Tae-Shik Earmme, You-Mee Kim
  • Publication number: 20100119950
    Abstract: A polymer electrolyte including: a lithium salt; an organic solvent; a fluorine compound; and a polymer of a monomer represented by Formula 1 below. H2C?C—(OR)n—OCH?CH2??Formula 1 In Formula 1, R is a C2-C10 alkylene group, and n is in a range of about 1 to about 1000.
    Type: Application
    Filed: November 10, 2009
    Publication date: May 13, 2010
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: SEUNG-SIK HWANG, HAN-SU KIM, JAE-MAN CHOI, MOON-SEOK KWON
  • Publication number: 20100119955
    Abstract: The present invention includes (1) an ester compound having a specific structure, (2) a nonaqueous electrolytic solution for lithium secondary battery comprising an electrolyte dissolved in a nonaqueous solvent and containing an ester compound having a specific structure in an amount of from 0.01 to 10% by weight of the nonaqueous electrolytic solution, which is excellent in initial battery capacity and cycle property, and (3) a lithium secondary battery comprising a positive electrode, a negative electrode and a nonaqueous electrolytic solution of an electrolyte salt dissolved in a nonaqueous solvent, wherein the nonaqueous electrolytic solution contains an ester compound having a specific structure in an amount of from 0.01 to 10% by weight of the nonaqueous electrolytic solution.
    Type: Application
    Filed: February 1, 2008
    Publication date: May 13, 2010
    Applicant: UBE INDUSTRIES, LTD.
    Inventors: Koji Abe, Chisen Hashimoto
  • Publication number: 20100119952
    Abstract: An organic electrolytic solution including: a lithium salt; an organic solvent; and a compound represented by Formula 1 below, and a lithium battery including the organic electrolytic solution. In Formula 1: R1, R2, and R3 may be each independently a hydrogen atom, a C1 to C10 alkyl group, a C6 to C10 cycloalkyl group, a C6 to C10 aryl group, a C2 to C10 alkenyl group, or a C2 to C10 alkynyl group; X is C (R2) or nitrogen; and n is an integer ranging from 1 to 5.
    Type: Application
    Filed: August 31, 2009
    Publication date: May 13, 2010
    Applicant: Samsung SDI Co., Ltd.
    Inventors: Seok-soo LEE, Young-gyoon Ryu, Dong-joon Lee
  • Publication number: 20100099030
    Abstract: Disclosed is an electrical storage device having excellent safety and high battery capacity. Specifically disclosed is an electrical storage device comprising at least a positive electrode having a positive electrode active material layer and a positive electrode collector, a negative electrode having a negative electrode active material layer and a negative electrode collector, a separator and an organic electrolyte solution. This electrical storage device is characterized in that the negative electrode active material layer is composed of a metal complex oxide which absorbs and desorbs lithium ions, the positive electrode active material layer contains a carbonaceous material having a layered crystal structure, and the interlayer distance d002 of the layered crystal structure in the carbonaceous material is within the range of 0.36-0.38 nm.
    Type: Application
    Filed: January 18, 2008
    Publication date: April 22, 2010
    Applicants: STELLA CHEMIFA CORPORATION, CATALER CORPORATION
    Inventors: Tetsuo Nishida, Shojiro Kon, Tetsuya Kume, Yoshinobu Sakakibara
  • Patent number: 7687204
    Abstract: An electrolyte for a lithium secondary battery comprises lithium salts including LiPF6 and LiBF4; a non-aqueous organic solvent including an organic solvent with high boiling point; and vinylene carbonate. The electrolyte may inhibit battery swelling at high temperature storage and may improve battery cycle-life characteristics.
    Type: Grant
    Filed: July 23, 2004
    Date of Patent: March 30, 2010
    Assignee: Samsung SDI Co., Ltd
    Inventors: Jun-won Kang, Jin-Sung Kim
  • Patent number: 7682736
    Abstract: An electrochemical device includes a case, a nonaqueous electrolyte filled in the case and containing a room temperature molten salt in an amount of 1 to 50 vol %, a first electrode housed in the case, and a second electrode housed in the case and containing a substance having a lamellar crystal structure. The room temperature molten salt contains a cation represented by formula (1) or formula (2) given below. R1 includes a carbonic acid ester group. Each of R2 and R3 denotes a substituent having an acyclic structure and having 4 or less carbon atoms, or R2 and R3 are combined to denote a substituent having a cyclic structure and having 4 or 5 carbon atoms. R4 includes a carbonic acid ester group, R5 has an acyclic structure and has 4 or less carbon atoms, and R6 denotes a hydrogen atom or a methyl group.
    Type: Grant
    Filed: March 16, 2006
    Date of Patent: March 23, 2010
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Takashi Kuboki, Norio Takami
  • Patent number: 7666310
    Abstract: A method is described for removing water and other protic impurities from an organic liquid electrolyte, wherein the organic liquid electrolyte is brought into contact with one or more insoluble alkali metal hydride(s) and the insoluble reaction by-products formed thereby are separated off.
    Type: Grant
    Filed: February 16, 2006
    Date of Patent: February 23, 2010
    Assignee: Chemetall GmbH
    Inventors: Ulrich Wietelmann, Klaus Schade, Uwe Lischka
  • Patent number: 7651803
    Abstract: Disclosed herein are an ionic conductor including a proton conductor, a process for production thereof, and an electrochemical device (such as fuel cell) with said ionic conductor, said ionic conductor being superior in ionic conductivity, water resistance, and film forming properties. The ionic conductor is formed from a polymer in which carbon clusters having ion dissociating functional groups are bonded to each other through connecting groups. The polymer is less water-soluble and more chemically stable than a derivative composed solely of carbon clusters; therefore, it permits many ion dissociating functional group to be introduced thereinto. Moreover, if ion dissociating functional groups are introduced into also the connecting group, it is possible to prevent the concentration of ion dissociating functional groups from decreasing as the result of polymerization. The polymer can be easily synthesized by simple condensation, substitution, and hydrolysis.
    Type: Grant
    Filed: November 20, 2006
    Date of Patent: January 26, 2010
    Assignee: Sony Corporation
    Inventors: Koichiro Hinokuma, Bjoern Pietzak, Constance Gertrud Rost, Masafumi Ata, Yongming Li, Kazuaki Fukushima
  • Publication number: 20090325061
    Abstract: A secondary battery including: an anode including a positive electrode active material; a cathode including a negative electrode active material; a separator interposed between the anode and the cathode; and a non-aqueous electrolyte. The positive electrode active material includes a lithium nickel oxide, and the negative electrode active material includes at least one silicon compound selected from the group consisting of silicon, a silicon oxide, and a silicon alloy.
    Type: Application
    Filed: April 2, 2009
    Publication date: December 31, 2009
    Applicant: Samsung SDI Co., Ltd.
    Inventor: Wan Mook Lim
  • Patent number: 7632608
    Abstract: A battery capable of improving cycle characteristics is provided. An electrolytic solution impregnated with a separator includes an ionic compound with an asymmetric structure such as fluorotrifluoromethyl[oxalage-O,O?] lithium borate as an electrolyte salt. Thereby, compared to the case where an ionic compound with a symmetric structure such as bis[oxalate-O,O?] lithium borate or difluoro[oxalate-O,O?]lithium borate is included as an electrolyte salt, the conductivity of the electrolytic solution is improved.
    Type: Grant
    Filed: May 29, 2007
    Date of Patent: December 15, 2009
    Assignee: Sony Corporation
    Inventors: Hiroyuki Yamaguchi, Masayuki Ihara, Tadahiko Kubota
  • Patent number: 7632606
    Abstract: An electrolyte whose battery capacity, cycle characteristics, load characteristics, and low temperature characteristics are all excellent, and a battery using it. A cathode and an anode are layered and wound with a separator and electrolyte layer in between. The electrolyte layer contains an electrolytic solution containing at least one from the group consisting of vinylethylene carbonate and its derivatives in the range of 0.05 wt % to 5 wt % in total and a polymer. Therefore, chemical stability of the electrolyte layer is improved. It is preferable that the electrolytic solution further contains ethylene carbonate and propylene carbonate with a mass ratio of ethylene carbonate to propylene carbonate ranging from about 15/85 to about 75/25.
    Type: Grant
    Filed: March 2, 2004
    Date of Patent: December 15, 2009
    Assignee: Sony Corporation
    Inventors: Yuzuru Fukushima, Yusuke Fujishige, Fumiko Kimura, Takuya Endo
  • Patent number: 7629085
    Abstract: A nonaqueous electrolytic solution for a lithium secondary battery, in which 0.01 to 10 wt. % of a sulfur-containing acid ester and 0.01 to 10 wt. % of a triple bond-containing compound are dissolved in a nonaqueous solvent, and a lithium secondary battery employing the nonaqueous electrolytic solution.
    Type: Grant
    Filed: May 30, 2005
    Date of Patent: December 8, 2009
    Assignee: Ube Industries, Ltd.
    Inventors: Koji Abe, Kazuhiro Miyoshi, Takaaki Kuwata
  • Publication number: 20090297954
    Abstract: A nonaqueous solvent for an electricity storage device according to the present invention comprises fluorine-containing cyclic saturated hydrocarbon having a structure which is represented by general formula (1) below and in which one or two substituents R are introduced into a cyclohexane ring (in general formula (1), R is represented by CnX2n+1, n is an integer of 1 or greater, at least one of (2n+1) pieces of X's is F, and the other X's are F or H).
    Type: Application
    Filed: May 19, 2009
    Publication date: December 3, 2009
    Inventors: Masaki HASEGAWA, Takashi Takeuchi
  • Publication number: 20090298189
    Abstract: The subject of the invention at hand are novel, a little basic, fluorinated pentafluorophenyl imide anions, which can be used as anions in ionic liquids. Methods for producing ionic liquids are described, which contain these novel pentafluorophenyl imide ions as anions, as well as quaternary organic ammonium ions, guanidinium ions, N-organo-pyridinium ions, imidazolium, imidazolidinium or benzimidazolidinium ions, alkyl-alkylidene phosphoranes or aryl-alkylidene phosphoranes as cations. Alternative methods according to the present invention provide ionic liquids through reaction of ketene N,N-diacetals or alkyl or aryl-alkylidene phosphoranes with acids. The ionic liquids according to the present invention are suitable, for example, as solvents for syntheses, as mobile and/or stationary phase in chromatography, as electrolyte systems for batteries, galvanic elements, fuel cells and rechargeable battery packs.
    Type: Application
    Filed: May 17, 2007
    Publication date: December 3, 2009
    Inventors: Jorg Sundermeyer, Thomas Linder
  • Publication number: 20090269676
    Abstract: A non-aqueous electrolyte for an electric current producing electrochemical cell is provided comprising an ionically conductive salt and an additional ionically conducting salt in a non-aqueous medium, the additional ionically conducting salt corresponding to the formula M+(Z*(J*)j)?, wherein: M is a lithium atom, Z* is an anion group containing two or more Lewis basic sites and comprising less than 50 atoms not including hydrogen atoms, J* independently each occurrence is a Lewis acid coordinated to at least one Lewis basic site of Z*, and optionally two or more such J* groups may be joined together in a moiety having multiple Lewis acidic functionality, and j is an integer from 2 to 12. The addition of these ionically conducting salts to electrolyte solutions containing LiPF6 (and/or other lithium compounds) improves the stability of the electrolyte solution.
    Type: Application
    Filed: April 29, 2009
    Publication date: October 29, 2009
    Inventor: Thomas J. Barbarich
  • Publication number: 20090269674
    Abstract: An electrolyte for a lithium battery includes a non-aqueous organic solvent, a lithium salt, and an additive comprising a) a compound represented by the following Formula (1), and b) a compound selected from the group consisting of a sulfone-based compound, a poly(ester)(metha)acrylate, a polymer of poly(ester)(metha)acrylate, and a mixture thereof: wherein R1 is a C1 to C10 alkyl, a C1 to C10 alkoxy, or a C6 to C10 aryl, and preferably a methyl, ethyl, or methoxy, X is a halogen, and m and n are integers ranging from 1 to 5, where m+n is less than or equal to 6.
    Type: Application
    Filed: July 8, 2009
    Publication date: October 29, 2009
    Applicant: Samsung SDI Co., Ltd.
    Inventors: Jun-Ho KIM, Ha-Young Lee, Sang-Hoon Choy, Ho-Sung Kim, Hyeong-Gon Noh
  • Publication number: 20090263726
    Abstract: A secondary battery capable of improving the cycle characteristics is provided. The secondary battery includes a cathode and an anode oppositely arranged with a separator in between, and an electrolytic solution. At least one of the cathode, the anode, the separator, and the electrolytic solution contains a sulfone compound having a carbonate group and a sulfonyl group.
    Type: Application
    Filed: December 16, 2008
    Publication date: October 22, 2009
    Applicant: SONY CORPORATION
    Inventors: Hiroyuki Yamaguchi, Masayuki Ihara, Tadahiko Kubota
  • Patent number: 7604901
    Abstract: A non-aqueous electrolyte secondary cell that has excellent high-temperature cycle characteristics and that is highly safe enough to prevent overcharge is provided. The non-aqueous electrolyte secondary cell has a positive electrode for reversibly intercalating-deintercalating lithium ions, a negative electrode for reversibly intercalating-deintercalating lithium ions, and a non-aqueous electrolyte having a non-aqueous solvent and an electrolyte salt. The non-aqueous solvent includes a cycloalkylbenzene derivative and an alkylbenzene derivative having a quaternary carbon directly bonded to a benzene ring and not having a cycloalkyl group directly bonded to the benzene ring.
    Type: Grant
    Filed: June 23, 2003
    Date of Patent: October 20, 2009
    Assignee: Sanyo Electric Co., Ltd.
    Inventors: Kazuyasu Fujiwara, Masatoshi Takahashi, Masato Iwanaga
  • Patent number: 7598002
    Abstract: An electrochemical cell with an alkali metal containing anode having high discharge capacity, charge efficiency and low self-discharge. The addition of at least one nitramide or dinitramide salt of a metal cation to the electrochemical cell electrolyte unexpectedly lowers first cycle irreversible capacity, adds higher cycle life, lowers self-discharge and beneficially addresses several additional degrees of freedom with respect to electrolyte solvent selection while providing higher charge capacity. Additives include the lithium metal salts of nitramide or dinitramide, and the electrolyte consists essentially of a lithium metal salt dissolved in a at least one of an aqueous solvent, molten salt solvent system and a non-aqueous solvent mixture of at least one of organic ethers, esters, carbonates, acetals.
    Type: Grant
    Filed: March 10, 2006
    Date of Patent: October 6, 2009
    Assignee: Material Methods LLC
    Inventors: Alexander Gorkovenko, Stephen Jaffe
  • Patent number: 7592101
    Abstract: A non-aqueous electrolyte primary battery including: a positive electrode including a fluorinated carbon; a negative electrode including a lithium metal; a non-aqueous electrolyte; and a separator, wherein the non-aqueous electrolyte includes a non-aqueous solvent and a solute dissolved therein, the non-aqueous solvent including ?-butyrolactone, and the separator includes a microporous membrane onto which a phosphoric acid ester is provided, the phosphoric acid ester being represented by the formula (1): where R1 is an alkyl group, R2 and R3 are each independently an alkylene group, and n is an integer.
    Type: Grant
    Filed: March 17, 2006
    Date of Patent: September 22, 2009
    Assignee: Panasonic Corporation
    Inventors: Shinichi Kawaguchi, Yukihiro Gotanda, Shinichiro Tahara
  • Publication number: 20090233167
    Abstract: An electrochemical battery cell having a negative electrode, such as a negative electrode, including lithium, that is provided with a fuel gauge or end of life indicator capable of generating a voltage step preferably indicating that the cell is close to the end of its life and should be replaced, wherein the voltage step is detectable by a device associated with the cell. Additional capacity is added to the cell by utilizing a current collector comprising a consumable electrochemically active material having a lower potential than the electrochemically active material of the associated electrode, such as lithium, and a discharge voltage above a predetermined cut-off voltage.
    Type: Application
    Filed: March 17, 2008
    Publication date: September 17, 2009
    Inventor: Guanghong Zheng
  • Patent number: 7585594
    Abstract: An electrolyte with an indicator, such as a dye, for detecting leakage from an electrochemical energy storage device is provided. Also provided is a method of making such an electrolyte with indicator; a device that incorporates such an electrolyte with indicator; a method of manufacturing an electronic or electrical system that incorporates such a device; and a method of detecting the leakage of electrolyte from a battery or capacitor.
    Type: Grant
    Filed: September 30, 2004
    Date of Patent: September 8, 2009
    Assignee: Honeywell International Inc.
    Inventors: Thirumalai G. Palanisamy, Alfred Siggel, Stephen E. LaCroix, Michael Fooken, Thomas Potrawa, Jacques Geenen
  • Patent number: 7585579
    Abstract: An electrolyte for a metal-oxygen battery includes a non-aqueous solvent which is characterized in that the solubility of oxygen therein is at least 0.1150 cc O2/cc of solvent at STP. The electrolyte also includes an electrolyte salt dissolved in the solvent. The solvent may comprise a mixture of materials in which at least 50%, on a weight basis, of the materials have an oxygen solubility of at least 0.1760 cc O2/cc at STP. Also disclosed is a method for optimizing the composition of an electrolyte for a metal-oxygen battery by selecting the solvent for the electrolyte from those materials which will dissolve the electrolyte salt and which have a solubility for oxygen which is at least 0.1150 cc O2/cc at STP.
    Type: Grant
    Filed: July 29, 2003
    Date of Patent: September 8, 2009
    Assignee: The United States of America as represented by the Secretary of the Army
    Inventor: Jeffrey A. Read
  • Patent number: 7582388
    Abstract: A non-aqueous solvent secondary battery with a high initial charge/discharge capacity and excellent charge/discharge characteristics at high temperature, having a positive electrode containing a positive electrode active material capable of reversibly occluding and releasing lithium, a negative electrode containing a negative electrode active material capable of reversibly occluding and releasing lithium and a non-aqueous solvent electrolyte containing (1) acrylic acid anhydride, and (2) an aromatic compound having at least one electron donating group, wherein the electron donating group comprises at least one member selected from any of the alkyl group, alkoxy group, alkylamino group and amine, provided that each of the alkyl group, alkoxy group and alkylamino group includes a halogen substituted group and a cycloaliphatic group.
    Type: Grant
    Filed: September 9, 2004
    Date of Patent: September 1, 2009
    Assignee: Sanyo Electric Co., Ltd.
    Inventor: Kentaro Takahashi
  • Publication number: 20090214958
    Abstract: A niobium oxide-containing electrode includes a collector; and an active material layer formed on the collector, the active material layer including an active material, a conducting agent and a binder; and niobium oxide on the active material layer on the collector.
    Type: Application
    Filed: August 22, 2008
    Publication date: August 27, 2009
    Applicant: Samsung SDI Co., Ltd.
    Inventor: Joung-wok PARK
  • Patent number: 7579117
    Abstract: A novel electrolyte system technology, based on a supercritical fluid solvent using any of a variety of conventional dissolved species with organic salts, hydrates and aqueous-based systems being preferred, that is useful in a variety of electrochemical applications, including batteries, capacitors, fuel cells, sensors, fusion reactors and other similar types of electrolytic cells.
    Type: Grant
    Filed: August 22, 2006
    Date of Patent: August 25, 2009
    Inventor: Kirby Beard
  • Patent number: 7566350
    Abstract: A lithium electrochemical cell includes an electrolyte having a mixture of solvents including propylene carbonate (PC) and dimethoxyethane (DME), and a salt mixture. The salt mixture includes lithium trifluoromethanesulfonate (LiTFS), and lithium trifluoromethanesulfonimide (LiTFSI), and the cell contains less than 1500 ppm by weight of sodium. The mixture of solvents can further include ethylene carbonate (EC).
    Type: Grant
    Filed: September 6, 2006
    Date of Patent: July 28, 2009
    Assignee: The Gillette Company
    Inventors: William L. Bowden, Nikolai N. Issaev, Michael Pozin
  • Patent number: 7560192
    Abstract: Disclosed is a rechargeable lithium ion battery including a positive electrode comprising a first current collector and a positive active material layer on the first current collector; a negative electrode comprising a second current collector and a negative active material layer on the second current collector; and an electrolyte comprising a non-aqueous organic solvent and a lithium salt. At least one of the first and the second current collectors includes a rigid polymer film with a metal deposited on the rigid polymer film.
    Type: Grant
    Filed: September 24, 2004
    Date of Patent: July 14, 2009
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Duck-Chul Hwang, Yun-Suk Choi, Zin Park, Jong-Ki Lee, Jea-Woan Lee, Chung-Kun Cho
  • Publication number: 20090176162
    Abstract: This invention concerns a lithium rechargeable electrochemical cell containing electrochemical redox active compounds in the electrolyte. The cell is composed of two compartments, where the cathodic compartment comprises a cathodic lithium insertion material and one or more of p-type redox active compound(s) in the electrolyte; the anodic compartment comprises an anodic lithium insertion material and one or more of n-type redox active compound(s) in the electrolyte. These two compartments are separated by a separator and the redox active compounds are confined only in each compartment. Such a rechargeable electrochemical cell is suitable for high energy density applications. The present invention also concerns the general use of redox active compounds and electrochemically addressable electrode systems containing similar components which are suitable for use in the electrochemical cell.
    Type: Application
    Filed: April 6, 2007
    Publication date: July 9, 2009
    Inventors: Ivan Exnar, Qing Wang, Michael Gratzel, Shaik Mohammed Zakeeruddin, Ladislav Kavan
  • Patent number: 7556890
    Abstract: An electrochemical cell comprises as an anode, a lithium transition metal oxide or sulphide compound which as a [B2]X4n? spinel-type framework structure of an A[B2]S4 spinel wherein A and B are metal cations selected from Li, Ti, V, Mn, Fe and Co, X is oxygen or sulphur, and n? refers to the overall charge of the structural unit [B2]X4 of the framework structure. The transition metal cation in the fully discharged state has a mean oxidation state greater than +3 for Ti, +3 for V, +3.5 for Mn, +2 for Fe and +2 for Co. The cell includes as a cathode, a lithium metal oxide or sulphide compound. An electrically insulative lithium containing liquid or polymeric electronically conductive electrolyte is provided between the anode and the cathode.
    Type: Grant
    Filed: January 14, 2009
    Date of Patent: July 7, 2009
    Assignee: Technology Finance Corporation (Proprietary) Limited
    Inventors: Michael M. Thackeray, Rosalind J. Gummow, Ernest E Ferg
  • Patent number: 7550233
    Abstract: A non-aqueous electrolytic solution containing a ketone compound having the formula (I): in which each of R1 and R2 is linear or branched alkyl; and each of R3, R4, R5 and R6 is hydrogen or linear or branched alkyl; however, R1 and R4 can be combined to form a cycloalkanone ring in conjunction with a propanone skeleton to which R1 and R4 are connected, and two or more of alkyl of R2, alkyl of R5, a branched chain of alkyl of R1, and a branched chain of alkyl of R4 can be combined to form a cycloalkane ring, or alkyl of R1 and alkyl of R2 and/or alkyl of R4 and alkyl of R5 can be combined to each other to form a cycloalkane ring, is favorably employed for manufacturing a lithium secondary battery that is excellent in the battery performances and cycle performance.
    Type: Grant
    Filed: March 22, 2002
    Date of Patent: June 23, 2009
    Assignee: UBE Industries, Ltd.
    Inventors: Koji Abe, Motoki Yuguchi, Yasuo Matsumori, Kazuhiro Miyoshi
  • Publication number: 20090155695
    Abstract: Disclosed is an electrolyte of a lithium secondary battery comprising a lithium salt, an organic solvent, and at least one additive compound selected from the group consisting of compounds represented by the following formula (1) and derivatives thereof: where R1 is selected from the group consisting of hydrogen radicals, alkyls, aryls, cycloalkyls, alkenyls, alkynyls, ester radicals, and aliphatic carbonate radicals. The electrolyte improves both swelling inhibition properties at high temperature and capacity characteristics of a lithium secondary battery.
    Type: Application
    Filed: February 13, 2009
    Publication date: June 18, 2009
    Inventor: Hyung-Gon Noh
  • Publication number: 20090142670
    Abstract: Disclosed is an electrolytic solution including an organic solvent, a lithium salt, and an additive. The additive includes maleimide compound and vinylene carbonate. The maleimide compound can be maleimide, bismaleimide, polymaleimide, polybismaleimide, maleimide-bismaleimide copolymer, or combinations thereof. The lithium battery employing the described electrolytic solution has a higher capacity of confirmation, higher cycle efficiency, and longer operational lifespan.
    Type: Application
    Filed: February 25, 2008
    Publication date: June 4, 2009
    Applicant: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Fu-Ming Wang, Chang-Rung Yang, Jing-Pin Pan, Hung-Chun Wu
  • Publication number: 20090136854
    Abstract: The present invention intends to improve the intermittent cycle characteristics in a lithium ion secondary battery including, as a positive electrode active material, a lithium composite oxide mainly composed of nickel or cobalt. The present invention is a lithium ion secondary battery wherein the positive electrode includes active material particles including a lithium composite oxide. The lithium composite oxide is represented by the general formula (1): LixM1-yLyO2 (where 0.85?x?1.25, 0?y?0.50, and element M is at least one selected from the group consisting of Ni and Co, and element L is at least one selected from the group consisting of alkaline earth elements, transition metal elements, rare earth elements, Group IIIb elements and Group IVb elements). The surface layer of the active material particles includes element Le being at least one selected from the group consisting of Al, Mn, Ti, Mg, Zr, Nb, Mo, W and Y. The active material particles are surface-treated with a coupling agent.
    Type: Application
    Filed: June 26, 2006
    Publication date: May 28, 2009
    Inventor: Kensuke Nakura
  • Publication number: 20090123848
    Abstract: A nonaqueous electrolyte solution for electrochemical energy-storing device, comprising (a) a lithium salt, (b) a quaternary ammonium salt containing a quaternary ammonium cation having three or more methyl groups, and (c) a nonaqueous solvent, that allows reliable insertion and extraction of lithium ions into and out of a negative-electrode material having a graphite structure even when the quaternary ammonium salt is dissolved in the nonaqueous electrolyte solution, provides an electrochemical energy-storing device that allows a higher voltage setting in charge and is resistant to capacity deterioration even after repeated charge/discharge cycles.
    Type: Application
    Filed: January 30, 2006
    Publication date: May 14, 2009
    Inventors: Tooru Matsui, Masaki Deguchi, Hiroshi Yoshizawa
  • Publication number: 20090123845
    Abstract: Process for the purification of an ionic electrolyte comprising at least one alkali metal salt, the process having at least one stage in which particles of at least one calcium salt are brought into contact. The process makes it possible to obtain electrolytes characterized in particular by a particularly low water content. The corresponding electrochemical generators which incorporate the electrolyte as constituent component are characterized by a noteworthy stability and are particularly safe.
    Type: Application
    Filed: July 28, 2006
    Publication date: May 14, 2009
    Applicant: Hydro-Quebec
    Inventors: Karim Zaghib, Jocelyn Jalbert, Abdelbast Guerfi, Christophe Michot, Michel Gauthier, Martin Dontigny, Patrick Charest
  • Publication number: 20090111028
    Abstract: An organic electrolyte solution includes a lithium salt; an organic solvent including a high permittivity solvent and a low boiling solvent; and a vinyl-based compound represented by Formula 1 below, wherein m and n are each independently integers of 1 to 10; X1, X2, and X3 each independently represent O, S, or NR9; and R1, R2, R3, R4, R5, R6, R7, R8, and R9 are represented in the detailed description. The organic electrolyte solution of the present invention and a lithium battery using the same suppress degradation of an electrolyte, providing improved cycle properties and life span thereof.
    Type: Application
    Filed: June 27, 2008
    Publication date: April 30, 2009
    Applicant: Samsung SDI Co., Ltd.
    Inventors: Seok-soo Lee, Young-gyonn Ryu, Seung-sik Hwang, Dong-joon Lee, Boris A. Trofimov
  • Publication number: 20090111029
    Abstract: An organic electrolyte solution including: a lithium salt; an organic solvent including a high permittivity solvent and a low boiling solvent; and a silane-based compound represented by Formula 1 below: In Formula 1, m and n are each independently integers of from 1 to 30; and R1, R2, R3, R4, R5, R6, R7, and R8 are represented in the detailed description of the present invention. The organic electrolyte solution can be included in a lithium battery, so as to suppress the degradation of an electrolyte, and to improve cycle properties and life span of the battery.
    Type: Application
    Filed: June 30, 2008
    Publication date: April 30, 2009
    Inventors: Seok-soo Lee, Boris A. Trofimov, Young-gyoon Ryu, Seung-sik Hwang, Dong-joon Lee
  • Patent number: 7524587
    Abstract: An aluminum secondary battery exhibiting favorable characteristics is provided. The present invention relates to a non-aqueous electrolyte comprising an electrolyte containing Al(CF3SO3)3 and a room temperature molten salt of a quaternary ammonium salt where CF3SO3? is anion, and to an aluminum secondary battery containing that non-aqueous electrolyte.
    Type: Grant
    Filed: May 11, 2007
    Date of Patent: April 28, 2009
    Assignee: Panasonic Corporation
    Inventor: Atsushi Omote
  • Patent number: 7524583
    Abstract: A non-aqueous electrolyte secondary cell is provided with a positive electrode, a negative electrode, and a non-aqueous electrolyte solution, wherein said positive electrode comprises sulfur and said non-aqueous electrolyte solution comprises a room-temperature molten salt having a melting point of 60° C. or less.
    Type: Grant
    Filed: December 20, 2002
    Date of Patent: April 28, 2009
    Assignee: Sanyo Electric Co., Ltd.
    Inventors: Masahide Miyake, Masahisa Fujimoto, Hideyuki Koga, Hisaki Tarui, Shin Fujitani
  • Patent number: 7517612
    Abstract: An organic electrolytic solution for a lithium-sulfur battery that provides high discharge capacity and longer cycle life to the battery, and a lithium-sulfur battery including the organic electrolytic solution are provided.
    Type: Grant
    Filed: August 27, 2004
    Date of Patent: April 14, 2009
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Young-Gyoon Ryu, Myung-Dong Cho, Sang-Mock Lee, Boris A. Trofimov
  • Patent number: 7504181
    Abstract: Disclosed is a nonaqueous liquid electrolyte comprising a nonaqueous solvent, an electrolyte dissolved in the nonaqueous solvent and a macromolecular material added to the nonaqueous solvent. The nonaqueous liquid electrolyte is a fluid having a viscosity at 20° C. of 7 cP to 30,000 cP. The nonaqueous liquid electrolyte suppresses leakage, ensures high discharge characteristics, reduces the unevenness of liquid electrolyte, and lessens the change of electrodes and the change in battery resistivity.
    Type: Grant
    Filed: May 15, 2007
    Date of Patent: March 17, 2009
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Tatsuoki Kohno, Norio Takami
  • Patent number: 7504473
    Abstract: Novel chain polymers comprising weakly basic anionic moieties chemically bound into a polyether backbone at controllable anionic separations are presented. Preferred polymers comprise orthoborate anions capped with dibasic acid residues, preferably oxalato or malonato acid residues. The conductivity of these polymers is found to be high relative to that of most conventional salt-in-polymer electrolytes. The conductivity at high temperatures and wide electrochemical window make these materials especially suitable as electrolytes for rechargeable lithium batteries.
    Type: Grant
    Filed: June 16, 2001
    Date of Patent: March 17, 2009
    Assignee: Arizona Board of Regents for and on behalf of Arizona State University
    Inventors: Charles A. Angell, Wu Xu
  • Publication number: 20090068564
    Abstract: Provided is a method of designing an electrolyte composition including a nonaqueous organic solvent mixture and a lithium salt to obtain an optimal composition ratio of components of the electrolyte composition for a high charging/high-output discharging secondary battery. The method includes: selecting components of the nonaqueous organic solvent mixture; determining composition ratio ranges of the selected components satisfying such conditions that an average dielectric constant, an average viscosity, and an average boiling point satisfy predetermined boundary values; dividing the ranges of the composition ratios into a plurality of groups; selecting a representative composition ratio of each of the groups; adding a lithium salt to a nonaqueous organic solvent mixture having the representative composition ratio to prepare an electrolyte composition; and measuring properties of the electrolyte composition to determine a composition ratio of an electrolyte composition having predetermined properties.
    Type: Application
    Filed: February 28, 2008
    Publication date: March 12, 2009
    Applicant: Electronics and Telecommunications Research Institute
    Inventors: Young-Gi Lee, Kwang Man Kim, Mangu Kang, Jongdae Kim
  • Publication number: 20090068562
    Abstract: A rechargeable lithium battery includes a positive electrode including a positive active material that can reversely intercalate/deintercalate lithium ions, a negative electrode including a negative active material that can reversely intercalate/deintercalate lithium ions, and a non-aqueous electrolyte including includes a non-aqueous organic solvent, a lithium salt, and at least one additive including a dinitrile-based compound. The negative active material includes a compound represented by LixMyVzO2+d wherein 0.1?x?2.5, 0?y?0.5, 0.5?z?1.5, 0?d?0.5, and M is a metal selected from the group consisting of Al, Cr, Mo, Ti, W, Zr, and combinations thereof.
    Type: Application
    Filed: September 8, 2008
    Publication date: March 12, 2009
    Inventors: Kyoung-Han Yew, Sung-Soo Kim, Su-Yeong Park, Nam-Soon Choi