Enzyme Or Microbial Cell Is Immobilized On Or In An Organic Carrier Patents (Class 435/177)
  • Patent number: 11052026
    Abstract: The present invention relates to a method for producing a multi-capsule, the method including steps of: (a) preparing a coating solution by mixing purified water, titanium dioxide, mica, a hydrophobic polymer, cellulose gum, and sucrose; and (b) drying the coating solution prepared in step (a) while spraying the coating solution through a spray nozzle of a fluid bed dryer after introducing a spherical seed of a colorant component for a cosmetic; or a starch or sucrose spherical seed coated with a functional component into the fluid bed dryer, a multi-capsule produced by the method, and a cosmetic composition containing the multi-capsule as an active component.
    Type: Grant
    Filed: July 1, 2019
    Date of Patent: July 6, 2021
    Assignee: CHEMLAND. CO., LTD.
    Inventors: Beum Zoo Lee, Su Eok Cho, Soon Kyu Jung, Min Tae Kim
  • Patent number: 11022529
    Abstract: The invention provides enrichment platform devices for size-based capture of particles in solution. The enrichment platform device is useful for label-free capture of any particle. The invention relates to enrichment platform devices using nanowires and vertically aligned carbon nanotubes. The invention provides methods for making the enrichment platform devices. The invention provides methods for using the enrichment platform devices for filtering particles, capturing particles, concentrating particles, and releasing viable particles.
    Type: Grant
    Filed: February 7, 2020
    Date of Patent: June 1, 2021
    Assignee: The Penn State Research Foundation
    Inventors: Siyang Zheng, Mauricio Terrones, Yin-Ting Yeh, Yi Tang, Huaguang Lu, Nestor Perea Lopez, Yiqiu Xia
  • Patent number: 10941312
    Abstract: A method for coating a surface of a cell culture article includes dissolving a polymer having a covalently attached polypeptide in an aqueous solution to produce a polymer solution. The polymer is formed from monomers selected to form a polymer having a linear backbone, wherein the polymer is crosslink free. The weight percentage of the polypeptide relative to the polymer conjugated to the polypeptide is sufficiently high to render the polymer conjugated to the polypeptide water soluble. The aqueous solution is substantially free of organic solvents. The method further includes (i) disposing the polymer solution on the surface of the cell culture article to produce a coated article; and (ii) subjecting the coated article to sufficient heat or electromagnetic radiation to attach the polymer conjugated to a polypeptide to the surface of the cell culture article.
    Type: Grant
    Filed: November 20, 2018
    Date of Patent: March 9, 2021
    Assignee: Corning Incorporated
    Inventors: Anthony Glenn Frutos, David Henry, Corinne Walerack
  • Patent number: 10906075
    Abstract: The present invention relates to compositions and methods for the remediation of contaminated solids and liquids. In particular, embodiments of the present invention relate to the bioremediation of solids and liquids by a composition comprising a biocatalyst or mixture of biocatalysts. The present invention also relates to methods for producing the bioremediation compositions and methods for applying the bioremediation compositions to contaminated sites, including treatment, storage, and disposal facilities, as well as various contaminated water sources, such as aquifers and reservoirs.
    Type: Grant
    Filed: August 24, 2018
    Date of Patent: February 2, 2021
    Inventors: Todd Franssen, Carla Franssen
  • Patent number: 10683423
    Abstract: A thermoplastic composition includes at least one kind of algae that constitutes from about 10 wt. % to about 55 wt. % of the composition, and a polymer that constitutes from about 45 wt. % to about 90 wt. % of the composition, wherein the composition is free of plasticizer and free of plant polymer. An injection molded article is formed from a material including at least one kind of algae that constitutes from about 10 wt. % to about 55 wt. % of the composition, and a polymer that constitutes from about 45 wt. % to about 90 wt. % of the composition, wherein the material is free of plasticizer and free of plant polymer.
    Type: Grant
    Filed: March 16, 2016
    Date of Patent: June 16, 2020
    Assignee: Kimberly-Clark Worldwide, Inc.
    Inventors: Bo Shi, Michael Lawrence Gross, Ryan Webster Hunt, Mark Ashton Zeller
  • Patent number: 10653133
    Abstract: A solid material adapted to kill bacteria in planktonic, spore and biofilm states is lethal toward a wide spectrum of gram positive and gram negative bacteria as well as other microbes. The solid material includes a significant amount of one or more surfactants entrained in a crosslinked polymeric network.
    Type: Grant
    Filed: May 10, 2012
    Date of Patent: May 19, 2020
    Assignee: Next Science IP Holdings Pty Ltd
    Inventor: Matthew F. Myntti
  • Patent number: 10639612
    Abstract: A process for producing absorbent materials includes reducing a banana tree stalk into separated fibers, pressing the separated fibers to generate pressed fibers having less than 50% moisture content by weight, reducing moisture content of the pressed fibers by applying infrared heating to produce pre-dried fibers, and applying a non-thermal drying process to generate dried fibers having less than 10% moisture content by weight for employment in an absorbent material that absorbs hydrocarbons.
    Type: Grant
    Filed: May 9, 2019
    Date of Patent: May 5, 2020
    Assignee: GEOPHIA LLC
    Inventors: Dimitrios Hondroulis, Jean-Claude Vacher
  • Patent number: 10597639
    Abstract: Disclosed herein is a 3D-printed, biocompatible macroporous device that houses stem cell derived ?-cell (SC-? cell) clusters within a degradable fibrin gel. Cluster sizes are used that avoid severe hypoxia within 3D-printed devices and a microwell-based technique is used for resizing clusters within this range. 3D-printed devices may function for at least 12 weeks, are retrievable, and maintain structural integrity.
    Type: Grant
    Filed: October 20, 2017
    Date of Patent: March 24, 2020
    Assignee: Washington University
    Inventors: Jeffrey Millman, Jiwon Song
  • Patent number: 10591476
    Abstract: Disclosed herein is a multiplex microarray having serially attached non-functionalized biomolecules attached to a polymer coating covering each electrode of an array of electrodes for assays and a method of making the multiplex microarray. The method comprises serially blocking the electrodes of the microarray with a blocking protein, electropolymerizing pyrrole or a functionalized pyrrole on the electrodes where the biomolecule is not present during polymerization, exposing the microarray to a biomolecular solution containing a non-functionalized biomolecule for attachment to the polymer coating, and then repeating the steps to form the multiplex microarray.
    Type: Grant
    Filed: March 26, 2018
    Date of Patent: March 17, 2020
    Assignee: CustomArray, Inc.
    Inventor: John Cooper
  • Patent number: 10422794
    Abstract: The present disclosure describes methods, devices, reagents, and kits for the detection of one or more target molecules that may be present in a test sample. In one embodiment, a test sample is contacted with an aptamer that includes a tag and has a specific affinity for a target molecule. An aptamer affinity complex that includes an aptamer bound to its target molecule is allowed to form. If the test sample contains the target molecule, an aptamer affinity complex will generally form in the test sample. The aptamer affinity complex is optionally converted to an aptamer covalent complex that includes an aptamer covalently bound to its target molecule. The aptamer affinity complex (or optional aptamer covalent complex) can then be detected and/or quantified using any of a variety of methods known to one skilled in the art.
    Type: Grant
    Filed: December 12, 2014
    Date of Patent: September 24, 2019
    Assignee: SomaLogic, Inc.
    Inventors: James R. Heil, Daniel J. Schneider, Daniel T. Nieuwlandt, Sheri K. Wilcox, Dominic Zichi, Todd Gander, Bruce Eaton, Larry Gold
  • Patent number: 10377649
    Abstract: The present invention relates to apparatus, methods, and applications for treating wastewater, and more particularly to biological processes for removing pollutants from wastewater. This invention further relates to apparatus and methods for growing microbes on-site at a wastewater treatment facility, and for economically inoculating sufficient microbes to solve various treatment problems rapidly.
    Type: Grant
    Filed: March 6, 2008
    Date of Patent: August 13, 2019
    Inventor: G. Robert Whiteman
  • Patent number: 10308902
    Abstract: The present invention provides a microcapsule composition produced by crosslinking of a polybranched polyamine, which is used for stabilizing non-enzymatic detergent components.
    Type: Grant
    Filed: April 30, 2015
    Date of Patent: June 4, 2019
    Assignee: Novozymes A/S
    Inventors: Amra Tihic Rasmussen, Kim Bruno Andersen, Katarina Larson, Lotte Elisabeth Nissen, Martin Noerby, Ole Simonsen, Tue Rasmussen
  • Patent number: 10233483
    Abstract: Methods are provided for performing antibiotic susceptibility testing based on the detection of RNA, such as tmRNA, from microbial cells after exposure to antibiotics. In some embodiments, aliquots are obtained from a sample, one of which contains a selected antibiotic. The aliquots, which include growth media, are incubated under conditions suitable for microbial growth, and the microbial cells in each aliquot are removed and lysed, and the lysate is subjected to reverse transcription and amplification in infer the effect of the selected antibiotic on the microbial cells. In one embodiment, a sample containing microbial cells is incubated in the presence of a selected antibiotic and a stimulus is provided to induce the production on m RNA within the microbial cells. The microbial cells are subsequently lysed without substantial degradation of the m RNA within the lysate, and the m RNA is detected to determine the effect of the antibiotic on the microbial cells.
    Type: Grant
    Filed: July 3, 2014
    Date of Patent: March 19, 2019
    Inventors: Samad Talebpour, Aye Aye Khine, Tino Alavie, Stephen Wesley Leonard
  • Patent number: 10132737
    Abstract: This method for characterizing a state of adhesion of the particles is applied via a system including a source of spatially coherent light and a photodetector array, the particles being contained in a liquid medium, the liquid medium being delimited by a transparent surface, the particles being able to adhere to the transparent surface. The method includes: illuminating the medium with the source of spatially coherent light; acquiring at least one image by the photodetector array, the image being formed by radiation transmitted by the illuminated medium and including at least one elementary diffraction pattern, each elementary diffraction pattern corresponding to waves diffracted by a particle during the illumination of the medium; and computing, from at least one acquired image and for at least one particle, a primary indicator characterizing the state of adhesion of the particle to the transparent surface.
    Type: Grant
    Filed: March 5, 2015
    Date of Patent: November 20, 2018
    Inventors: Cedric Allier, Srikanth Vinjimore Kesavan
  • Patent number: 9974886
    Abstract: Method of manufacturing hydrogel microparticles comprising one or more species of living cells attached thereon and/or encapsulated therein is provided. The method includes dissolving a hydrogel-forming agent in an aqueous medium to form a solution; suspending one or more species of living cells in the solution to form a cell suspension; dispersing the cell suspension into an organic oil to form a microemulsion; and subjecting the microemulsion to conditions that allow the hydrogel-forming agent to form hydrogel microparticles comprising one or more species of living cells attached thereon and/or encapsulated therein. Composition comprising a mixture of a degradable hydrogel and at least one hydrogel microparticle having one or more species of living cells, and method of manufacturing a scaffold for tissue engineering are also provided.
    Type: Grant
    Filed: July 26, 2013
    Date of Patent: May 22, 2018
    Assignee: Nanyang Technological University
    Inventors: Dongan Wang, Ting Ting Lau, Wenyan Leong
  • Patent number: 9808336
    Abstract: In some embodiments, the present disclosure pertains to a method of fabricating an artificial heart muscle (AHM) patch. In some embodiments, the method includes obtaining and/or isolating cells from a subject. In some embodiments, the cells are primary cardiac cells. In some embodiments, the method further includes forming a scaffold. In some embodiments, the method includes seeding the cells in the fibrin gel scaffold. In some embodiments, the method includes culturing the cells seeded in the fibrin gel scaffold under conditions appropriate for the formation of an artificial heart muscle (AHM) patch. In some embodiments, the present disclosure pertains to a method of fabricating a bioartificial heart (BAH). In some embodiments, the present disclosure pertains to a method of treatment of cardiac tissue injury in a subject in need thereof. In some embodiments, the method includes implanting the aforementioned artificial heart muscle patch in the injured area of the subject.
    Type: Grant
    Filed: May 1, 2015
    Date of Patent: November 7, 2017
    Inventor: Ravi K. Birla
  • Patent number: 9771609
    Abstract: Embodiments of this invention disclose new second generation uric acid-sensing electrodes at least characterized by chemically bonding both uricase and the redox mediator to an electrode. The produced electrodes can be long-term stably used without losing activity. The developed electrode has been successfully applied for the analysis of uric acid (UA) in healthy human urine specimens which exhibits very good analysis accuracy and precision without too much interference. Therefore, the developed electrodes have the potential for clinical applications.
    Type: Grant
    Filed: August 15, 2014
    Date of Patent: September 26, 2017
    Assignee: Chung Yuan Christian University
    Inventors: Chean-Yeh Cheng, Chi-Ying Kao
  • Patent number: 9758415
    Abstract: A method of preparing a microorganisms-immobilized felt-based resin includes the following steps: providing a mixture of an acrylate monomer, an initiator, a solvent, and water; adding a felt to the mixture; initiating a polymerization reaction of the mixture to form a felt-based resin; and immobilizing microorganisms on the felt-based resin to form the microorganisms-immobilized felt-based resin.
    Type: Grant
    Filed: September 12, 2013
    Date of Patent: September 12, 2017
    Assignee: Soochow University
    Inventors: Jianmei Lu, Najun Li
  • Patent number: 9730483
    Abstract: The present invention relates to articles of manufacture having a formulation distributed therein, wherein the formulation comprises an active agent which manifests a desirable property when released from the articles of manufacture. The present invention also relates to methods for manufacturing these articles of manufacture, to vehicles for applying the formulation to these articles of manufacture, and to perception indicators indicating the presence and the amount of formulation comprising an active agent applied to an article of manufacture.
    Type: Grant
    Filed: August 13, 2010
    Date of Patent: August 15, 2017
    Assignee: Biomod Concepts Inc.
    Inventors: Karine Theberge, Isabelle Goudreault, Francois Quirion, Gerald Perron
  • Patent number: 9617519
    Abstract: A method for manufacturing a multilayered cell sheet characterized in fabricating a vascular bed that constructs a vascular network extending to the surface from a channel for perfusing a medium, the channel being embedded in a gel; and layering a cell sheet onto the vascular bed to construct a vascular network in the cell sheet. This manufacturing method makes it possible to construct a vascular network in the cell sheet and to fabricate a thick multilayered cell sheet in a simple manner by layering cell sheets. Such a thick multilayered cell sheet is useful as an in-vivo tissue substitute in regenerative medicine involving a variety of tissues.
    Type: Grant
    Filed: September 14, 2011
    Date of Patent: April 11, 2017
    Inventors: Katsuhisa Sakaguchi, Tatsuya Shimizu, Hidekazu Sekine, Mitsuo Umezu, Teruo Okano
  • Patent number: 9448243
    Abstract: The present invention provides methods for analyzing a target compound from a biological sample. In one aspect, a method for analyzing a target compound in a biological sample can comprise delivering a biological sample through an affinity column, the affinity column having a binding ligand coupled to a stationary structural support, wherein the affinity column has a high density of the binding ligand per the stationary structural support and wherein the binding ligand has been preselected to cause weak affinity separation zonal retardation of the target compound from the biological sample forming a target compound fraction and a biological sample fraction and detecting the target compound by mass spectrometry.
    Type: Grant
    Filed: September 4, 2014
    Date of Patent: September 20, 2016
    Inventors: Sten Ohlson, Anthony R. Torres
  • Patent number: 9422518
    Abstract: A reactor apparatus including: an internal mixing chamber including a first chamber section having a cross-sectional area expanding from a biomass inlet to the internal mixing chamber to the a second chamber section; the second chamber section having a substantially uniform internal cross-sectional area from the opposite end of the first chamber section to a discharge end of the mixing chamber; the biomass inlet is coupled to a source of pre-treated biomass external to the reactor vessel, and a rotating mixing device in the internal mixing chamber and coaxial with an axis of the first chamber section.
    Type: Grant
    Filed: October 14, 2011
    Date of Patent: August 23, 2016
    Assignee: Andritz Inc.
    Inventors: Bertil Stromberg, John F. Bolles, Thomas Pschorn, Peter Mraz
  • Patent number: 9365817
    Abstract: Disclosed are dried and/or microencapsulated Saccharomyces cerevisiae cells with a high content of (S)-(+)-S-adenosyl-L-methionine, in the form of a free base obtainable from selected high-productivity strains of (S)-(+)-SAMe.
    Type: Grant
    Filed: June 9, 2006
    Date of Patent: June 14, 2016
    Assignee: Gnosis S.p.A.
    Inventors: Alberto Benedetti, Lino Sivieri
  • Patent number: 9335761
    Abstract: A processing component that executes one or more industrial control procedures is provided. A procedure class component implements at least one instance of the industrial control procedures, where the instance is dynamically adapted to a parameter of equipment that operates the industrial control procedure.
    Type: Grant
    Filed: September 30, 2008
    Date of Patent: May 10, 2016
    Inventors: Clark L. Case, Robert Kline
  • Patent number: 9095160
    Abstract: The present invention relates to a probiotic preparation for preventing and treating canine gastrointestinal disorders containing at least two dog-specific strains of lactic acid bacteria belonging to genus Lactobacillus, a calcium source in an amount of 20-99 weight-% expressed as CaCO3 of the dry weight of the preparation, and at least one prebiotic, and optionally additional dog-specific strains of lactic acid bacteria, excipients and carriers. The invention further relates to a process for the manufacture of the probiotic preparation, to dog food comprising the probiotic preparation, and to the use of the probiotic preparation for the manufacture of a pharmaceutical product or a dog food product for preventing and treating canine gastrointestinal disorders.
    Type: Grant
    Filed: June 23, 2010
    Date of Patent: August 4, 2015
    Assignee: VETCARE OY
    Inventors: Shea Beasley, Kalevi Heinonen, Hanna Lehmussola
  • Patent number: 9040273
    Abstract: A simple, highly efficient, and environmentally friendly method of immobilizing macromolecules, particularly the biomolecules, to a solid carrier and thus forming a bioreactor, including the following steps: (1) providing the biomolecule and a leading molecule, and linking the biomolecule and the leading molecule by microwave to form an adsorbent; (2) providing a porous support material, and mixing the porous support material and the adsorbent to form a mixture; (3) treating the mixture by a vortex process such that the adsorbent being adsorbed and immobilized on the porous support material to form a bioreactor for biological reactions and biocatalysis; and the bioreactor can be further used for constructing a biological reaction system via incorporating a buffer solution and a ligand.
    Type: Grant
    Filed: December 24, 2013
    Date of Patent: May 26, 2015
    Assignee: Chung Yuan Christian University
    Inventors: Hsi-Ya Huang, Wan-Ling Liu, Chia-Her Lin, Sheng-Han Lo, Tadena Brenda Singco, Chun-Chuen Yang
  • Publication number: 20150125923
    Abstract: The present invention generally relates to compositions and methods of delivering substances in a dry mode, wherein the compositions include a surface layer disposed on the outer surface of the composition that is permeable to carbon dioxide and oxygen. The compositions may be used to deliver microorganisms to remove contaminates, such as oil, chemical, waste, or sewage, from soil, water, or air. In other embodiments, the compositions can also be used for delivering liquid food, liquid food additives, liquid biotech agricultural ingredients, conventional liquid agricultural ingredients, liquid human wellness and dietary supplements, and liquid fragrances and beauty products.
    Type: Application
    Filed: October 5, 2011
    Publication date: May 7, 2015
    Applicant: DryLet LLC
    Inventors: Ramiro Trevino, Steven R. Ellis
  • Publication number: 20150125924
    Abstract: A mutant hydrolase optionally fused to a protein of interest is provided. The mutant hydrolase is capable of forming a bond with a substrate for the corresponding nonmutant (wild-type) hydrolase which is more stable than the bond formed between the wild-type hydrolase and the substrate and has at least two amino acid substitutions relative to the wild-type hydrolase. Substrates for hydrolases comprising one or more functional groups are also provided, as well as methods of using the mutant hydrolase and the substrates of the invention. Also provided is a fusion protein capable of forming a stable bond with a substrate and cells which express the fusion protein.
    Type: Application
    Filed: June 2, 2014
    Publication date: May 7, 2015
    Inventors: Aldis Darzins, Lance P. Encell, Dieter Klaubert, Georgyi V. Los, Mark McDougall, Keith V. Wood, Monika G. Wood, Chad Zimprich
  • Publication number: 20150122646
    Abstract: The present disclosure generally relates to devices and procedures for the development of glucose oxidase-bound electrodes by a covalent binding of glucose oxidase on amine-functionalized electrodes. More particularly, the present disclosure is related to covalently-bound enzyme-coated electrodes that are leach-proof and highly stable for continuous glucose monitoring. The glucose oxidase-bound electrodes are employed for the development of a mediator-less electrochemical glucose sensing procedure having no interference from biological substances and drugs.
    Type: Application
    Filed: May 3, 2013
    Publication date: May 7, 2015
    Inventors: Khalid Ali Al-Rubeaan, Dan Zheng, Fwu-Shan Sheu, Sandeep Kumar Vashist
  • Patent number: 9017643
    Abstract: A process for making particles comprising a hydrophobic dopant for subsequent release therefrom is disclosed. The process comprises providing an emulsion comprising a hydrophilic phase and a hydrophobic phase dispersed in the hydrophilic phase, and reacting the precursor material to form the particles comprising the dopant therein. The hydrophobic phase comprises a precursor material and the dopant.
    Type: Grant
    Filed: July 9, 2014
    Date of Patent: April 28, 2015
    Assignee: Australian Nuclear Science & Technology Organisation
    Inventors: Kim Suzanne Finnie, Christophe Jean Alexandre Barbe, Linggen Kong
  • Patent number: 9011895
    Abstract: A method of forming and preserving a bioremodelable, biopolymer scaffold material by subjecting animal tissue to chemical and mechanical processing. In addition to skin tissue, another source of EBM is a blood vessel. EBM may be used for hernia repair, colon, rectal, vaginal and or urethral prolapse treatment; pelvic floor reconstruction; muscle flap reinforcement; lung tissue support; rotator cuff repair or replacement; periosteum replacement; dura repair; pericardial membrane repair; soft tissue augmentation; intervertebral disk repair; and periodontal repair. EBM may also be used as a urethral sling, laminectomy barrier or spinal fusion device.
    Type: Grant
    Filed: November 18, 2008
    Date of Patent: April 21, 2015
    Assignee: TEI Biosciences, Inc.
    Inventors: Jianwu Dai, Eugene Bell, Vladimir Russakovsky
  • Patent number: 9012193
    Abstract: Systems and methods are provided for patterning biological and non-biological material at specific sites on a plate, as well as growing three dimensional structures. Preferred embodiments comprise a plate with regions that will trap gas, usually in the form of bubbles, when the plate is submerged in liquid. Other embodiment of the present invention include a method for placing materials on the plate at pre-determined locations through the use of trapped gas to prevent materials from collecting at unwanted regions. The plate has great utility for plating cells and tissues at specific sites, such as on an array. The disclosed method can also be used to coat the surface of a plate with coatings at specific locations for patterned coating applications and to build up materials to produce three dimensional structures, including micromechanical structures—where the structures may be formed from living or non-living material, tissue or non-tissue, organic or inorganic, and the like.
    Type: Grant
    Filed: February 26, 2013
    Date of Patent: April 21, 2015
    Assignee: The Regents of the University of California
    Inventors: Yuli Wang, Mark Bachman, Christopher E. Sims, Guann-Pyng Li, Nancy Allbritton
  • Patent number: 8992845
    Abstract: A method for separating CO2 from gas mixtures uses a slurried media impregnated with buffer compounds and coating the solid media with a catalyst or enzyme that promotes the transformation of CO2 to carbonic acid. Buffer sorbent pebbles with a catalyst or enzyme coating are provided for rapid separation of CO2 from gas mixtures.
    Type: Grant
    Filed: February 4, 2013
    Date of Patent: March 31, 2015
    Assignee: Lawrence Livermore National Security, LLC
    Inventor: Roger D. Aines
  • Publication number: 20150086516
    Abstract: Methods, compositions and systems are provided for mobilizing and recruiting progenitor, progenitor-like cells, and/or stem cells to a target site, such as an in vivo site in a patient in need of treatment. In embodiments, the methods include embedding cells in a matrix material having a three-dimensional structure capable of contacting the cells in a non-planar manner to alter the secretome of the cells and/or miRNA expression in a manner effective to recruit progenitor, progenitor-like, or stem cells.
    Type: Application
    Filed: September 25, 2014
    Publication date: March 26, 2015
    Inventors: Laura Indolfi, Elazer R. Edelman
  • Patent number: 8986713
    Abstract: The present invention relates to immobilized biologically active entities that retain significant biological activity following mechanical manipulation of a substrate material to which the entities are immobilized.
    Type: Grant
    Filed: May 10, 2007
    Date of Patent: March 24, 2015
    Assignee: W. L. Gore & Associates, Inc.
    Inventors: Robert L. Cleek, Michael D. Daly, Krzysztof R. Pietrzak
  • Publication number: 20150082468
    Abstract: The invention features an “inverse patterning” or “Intaglio-Void/Embed-Relief Topographic (In VERT) molding” manufacturing process for generating high-resolution three-dimensional (3D) multi-cellular microstructures in distinct cellular compartments of a single hydrogel. The platform has general utility in the development of engineered tissues for human therapies, drug testing, and disease models. Additionally, the platform can serve as a model system for studying 3D cell-cell interactions in fields as diverse as stem cell biology to the development of cancer therapeutics.
    Type: Application
    Filed: February 28, 2013
    Publication date: March 19, 2015
    Inventors: Sangeeta N. Bhatia, Kelly R. Stevens
  • Publication number: 20150079656
    Abstract: The present technology provides for enzyme compositions with enhanced enzyme activity, thermophilic and psychrophilic stability. Additionally, the present technology provides for methods and kits for making and using the enzyme compositions.
    Type: Application
    Filed: August 8, 2014
    Publication date: March 19, 2015
  • Patent number: 8975073
    Abstract: A microfluidic device includes, in one embodiment, a first silk film coupled to a second silk film with at least one microchannel therebetween.
    Type: Grant
    Filed: November 21, 2007
    Date of Patent: March 10, 2015
    Assignees: The Charles Stark Draper Laboratory, Inc., Trustees of Tufts College
    Inventors: Jeffrey T. Borenstein, Chris Bettinger, David Kaplan
  • Patent number: 8969027
    Abstract: The present invention provides a diagnostic reagent or assay for assessing the activity of a protease in vivo or in vitro and methods of detecting the presence of a cancerous or precancerous cell. The assays are comprised of two particles linked via an oligopeptide linkage that comprises a consensus sequence specific for the target protease. Cleavage of the sequence by the target protease can be detected visually or using various sensors, and the diagnostic results can be correlated with cancer prognosis.
    Type: Grant
    Filed: March 3, 2009
    Date of Patent: March 3, 2015
    Assignee: Kansas State University Research Foundation
    Inventors: Stefan H. Bossmann, Deryl L. Troyer, Matthew T. Basel
  • Patent number: 8962302
    Abstract: A biological tissue processing substrate for fixing proteins in a biological tissue or degradation products of the proteins, the substrate comprising: a porous body that forms a contact surface with the biological tissue, the porous body holding in pores an enzyme for obtaining the proteins or the degradation products of the proteins from the biological tissue, wherein the proteins or the degradation products obtained by the action of the enzyme are brought into contact with a member consisting of a metal.
    Type: Grant
    Filed: November 3, 2006
    Date of Patent: February 24, 2015
    Assignee: Canon Kabushiki Kaisha
    Inventors: Kazuhiro Ban, Miki Ogawa, Norihiko Utsunomiya, Hiroyuki Hashimoto, Manabu Komatsu, Yohei Murayama
  • Publication number: 20150050247
    Abstract: Decellularized tissue-derived extracellular matrices (ECM) and methods of generating and using same are provided. The method of generating a decellularized matrix includes the steps of: (a) subjecting the tissue to washes and a hypertonic buffer; (b) subjecting the tissue to an enzymatic proteolytic digestion with an enzyme such as trypsin; and (c) removing all cellular components from the tissue using a detergent solution which includes Triton-X-100 and ammonium hydroxide. Specifically, there is provided a decellularized myocardium-derived matrix which is completely devoid of all cellular components and hence non-immunogenic in a subject, exhibits suitable structural and mechanical properties for cardiac tissue engineering or replacement therapy of damaged cardiac tissue, and is capable of remodeling upon seeding of cells.
    Type: Application
    Filed: March 7, 2006
    Publication date: February 19, 2015
    Applicant: Technion Research & Development Foundation Ltd.
    Inventors: Marcelle Machluf, Yuval Eitan
  • Publication number: 20150044185
    Abstract: The present invention provides muscle-derived progenitor cells that show long-term survival following transplantation into body tissues and which can augment non-soft tissue following introduction (e.g. via injection, transplantation, or implantation) into a site of non-soft tissue (e.g. bone) when combined with a biocompatible matrix, preferably SIS. The invention further provides methods of using compositions comprising muscle-derived progenitor cells with a biocompatible matrix for the augmentation and bulking of mammalian, including human, bone tissues in the treatment of various functional conditions, including osteoporosis, Paget's Disease, osteogenesis imperfecta, bone fracture, osteomalacia, decrease in bone trabecular strength, decrease in bone cortical strength and decrease in bone density with old age.
    Type: Application
    Filed: September 29, 2014
    Publication date: February 12, 2015
    Inventors: Arvydas Usas, Karin Payne, Thomas Payne, Ronald Jankowski, Johnny Huard
  • Publication number: 20150037293
    Abstract: Biocompatible nanomatrices composed of peptide amphiphiles are provided for the embedding of cell populations for their implantation into a recipient animal or human. To confine the nanomatrix to a site of implantation, the nanomatrix can be encapsulated in a nanofiber sack formed from an electrospun nanofiber sheet. The nanofiber sheets are porous and have surface indentations that promote the vascularization of the implant, thereby maintain the viability and biofunctions of the cells, as wells as delivering cell-product products to the circulatory system to the benefit of the recipient subject. The implants may further include cell growth factors that can be beneficial to the survival of the cells as to promote angiogenesis and infiltration of the implant by new blood vessels.
    Type: Application
    Filed: March 6, 2013
    Publication date: February 5, 2015
    Inventors: Ho-Wook Jun, Dong-Jin Lim, Patrick TJ Hwang
  • Publication number: 20150034554
    Abstract: The invention relates to a surface-treated calcium carbonate for binding and bioremediating hydrocarbon-containing compositions, to a method for binding and bioremediating hydrocarbon-containing compositions as well as to the use of surface-treated calcium carbonate for binding and bioremediating hydrocarbon-containing compositions and to a composite material comprising the surface-treated calcium carbonate and a hydrocarbon-containing composition.
    Type: Application
    Filed: August 3, 2012
    Publication date: February 5, 2015
    Inventors: Nicola Di Maiuta, Patrick Schwarzentruber, Michael Skovby
  • Publication number: 20150030681
    Abstract: The present invention relates to a novel protocol for making a hydrogel, which shows increased stability compared to hydrogels of the art, and can be reliably reproduced. The hydrogels produced by the methods of the present invention are preferably three dimensional, and particularly suitable for the culture of stem cells.
    Type: Application
    Filed: February 8, 2013
    Publication date: January 29, 2015
    Applicant: The University of Manchester
    Inventors: Catherine Louise Ruby Merry, Alberto Saiani, Kate Alexandra Meade, Emma Tranquility Lowe, Aline Fiona Saiani, Jean-Baptiste Guilbaud
  • Publication number: 20150024454
    Abstract: An absorbent material may include banana tree stalk fibers separated and processed for moisture content reduction to generate processed fibers, and oil eating microorganisms (OEMs) infused into the processed fibers to form OEM infused fibers. The processed fibers may be configured to concentrate oil therein responsive to exposure to the oil. The OEMs may remain in a dormant state in the OEM infused fibers until activated by water and exposed to the oil.
    Type: Application
    Filed: July 22, 2013
    Publication date: January 22, 2015
    Inventors: Dimitrios Hondroulis, Troy W. Johnson, JR.
  • Publication number: 20150005739
    Abstract: Compositions that include microthreads are provided. The compositions can be fully or partially encased in a sleeve along at least a portion of their length and can include biological cells and, optionally, therapeutic agents. Also provided are methods for using the compositions to repair or ameliorate damaged or defective tissue, including cardiovascular tissue (e.g., the myocardium).
    Type: Application
    Filed: June 4, 2014
    Publication date: January 1, 2015
    Inventors: Glenn Gaudette, George D. Pins, Marsha Rolle, Jacques P. Guyette, Kevin Cornwall
  • Publication number: 20150004095
    Abstract: A process for making particles comprising a hydrophobic dopant for subsequent release therefrom is disclosed. The process comprises providing an emulsion comprising a hydrophilic phase and a hydrophobic phase dispersed in the hydrophilic phase, and reacting the precursor material to form the particles comprising the dopant therein. The hydrophobic phase comprises a precursor material and the dopant.
    Type: Application
    Filed: July 9, 2014
    Publication date: January 1, 2015
    Inventors: Kim Suzanne FINNIE, Christophe Jean Alexandre BARBE, Linggen KONG
  • Publication number: 20140367333
    Abstract: The microorganism-containing biocatalysts disclosed have a large population of the microorganisms irreversibly retained in the interior of the biocatalysts. The biocatalysts possess a surprisingly stable population of microorganisms and have an essential absence of debris generation from metabolic activity of the microorganisms. The biocatalysts are composed of highly hydrophilic polymer and have an internal, open, porous structure that promotes community phenotypic changes.
    Type: Application
    Filed: June 14, 2013
    Publication date: December 18, 2014
    Inventors: Fatemeh RAZAVI-SHIRAZI, Mohammad Ali DORRI, Farhad DORRI-NOWKOORANI, Ameen RAZAVI
  • Patent number: 8911986
    Abstract: Temporary active coatings that are stabilized against inactivation by weathering are provided including a base associated with a chemically modified enzyme, and, optionally a first polyoxyethylene present in the base and independent of the enzyme. The coatings are optionally overlayered onto a substrate to form an active coating facilitating the removal of organic stains or organic material from food, insects, or the environment.
    Type: Grant
    Filed: April 29, 2011
    Date of Patent: December 16, 2014
    Assignees: Toyota Motor Engineering & Manufacturing North America, Inc., Toyota Motor Corporation
    Inventors: Hongfei Jia, Songtao Wu, Masahiko Ishii, Minjuan Zhang