Enzyme Or Microbial Cell Is Immobilized On Or In An Organic Carrier Patents (Class 435/177)
  • Publication number: 20140178963
    Abstract: The present application discloses a method for inducing cells to gain characteristics of naïve stem cell state comprising culturing the cells in the presence of a MUC1* activator.
    Type: Application
    Filed: September 17, 2013
    Publication date: June 26, 2014
    Applicant: Minerva Biotechnologies Corporation
    Inventor: Cynthia Bamdad
  • Patent number: 8759056
    Abstract: A process for the production of granules or pellets containing filamentous fungi is described comprising the steps of selecting and growing filamentous fungi in a suitable culture medium for a predetermined amount of time, adding a gelling agent and at least one carrier to said culture medium, so as to obtain a mixture, subjecting said mixture to gelling through contact, drop by drop, with a solution containing a calcium salt thus obtaining gelled pellets or granules containing said filamentous fungi and drying said gelled pellets or granules to a moisture content of 13-18%.
    Type: Grant
    Filed: February 8, 2005
    Date of Patent: June 24, 2014
    Assignee: Urea Casale SA
    Inventor: Elisabeth Panchaud-Mirabel
  • Patent number: 8753856
    Abstract: The present invention provides a stable and viable biocatalyst with high activity and operational stability and method of immobilization thereof. The immobilization process is based on the principle of entrapment of partially purified enzyme precipitate which is simultaneously aggregated by cross linking agent like glutaraldehyde and further entrapped in a combination of natural polymer like gelatin and synthetic polymer like polyvinyl alcohol with effective gelation under mild conditions of temperature and pH, resulting in a stable biocatalyst. The enzymes immobilized by the above process include Penicillin acylase from rE. coli RE III (pKA18), Novel Penicillin acylase from Achromobacter sp (CCM4834) expressed in rE. coli BL21 (pK1P1) CCM 7394 and rE. coli RE III (pKX1P1).
    Type: Grant
    Filed: November 14, 2008
    Date of Patent: June 17, 2014
    Assignee: Fermenta Biotech Ltd.
    Inventors: Anupama Datla, Rajasekar Vyasarayani Williams, Trupti Krishnakant Ashar, Pavel Kyslik, Stanislav Becka
  • Publication number: 20140154771
    Abstract: Disclosed herein is a structure having: a porous polymeric film permeated by a first extracellular matrix material; and a topcoat layer comprising a second extracellular matrix gel disposed on the film. Also disclosed herein is a method of: providing a porous polymeric film; permeating the film with a first extracellular matrix material; and applying a topcoat layer of a second extracellular matrix material to the film. Also disclosed herein is a method of: laser-machining holes through a film comprising collagen to form a web-like structure.
    Type: Application
    Filed: February 11, 2014
    Publication date: June 5, 2014
    Applicant: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Bradley R. Ringeisen, Russell Kirk Pirlo, Peter K. Wu
  • Publication number: 20140154770
    Abstract: This disclosure relates to graphene derivatives, as well as related devices including graphene derivatives and methods of using graphene derivatives.
    Type: Application
    Filed: May 18, 2012
    Publication date: June 5, 2014
    Applicant: Rutgers, The State University of New Jersey
    Inventors: Michele Vittadello, Kamil Woronowicz, Manish Chhowalla, Paul G. Falkowski
  • Publication number: 20140147901
    Abstract: Methods for adapting or selecting microorganisms with increased product tolerance are provided. Additionally, a bioreactor capable of operation in either packed bed or fluidized bed is disclosed along with methods to use the bioreactor for culturing microorganisms adapted or selected increased product tolerance.
    Type: Application
    Filed: April 19, 2013
    Publication date: May 29, 2014
    Applicant: Cobalt
    Inventor: Cobalt
  • Patent number: 8735117
    Abstract: In on aspect, the invention includes a microcarrier bead having a porous three-dimensional core having (a) a polymeric porous three-dimensional body having porosity of about 15 to about 90% such that at least 99% of pores are interconnected and have diameters of at most 200 microns, (b) an outer protective layer and optionally (c) a filler. In another aspect, the invention includes a method of making an artificial scaffold wherein a scaffolding material is extruded into a coolant and thereby creating a porous material having a porosity of between 15-90% such that at least 99% of pores are interconnected and have diameters of at most 200 microns.
    Type: Grant
    Filed: September 8, 2010
    Date of Patent: May 27, 2014
    Assignee: Drexel University
    Inventors: Andrew Darling, Lauren Shor, Wei Sun, Selcuk Guceri
  • Patent number: 8728769
    Abstract: The invention relates to xylanases and to polynucleotides encoding the xylanases. In addition, methods of designing new xylanases and methods of use thereof are also provided. The xylanases have increased activity and stability at increased pH and temperature.
    Type: Grant
    Filed: March 11, 2009
    Date of Patent: May 20, 2014
    Assignee: BP Corporation North America Inc.
    Inventors: Brian Steer, Walter Callen, Shaun Healey, Geoff Hazlewood, Di Wu, David Blum, Alireza Esteghlalian
  • Publication number: 20140134651
    Abstract: Disclosed is an analytical composition of a peroxidase discrete polyethylene glycol (PEG) conjugate, which conjugate is capable of providing a detectable condition in the presence of peroxidase and hydrogen peroxide.
    Type: Application
    Filed: December 3, 2013
    Publication date: May 15, 2014
    Applicant: QUANTA EQIP, LLC
    Inventors: Paul D. Davis, Alexander R. Pokora
  • Publication number: 20140127738
    Abstract: The present invention relates to a two-dimensional code-type time-temperature indicator the color or shape of which changes in accordance with time and temperature conditions, and to a method for manufacturing the time-temperature indicator, to a quality guarantee system using the time-temperature indicator, and to a quality guarantee method using the quality guarantee system. The time-temperature indicator comprises: nanobeads containing a microorganism for generating lactic acids using nutrient components, an indicating agent for indicating the change in color by means of the generated lactic acids, an immobilization material for immobilizing the microorganism, the indicating agent, and the nutrient components; a base having a bonding layer; and a cover film.
    Type: Application
    Filed: June 27, 2012
    Publication date: May 8, 2014
    Applicant: Donnguk University Industry-Academic Cooperation Foundation
    Inventors: Seung Ju Lee, Seung Won Jung
  • Patent number: 8715983
    Abstract: The present invention is directed to a hydrogel network comprised of a physically cross-linked polymer and a chemically cross-linked polymer or physically entangled copolymer containing living cells, such as chondrocytes, encapsulated therein. In a preferred aspect, the physically cross-linked polymer is selected from the group consisting of thermally gelling polysaccharides and proteins, such as agarose or gelatin, and the chemically cross-linked or physically entangled polymer is synthesized from a water-soluble vinyl monomer, either as a homopolymer or copolymer, such as polyethylene glycol diacrylate (“PEG-DA”) and 2-hydroxyethyl methacrylate (“HEMA”).
    Type: Grant
    Filed: September 5, 2012
    Date of Patent: May 6, 2014
    Assignee: University of Kansas
    Inventors: Michael Detamore, Stevin H. Gehrke
  • Publication number: 20140120600
    Abstract: This invention provides immobilized enzymes, fabrication methods thereof, and reaction systems using the immobilized enzymes. In an embodiment, silica is silanized first and then modified by nano-gold particles, an amino acid, and a peptide-bond coupling agent in sequence. Finally, the modified silica is chemically bonded with an enzyme.
    Type: Application
    Filed: November 29, 2012
    Publication date: May 1, 2014
    Applicant: Chung Yuan Christian University
    Inventors: CHEAN-YEH CHENG, KUO-CHUNG CHANG
  • Patent number: 8709771
    Abstract: Biomass (e.g., plant biomass, animal biomass, and municipal waste biomass) is processed to produce useful products, such as fuels. For example, systems can use feedstock materials, such as cellulosic and/or lignocellulosic materials, to produce ethanol and/or butanol, e.g., by fermentation.
    Type: Grant
    Filed: July 3, 2013
    Date of Patent: April 29, 2014
    Assignee: Xyleco, Inc.
    Inventors: Marshall Medoff, Thomas Craig Masterman
  • Patent number: 8709717
    Abstract: Methods of generating nucleic acid fragments of substantially uniform length from sample nucleic acids comprising linearly stretching the sample nucleic acids over a substrate having a plurality of cleavage regions separated by relatively consistent distances, cleaving the linearly stretched sample nucleic acids at the cleavage regions, and collecting the resulting nucleic acid fragments. The method may further include collecting and concentrating the resultant nucleic acid fragments of substantially uniform length.
    Type: Grant
    Filed: April 2, 2010
    Date of Patent: April 29, 2014
    Assignee: Illumina, Inc.
    Inventors: Kevin Gunderson, Michal Lebl, David L. Heiner
  • Publication number: 20140113335
    Abstract: This invention provides novel variant cellulolytic enzymes having improved activity and/or stability. In certain embodiments the variant cellulotyic enzymes comprise a glycoside hydrolase with or comprising a substitution at one or more positions corresponding to one or more of residues F64, A226, and/or E246 in Thermobifida fusca Cel9A enzyme. In certain embodiments the glycoside hydrolase is a variant of a family 9 glycoside hydrolase. In certain embodiments the glycoside hydrolase is a variant of a theme B family 9 glycoside hydrolase.
    Type: Application
    Filed: April 11, 2012
    Publication date: April 24, 2014
    Applicant: Novozymes A/S
    Inventors: Robert Blazej, Nicholas Toriello, Charles Emrich, Richard N. Cohen, Nitzan Koppel
  • Patent number: 8703122
    Abstract: The present invention relates to a method for directed cell in-growth and controlled tissue regeneration to prevent post-surgical or post-traumatic adhesion and fibrosis formation on the injured surface of a tissue selected from the group consisting of spinal column tissue, dura mater, and spinal nerves in a mammal, comprising the step of providing, covering and separating the tissue with a bioactive biofunctional, non-porous, microscopically multilayered collagen foil biomatrix, and to a method for treating a defect in a mammal comprising the step of providing, covering and separating said tissue with a bioactive biofunctional, non-porous, microscopically multilayered collagen foil biomatrix.
    Type: Grant
    Filed: May 30, 2007
    Date of Patent: April 22, 2014
    Assignees: Baxter International Inc., Baxter Healthcare S.A.
    Inventors: Johann Odar, Raymond Nistor-Gallo
  • Patent number: 8703442
    Abstract: A process for the modification of a substrate comprising passing the substrate through a packed bed column of a specific volume of immobilized enzyme wherein the substrate enters the column at or near one end of the column (the ‘inlet end’) and the modified substrate exits at or near the opposite end of the column (the ‘outlet end’), a portion of the volume of immobilized enzyme is periodically removed at or near to the inlet end of the column, and an equivalent portion of immobilized enzyme is periodically added at or near to the outlet end of the column.
    Type: Grant
    Filed: October 12, 2010
    Date of Patent: April 22, 2014
    Assignee: Cargill, Incorporated
    Inventors: Esther Hendrika Gerarda Peeters, Marcus Bernardus Kruidenberg, Andrew James Dell
  • Patent number: 8697111
    Abstract: An osteochondral plug includes a first scaffold and a second scaffold. The first scaffold may be a solid scaffold containing one or more pendant reactive functional groups. The second scaffold capable of reacting with the one or more pendant reactive functional groups of the first scaffold.
    Type: Grant
    Filed: May 12, 2010
    Date of Patent: April 15, 2014
    Assignee: Covidien LP
    Inventors: Arpan Desai, Timothy Sargeant, Atu Agawu, Joshua Stopek
  • Publication number: 20140093916
    Abstract: The present invention provides a simple and rapid method for preparing purified transposase complexes that are highly suited for fragmenting DNA. The method includes forming transposase complexes with oligonucleotide adapters in cell lysate, then purifying the complexes from the other substance in the cell lysate. Purification is accomplished using a specific binding pair, in which one member of the pair is bound to an oligonucleotide adapter of the complex and the other member of the pair is bound to a solid substrate. The bound complexes can be immediately used in DNA fragmentation reactions to produce solid substrate-bound DNA fragments, which can be used for any number of purposes, including as templates for amplification and sequencing.
    Type: Application
    Filed: August 7, 2013
    Publication date: April 3, 2014
    Applicant: AGILENT TECHNOLOGIES, INC.
    Inventor: Alexander S. BELYAEV
  • Publication number: 20140094410
    Abstract: The present invention provides processes for producing porous silk fibroin scaffold material. The porous silk fibroin scaffold can be used for tissue engineering. The porosity of the silk fibroin scaffolds described herein can be adjusted as to mimic the gradient of densities found in natural tissue. Accordingly, methods for engineering of 3-dimensional tissue, e.g. bone and cartilage, using the silk fibroin scaffold material are also provided.
    Type: Application
    Filed: November 19, 2012
    Publication date: April 3, 2014
    Inventors: David L. Kaplan, Rina Nazarov, Gordana Vunjak-Novakovic, Lorenz Meinel
  • Publication number: 20140093932
    Abstract: Described herein are bioprinters comprising: one or more printer heads, wherein a printer head comprises a means for receiving and holding at least one cartridge, and wherein said cartridge comprises contents selected from one or more of: bio-ink, and support material; a UV light module for optionally exposing the contents of at least one cartridge to UV light; a means for calibrating the position of at least one cartridge; and a means for dispensing the contents of at least one cartridge. Also described herein are methods of using and bioprinting cartridges for such bioprinters.
    Type: Application
    Filed: March 11, 2013
    Publication date: April 3, 2014
    Applicant: ORGANOVO, INC.
    Inventors: Keith Murphy, Scott Dorfman, Richard Jin Law, Vivian Anne Le
  • Patent number: 8685426
    Abstract: Silk is purified to eliminate immunogenic components (particularly sericin) and is used to form fabric that is used to form tissue-supporting prosthetic devices for implantation. The fabrics can carry functional groups, drugs, and other biological reagents. Applications include hernia repair, tissue wall reconstruction, and organ support, such as bladder slings. The silk fibers are arranged in parallel and, optionally, intertwined (e.g., twisted) to form a construct; sericin may be extracted at any point during the formation of the fabric, leaving a construct of silk fibroin fibers having excellent tensile strength and other mechanical properties.
    Type: Grant
    Filed: April 26, 2012
    Date of Patent: April 1, 2014
    Assignee: Allergan, Inc.
    Inventors: Gregory H. Altman, Jingson Chen, Rebecca L. Horan, David J. Horan
  • Patent number: 8679806
    Abstract: A real-time method employing a portable peptide-containing potentiometric biosensor, can directly detect and/or quantify bacterial spores. Two peptides for specific recognition of B. subtilis and B. anthracis Sterne may be immobilized by a polysiloxane monolayer immobilization (PMI) technique. The sensors translate the biological recognition event into a potential change by detecting, for example, B. subtilis spores in a concentration range of 0.08-7.3×104 CFU/ml. The sensing method exhibited highly selective recognition properties towards Bacillus subtilis spores over other kinds of spores. The selectivity coefficients of the sensors for other kinds of spores are in the range of 0-1.0×10?5. The biosensor method not only has the specificity to distinguish Bacillus subtilis spores in a mixture of B. subtilis and B. thuringiensis (thur.) Kurstaki spores, but also can discriminate between live and dead B. subtilis spores. Furthermore, the sensing method can distinguish a Bacillus subtilis 1A700 from other B.
    Type: Grant
    Filed: July 21, 2008
    Date of Patent: March 25, 2014
    Assignee: Polytechnic Institute of New York University
    Inventors: Kalle Levon, Bin Yu, Yanxiu Zhou
  • Patent number: 8679809
    Abstract: A method has been developed to produce stable cell-matrix microspheres with up to 100% encapsulation efficiency and high cell viability, using matrix or biomaterial systems with poor shape and mechanical stability for applications including cell therapeutics via microinjection or surgical implantation, 3D culture for in vitro expansion without repeated cell splitting using enzymatic digestion or mechanical dissociation and for enhanced production of therapeutic biomolecules, and in vitro modeling for morphogenesis studies. The modified droplet generation method is simple and scalable and enables the production of cell-matrix microspheres when the matrix or biomaterial system used has low concentration, with slow phase transition, with poor shape and mechanical stability.
    Type: Grant
    Filed: May 18, 2007
    Date of Patent: March 25, 2014
    Assignee: The University of Hong Kong
    Inventors: Barbara Pui Chan, Godfrey Chi-Fung Chan, Hoi Ling Wong, Pik To Cheung, Song-Eng Kathryn Cheah, Danny Chan
  • Publication number: 20140080197
    Abstract: The present invention provides a series of new and improved compounds/materials as vehicles to delivery degradative enzymes to remove/remedy environmental pollutants. The inventive material comprises a series of amide-functionalized ordered mesoporous carbon (AFOMC), which utilizes chemical conjugation techniques for the tethering of enzymes to the surface of the synthesized AFOMC. The delivery mechanism may be utilized to express a wide variety of toxin-degrading enzymes for removal/remediation of organic pollutants.
    Type: Application
    Filed: November 19, 2013
    Publication date: March 20, 2014
    Applicant: THE CURATORS OF THE UNIVERSITY OF MISSOURI
    Inventors: Chung-Ho Lin, Brian Thompson
  • Patent number: 8673294
    Abstract: An immunoisolation patch system, and particularly a patch system comprising multiple immunoisolation microcapsules, each encapsulating biological material such as cells for transplantation, which can be used in the prophylactic and therapeutic treatment of disease in large animals and humans without the need for immunosuppression.
    Type: Grant
    Filed: April 23, 2009
    Date of Patent: March 18, 2014
    Assignee: Vanderbilt University
    Inventor: Taylor G. Wang
  • Patent number: 8669086
    Abstract: Disclosed herein is a structure having: a porous polymeric film permeated by a first extracellular matrix material; and a topcoat layer comprising a second extracellular matrix gel disposed on the film. Also disclosed herein is a method of: providing a porous polymeric film; permeating the film with a first extracellular matrix material; and applying a topcoat layer of a second extracellular matrix material to the film. Also disclosed herein is a method of: laser-machining holes through a film comprising collagen to form a web-like structure.
    Type: Grant
    Filed: April 29, 2011
    Date of Patent: March 11, 2014
    Assignee: The United States of America, as represented by the Secretary of the Navy
    Inventors: Bradley R Ringeisen, Russell K. Pirlo, Peter K Wu
  • Patent number: 8663967
    Abstract: The present invention relates to an arginine deiminase mutant with partial lysine-deficient and preparation and application thereof. The arginine deiminase mutant of the present invention has enzymatic activity of degrading arginine into citruline; compared with the arginine deiminase with the amino acid sequence of SEQ ID NO: 1, the amino acid sequence comprises one or more of K9N, T, K59Q, K66R, A, K93E, A, Q, K111R, A, K119Q, L, M, K121Q, I, K122E, L, K126E, S, R, K178I, E, D, K196I, R, K209G, T, D, K243E, V, R, K249D, Q, K263N, Q, K279Y, T, K293R, H, E, K325V, I, K380T, R, E, and K406E, D, S substitutions. Compared with PEG modified natural derived arginine deiminase, the PEG modified arginine deiminase mutant of the present invention retain better bioactivity; and because the quantity of lysine in arginine deiminase is reduced, the PEG modified products are more uniform and can be applied to clinical treatment of hepatoma, melanoma and the like.
    Type: Grant
    Filed: August 22, 2011
    Date of Patent: March 4, 2014
    Assignee: Jiangsu T-MAB Biopharma Co., Ltd.
    Inventors: Yanshan Huang, Jiwan Qiu, Xiaoyu Fu, Min Fan, Yujiao Wang, Yefei Wang
  • Publication number: 20140050766
    Abstract: A three-dimensional fibrin engineered tissue construct is provided selected from: (i) a fibrin gel matrix comprising a combination of tissue-specific cells and at least one type of vascular cells; and (ii) a hybrid scaffold of fibrin gel and a polymeric synthetic scaffold comprising at least one type of vascular cells or a combination of tissue-specific cells and at least one type of vascular cells.
    Type: Application
    Filed: February 13, 2012
    Publication date: February 20, 2014
    Applicant: TECHNION RESEARCH AND DEVELOPMENT FOUNDATION LTD.
    Inventors: Shulamit Levenberg, Ayelet Lesman
  • Patent number: 8652849
    Abstract: This invention relates to a composite material that comprises a support member that has a plurality of pores extending through the support member and, located in the pores of the support member, and filling the pores of the support member, a macroporous cross-linked gel. The invention also relates to a process for preparing the composite material described above, and to its use. The composite material is suitable, for example, for separation of substances, for example by filtration or adsorption, including chromatography, for use as a support in synthesis or for use as a support for cell growth.
    Type: Grant
    Filed: October 14, 2008
    Date of Patent: February 18, 2014
    Assignee: Natrix Separations Inc.
    Inventors: Ronald F. Childs, Carlos Filipe, Raja Ghosh, Alicja M. Mika, Jinsheng Zhou, Elena N. Komkova, Marcus Y. Kim, Tapan K. Dey
  • Publication number: 20140030787
    Abstract: Provided is a composition comprising an analyte bound covalently or through a first binding pair to a polymer. In this composition, the analyte is less than about 2000 MW; the polymer further comprises more than one signal or first member of a second binding pair; and the analyte is not a member of the first binding pair or the second binding pair. Also provided is an assay for an analyte. The assay comprises: combining a sample suspected of containing the analyte with the above-described composition and a binding agent that binds to the analyte; and detecting the signal or the first member of the second binding pair that is bound to the binding agent. In this assay, the amount of the signal or the first member of the second binding pair bound to the binding agent is inversely proportional to the analyte in the sample.
    Type: Application
    Filed: July 24, 2012
    Publication date: January 30, 2014
    Inventors: JACK COLEMAN, MACIEJ SZCZEPANIK, RICHARD JIN
  • Publication number: 20140030788
    Abstract: The devices and systems described herein include one or more fluid paths, e.g., channels, and one or more selectively permeable obstacles arranged in the fluid path(s), each including a plurality of aligned nanostructures, e.g., nanotubes or nanorods, defining an outer surface of the obstacle and an internal network of voids. The obstacle(s) can further include binding moieties applied to the outer surface and/or to the surfaces of the individual nanostructures within the obstacle(s). The devices can be manufactured by forming the dense groupings of nanostructures to extend outwards and upwards from a substrate; forming a fluidic channel, bonding the fluidic channel to the substrate; and optionally applying binding moieties to the obstacles. The devices can be used to manipulate cells within fluid samples.
    Type: Application
    Filed: July 29, 2011
    Publication date: January 30, 2014
    Applicants: MASSACHUSETTS INSTITUTE OF TECHNOLOGY, THE GENERAL HOSPITAL CORPORATION
    Inventors: Grace Chen, Fabio Fachin, Mehmet Toner, Brian Wardle
  • Patent number: 8633027
    Abstract: Silk is purified to eliminate immunogenic components (particularly sericin) and is used to form fabric that is used to form tissue-supporting prosthetic devices for implantation. The fabrics can carry functional groups, drugs, and other biological reagents. Applications include hernia repair, tissue wall reconstruction, and organ support, such as bladder slings. The silk fibers are arranged in parallel and, optionally, intertwined (e.g., twisted) to form a construct; sericin may be extracted at any point during the formation of the fabric, leaving a construct of silk fibroin fibers having excellent tensile strength and other mechanical properties.
    Type: Grant
    Filed: March 24, 2011
    Date of Patent: January 21, 2014
    Assignee: Allergan, Inc.
    Inventors: Gregory H. Altman, Jingson Chen, Rebecca L. Horan, David J. Horan
  • Patent number: 8628791
    Abstract: Silk is purified to eliminate immunogenic components (particularly sericin) and is used to form fabric that is used to form tissue-supporting prosthetic devices for implantation. The fabrics can carry functional groups, drugs, and other biological reagents. Applications include hernia repair, tissue wall reconstruction, and organ support, such as bladder slings. The silk fibers are arranged in parallel and, optionally, intertwined (e.g., twisted) to form a construct; sericin may be extracted at any point during the formation of the fabric, leaving a construct of silk fibroin fibers having excellent tensile strength and other mechanical properties.
    Type: Grant
    Filed: March 24, 2011
    Date of Patent: January 14, 2014
    Assignee: Allergan, Inc.
    Inventors: Gregory H. Altman, Jingson Chen, Rebecca L. Horan, David J. Horan
  • Patent number: 8623398
    Abstract: Silk is purified to eliminate immunogenic components (particularly sericin) and is used to form fabric that is used to form tissue-supporting prosthetic devices for implantation. The fabrics can carry functional groups, drugs, and other biological reagents. Applications include hernia repair, tissue wall reconstruction, and organ support, such as bladder slings. The silk fibers are arranged in parallel and, optionally, intertwined (e.g., twisted) to form a construct; sericin may be extracted at any point during the formation of the fabric, leaving a construct of silk fibroin fibers having excellent tensile strength and other mechanical properties.
    Type: Grant
    Filed: July 30, 2012
    Date of Patent: January 7, 2014
    Assignee: Allergan, Inc.
    Inventors: Gregory H. Altman, Rebecca Horan, David J. Horan, Jingsong Chen
  • Publication number: 20140004581
    Abstract: Disclosed is a process for the preparation of an interfacial enzyme immobilized on an insoluble support, by providing a bi-phase system comprised of an aqueous buffer solution and at least one first organic solvent; mixing said interfacial enzyme with the bi-phase system provided; adding the support to the obtained mixture and mixing; and isolating from the mixture obtained in the last step the interfacial enzyme immobilized on said support. The produced enzyme is locked in its catalytically active confirmation, and thus exhibits improved activity and stability. Also disclosed are uses of the produced enzymes, particularly in the preparation of biodiesel.
    Type: Application
    Filed: August 30, 2013
    Publication date: January 2, 2014
    Applicant: TRANSBIODIESEL LTD.
    Inventor: Sobhi BASHEER
  • Publication number: 20130344154
    Abstract: Two cell lines, PICM-19H and PICM-19B, were derived from the bipotent ARS-PICM-19 pig liver stem cell line. The unipotent porcine stem cell line PICM-19H differentiates exclusively into hepatocytes and can be induced to express CYP450 enzymes. The growth rate and cell density in culture, morphological features, and hepatocyte detoxification functions, i.e., inducible CYP450 activity, ammonia clearance, and urea production of the PICM-19H cells were evaluated for their application in artificial liver devices. PICM-19H cells contain numerous mitochondria, Golgi apparatus, smooth and rough endoplasmic reticulum, vesicular bodies and occasional lipid vacuoles and display inducible CYP450 activity, clear ammonia, and produce urea in a glutamine-free medium. The data indicate that both cell lines, either together or alone, may be useful as the cellular substrate for an artificial liver device. The results demonstrate the potential for the use of PICM-19H cells in drug biotransformation and toxicity testing.
    Type: Application
    Filed: June 4, 2013
    Publication date: December 26, 2013
    Inventors: Neil C. Talbot, Thomas J Caperna, Ryan R. Willard
  • Patent number: 8614078
    Abstract: The present invention is directed to compositions and methods related to delivering degradative enzymes to remove/remedy environmental pollutants. The inventive material comprises a series of amide-functionalized ordered mesoporous carbon (AFOMC), which utilizes chemical conjugation techniques for the tethering of enzymes to the surface of the synthesized AFOMC. The delivery mechanism may be utilized to express a wide variety of toxin-degrading enzymes for removal/remediation of organic pollutants.
    Type: Grant
    Filed: April 16, 2012
    Date of Patent: December 24, 2013
    Assignee: The Curators of the University of Missouri
    Inventors: Chung-Ho Lin, Brian Thompson
  • Publication number: 20130337527
    Abstract: Processes and systems for production of bioproducts such as biofuels are provided. The bioproduct production processes and systems utilize pretreatment of a carbohydrate-containing feedstock to produce soluble sugar molecules and continuous conversion of the pretreated feedstock to a bioproduct by an immobilized fermenting microorganism.
    Type: Application
    Filed: July 1, 2013
    Publication date: December 19, 2013
    Inventors: David C. Walther, Hendrik J. Meerman, Stacy M. Burns-Guydish, Richard W. Wilson, Eamon T. Hogg, Gregory W. Luli, Robert Eckert
  • Publication number: 20130337507
    Abstract: The invention relates to xylanases and to polynucleotides encoding the xylanases. In addition, methods of designing new xylanases and methods of use thereof are also provided. The xylanases have increased activity and stability at increased pH and temperature.
    Type: Application
    Filed: March 15, 2013
    Publication date: December 19, 2013
    Applicants: Verenium Corporation, BP Corporation North America Inc.
    Inventors: Brian Steer, Walter Callen, Shaun Healey, Geoff Hazlewood, Di Wu, David Blum, Alireza Esteghlalian
  • Patent number: 8603819
    Abstract: The present disclosure provides compositions comprising musculoskeletal cells and mesenchymal stem cells in discrete regions. The present disclosure provides systems comprising a subject composition; and methods of using a subject composition to generate cartilage, bone, tendon, muscle, intervertebral disc, or other musculoskeletal tissues.
    Type: Grant
    Filed: May 22, 2009
    Date of Patent: December 10, 2013
    Assignee: The Regents of the University of California
    Inventors: Aliza Apple Allon, Jeffrey Charles Lotz, Richard Alan Schneider
  • Publication number: 20130323811
    Abstract: A method of manufacturing a biopolymer sensor including providing a biopolymer, processing the biopolymer to yield a biopolymer matrix solution, adding a biological material in the biopolymer matrix, providing a substrate, casting the matrix solution on the substrate, and drying the biopolymer matrix solution to form a solidified biopolymer sensor on the substrate. A biopolymer sensor is also provided that includes a solidified biopolymer film with an embedded biological material.
    Type: Application
    Filed: August 9, 2013
    Publication date: December 5, 2013
    Applicant: Tufts University
    Inventors: David L. Kaplan, Fiorenzo Omenetto, Brian Lawrence, Mark Cronin-Golomb, Irene Georgakoudi
  • Publication number: 20130324407
    Abstract: The present invention provides methods for the cultivation of the Methylobacterium genus of bacteria. In particular the method provides methods for the efficient and inexpensive cultivation of these bacteria. Additionally, the invention provides methods for the utilization of these bacterial cultures to improve plant agriculture.
    Type: Application
    Filed: May 31, 2013
    Publication date: December 5, 2013
    Inventor: Gregg Bogosian
  • Patent number: 8597641
    Abstract: The invention relates to a process for preparing an instant enzyme formulation; instant enzyme formulations obtainable by this process and feedstuff compositions prepared using instant enzyme formulations of the invention.
    Type: Grant
    Filed: March 29, 2010
    Date of Patent: December 3, 2013
    Assignee: BASF SE
    Inventors: Hans-Peter Harz, Roland Betz, Wolfgang Heinzl, Günter Gaus
  • Publication number: 20130316431
    Abstract: The present application discloses immobilized enzymes and immobilized enzyme materials comprising a crosslinked organophosphate-degrading enzyme having a support material which includes a biomass material and/or a polymeric material. The resulting immobilized enzyme materials may be biodegradable. The present application also discloses methods of making and using the disclosed immobilized organophosphate hydrolase enzyme and enzyme materials.
    Type: Application
    Filed: November 13, 2012
    Publication date: November 28, 2013
    Inventors: Augustine A. DiNovo, Dominic P. DiNovo, David A. Schofield, Matthew F. Smiechowski, Francis H. Verhoff
  • Publication number: 20130309746
    Abstract: The present application discloses immobilized enzymes and immobilized enzyme materials comprising a crosslinked enzyme having a support material which includes a biomass material different than the biomass used to initially derive the enzyme. Optionally, the immobilized enzyme further includes a polymeric material and/or the biomass which was used to initially derive the enzyme. The resulting immobilized enzyme materials may be biodegradable. The present application also discloses methods of making and using the disclosed immobilized enzyme materials.
    Type: Application
    Filed: November 13, 2012
    Publication date: November 21, 2013
    Inventors: Augustine A. DiNovo, Dominic P. DiNovo, David A. Schofield, Matthew F. Smiechowski, Francis H. Verhoff
  • Publication number: 20130309745
    Abstract: Provided are a porous structure for forming anti-fingerprint coating capable of providing a self-cleaning function to a surface of a substrate, a method of forming anti-fingerprint coating using the same, an anti-fingerprint coated substrate prepared by the same method, and a product including the same. When the porous structure including a lipolytic enzyme is formed on the surface of the substrate, contaminants decomposed by an enzyme are absorbed into a pore, and thus anti-fingerprint coating may be more effectively performed to remove detectable contamination from a surface of the substrate. As a result, contamination by fingerprints on the surface of a display device, the appearance of an electronic device, or building materials can be effectively reduced.
    Type: Application
    Filed: July 19, 2013
    Publication date: November 21, 2013
    Inventors: Eun Jeong Lee, Hyeon Choi, Taek Ho Yang, Young Jun Hong
  • Patent number: 8586031
    Abstract: The present invention relates to specially selected catalase enzymes and their use in reducing hydrogen peroxide in applications, and particularly in aseptic packaging applications.
    Type: Grant
    Filed: July 11, 2012
    Date of Patent: November 19, 2013
    Assignee: Ecolab USA Inc.
    Inventors: Brandon L. Herdt, Joshua P. Magnuson, David D. McSherry, Junzhong Li, Krista L. Owens
  • Patent number: 8584892
    Abstract: A packet of an enzyme and/or enzyme producing bacteria is contained within the core of a roll of toilet tissue or similar paper product wound on a core. The packet has a cover that dissolves or disintegrates on contact with water and disperses its contents into the aqueous waste stream. The packet may contain a mixture of bacterial cultures that produce enzymes to attack the greasy or fatty components of the waste stream. An additional article such as a sample of a liquid or creme personal care product may also be contained within the tissue paper core.
    Type: Grant
    Filed: January 19, 2010
    Date of Patent: November 19, 2013
    Inventor: Joseph R. Lira
  • Publication number: 20130303769
    Abstract: This invention is directed to separation, optimization and purification of nano-materials using self-assembled perylene diimide membranes, wherein said perylene diimide membrane is recyclable.
    Type: Application
    Filed: February 27, 2013
    Publication date: November 14, 2013
    Inventors: Boris RYBTCHINSKI, Elisha M. Krieg, Haim Weissman, Shira Albeck, Yaron Tidhar