Including Measuring Or Testing Patents (Class 435/287.1)
  • Publication number: 20150087551
    Abstract: Apparatus, systems, and methods for detecting, screening and sampling of cells are disclosed.
    Type: Application
    Filed: July 22, 2014
    Publication date: March 26, 2015
    Inventor: Rolf U. Halden
  • Publication number: 20150087006
    Abstract: The invention relates to systems and methods for studying patient cancer samples in cis-co-culture. For example, the invention provide systems and methods for testing therapeutic agents in vitro in an environment that simulates an in vivo environment to identify agents that are therapeutically effective for the patient.
    Type: Application
    Filed: September 19, 2014
    Publication date: March 26, 2015
    Inventors: Chorom Pak, Edmond Wai Keung Young, Natalie Callander, David James Beebe, Shigeki Miyamoto
  • Publication number: 20150087009
    Abstract: An apparatus, system, and method are provided for selectively altering the viability characteristics of a live cell. In some embodiments, an electrical signal acquisition array, electrically coupled to a high gain amplifier, is used in conjunction with an analog to digital converter and a computer to record natural electrical signals that a cell type may use to communicate with its neighbors, the immune system, and the organism in which it is operating, as well as the signals and waveforms that define its particular natural operational electrical signature. Specific parts of the recorded electrical signals that are determined to be relevant to specific behavior patterns are extracted from the recordings as discreet waveforms, loaded into an arbitrary waveform generator, and played back through either an electromagnetic radiating transducer or an electrical signal output array to apply electromagnetic energy to the cells to alter the electrical characteristics of a live cell.
    Type: Application
    Filed: December 3, 2014
    Publication date: March 26, 2015
    Inventor: HOWARD LETOVSKY
  • Publication number: 20150087007
    Abstract: A microfluidic device useable for performing live cell computed tomography imaging is fabricated with a cover portion including a first wafer with at least one metal patterned thereon, a base portion including a second wafer with at least one metal patterned thereon and negative photoresist defining recesses therein, and a diffusive bonding layer including a negative photoresist arranged to join the cover portion and the base portion. A composition useful in live cell computer topography includes a long-chain polysaccharide at a concentration of from about 0.01% to about 10.0% in cell culture medium for supporting cell life while enabling cell rotation rate to be slowed to a speed commensurate with low light level imaging.
    Type: Application
    Filed: September 25, 2014
    Publication date: March 26, 2015
    Applicant: Arizona Board of Regents, a body corporate of the State of Arizona, acting for and on behalf of Ariz
    Inventors: Deirdre Meldrum, Roger Johnson, Iniyan Soundappa Elango, Andrew Shabilla, Hong Wang, Jakrey Myers, Laimonas Kelbauskas, Dean Smith, Pimwadee Limsirichai
  • Publication number: 20150087049
    Abstract: The invention relates to a research photobioreactor for growth at extremely high cell densities in axenic cultures of cyanobacteria and microalgae exposed to a high light intensity. A hydrophobic gas-permeable first membrane situated at the bottom of the reaction chamber serves for the entry of CO2 into the cell suspension. The first membrane separates the CO2 containing gaseous phase in a basis chamber from the cell suspension that covers the membrane. It has a permeability coefficient for the gases of air many times that of the physically feasible rate of absorption of these gases in water. The turbulent flow within the cell suspension is obtained by shaking. A high shearing rate hereby realized increases the CO2 absorption rate in the liquid phase close to the membrane, thus avoiding C-limitation. A porous hydrophobic gas-permeable second membrane separates the reaction chamber from at least one gas exchange chamber.
    Type: Application
    Filed: September 18, 2014
    Publication date: March 26, 2015
    Inventors: Rudolf Ehwald, Lars Bähr, Arne Wüstenberg
  • Patent number: 8986979
    Abstract: The present invention relates to a cell culture device (1) comprising a disposable culture vessel comprising at least one external wall made of a material having a Young modulus E of less than 50 GPa, in which there is situated at least one cell culture zone and at least one cell-free medium transfer zone, allowing a flow of a culture medium between the cell culture zone and the transfer zone, and at least one sensor element of a cell-density sensor wherein said sensor element is situated in the cell culture zone of said vessel. The sensor element is an electrode arrangement of at least two and preferably at least four measuring electrodes arranged on the inner side of an external wall of the disposable culture vessel and directed towards the cell culture zone. The present invention further relates to a method of culturing cells.
    Type: Grant
    Filed: November 13, 2009
    Date of Patent: March 24, 2015
    Assignee: Pall Artelis BVBA
    Inventors: José Castillo, Jean-Christophe Drugmand
  • Patent number: 8986525
    Abstract: A device for sensing a property of a fluid comprising a first substrate having formed thereon a sensor configured in use to come into contact with a fluid in order to sense a property of the fluid, and a wireless transmitter for transmitting data over a wireless data link and a second substrate having formed thereon a wireless receiver for receiving data transmitted over said wireless link by said wireless transmitter. The first substrate is fixed to or within said second substrate. Additionally or alternatively, the device comprises a first substrate defining one or more microfluidic structures for receiving a fluid to be sensed and a second substrate comprising or having attached thereto a multiplicity of fluid sensors, the number of sensors being greater than the number of microfluidic structures.
    Type: Grant
    Filed: August 6, 2010
    Date of Patent: March 24, 2015
    Assignee: DNA Electronics Limited
    Inventors: Sam Reed, Pantelakis Georgiou, Timothy G. Constandinou
  • Patent number: 8989475
    Abstract: Methods, compositions and kits for determining the developmental potential of one or more embryos or pluripotent cells and/or the presence of chromosomal abnormalities in one or more embryos or pluripotent cells are provided. These methods, compositions and kits find use in identifying embryos and oocytes in vitro that are most useful in treating infertility in humans.
    Type: Grant
    Filed: February 1, 2013
    Date of Patent: March 24, 2015
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Connie C. Wong, Kevin E. Loewke, Thomas M. Baer, Renee A. Reijo-Pera, Barry Behr
  • Patent number: 8986535
    Abstract: The invention discloses an erythropoietin receptor modified electrode, which is a glassy carbon electrode with erythropoietin receptor as recognition element fixed onto the electrode surface via ZnO sol-gel. The modified electrode can be prepared easily, and its performance is stable. After 50-day storage in the dark at 4° C., its response current remained approximately 77% of the original value. An electrochemical biosensor using this modified electrode as working electrode, a platinum electrode as counter electrode, a saturated calomel electrode as reference electrode, and 2 mmol/L K3[Fe(CN)6]—K4[Fe(CN)6]phosphate buffer as the test base solution, can detect erythropoietin (EPO) and/or recombinant human erythropoietin (rhEPO) in a fast, specific, and sensitive manner, with a linear range of 5 pg/L-500 ng/L and a limit of detection of 0.5 pg/L. In particular, according to peak potential differences, the biosensor allows accurate discrimination of EPO and rhEPO.
    Type: Grant
    Filed: October 9, 2012
    Date of Patent: March 24, 2015
    Assignee: First Affiliated Hospital, Third Military Medical University, Chinese People's Liberation Army
    Inventors: Liqun Zhang, Yunxia Wang, Weiling Fu
  • Patent number: 8986940
    Abstract: Provided is a method of detecting infection in a wound caused by an infecting organism at a wound site. Also provided is a system for detecting an infection in a wound at a wound site. Additionally, a porous pad comprising luciferase is provided.
    Type: Grant
    Filed: May 8, 2013
    Date of Patent: March 24, 2015
    Assignee: KCI Licensing, Inc.
    Inventors: Amy K. McNulty, Deepak V. Kilpadi, George Hutchinson, Nancy Price
  • Patent number: 8986625
    Abstract: A method for sampling a sulphur-containing solid product including supplying a gas flow comprising hydrogen sulphide, bringing the gas flow into contact with a solid reagent and reacting the solid reagent with the hydrogen sulphide contained in the gas flow, the reaction fixing the sulphur of the hydrogen sulphide by forming a sulphur-containing solid product which is different in color from the solid reagent, and recovering the sulphur-containing solid product. The invention also relates to a device suitable for the implementation of this method.
    Type: Grant
    Filed: August 27, 2013
    Date of Patent: March 24, 2015
    Assignee: Total S.A.
    Inventors: Daniel Dessort, Robert Le Van Loï, Nadine Loubere
  • Patent number: 8986980
    Abstract: A technique is provided for a structure. A substrate has a nanopillar vertically positioned on the substrate. A bottom layer is formed beneath the substrate. A top layer is formed on top of the substrate and on top of the nanopillar, and a cover layer covers the top layer and the nanopillar. A window is formed through the bottom layer and formed through the substrate, and the window ends at the top layer. A nanopore is formed through the top layer by removing the cover layer and the nanopillar.
    Type: Grant
    Filed: May 11, 2012
    Date of Patent: March 24, 2015
    Assignee: International Business Machines Corporation
    Inventors: Gustavo A. Stolovitzky, Deqiang Wang
  • Publication number: 20150079583
    Abstract: One aspect of the present disclosure relates to a calorimeter for detecting the presence of a target analyte in a fluid sample. The calorimeter can include a substrate, a hermetically-sealed, thermally decoupled central reaction zone associated with the substrate, at least one droplet transport region, and detection electronics. The at least one droplet transport region can be associated with the substrate and configured to merge a reagent droplet with a sample droplet including the fluid sample to form a reaction droplet in the central reaction zone. The detection electronics can be in electrical and/or thermal communication with the central reaction zone and associated with the substrate. The calorimeter can be configured to detect a heat of reaction produced by a reaction event between the target analyte and a capture reagent upon formation of the reaction droplet.
    Type: Application
    Filed: August 22, 2014
    Publication date: March 19, 2015
    Inventors: Franz Baudenbacher, Raymond Mernaugh, John Mayo, Brad Lubbers
  • Patent number: 8980177
    Abstract: Disclosed is a fluidic assay device for assaying at least one property of a liquid sample, the device comprising: (i) a liquid sample application region; (ii) at least one test flow path in liquid flow communication with the sample application region; (iii) a reference flow path in liquid flow communication with the sample application region; and (iv) a junction region, at which the test flow path and the reference flow path contact one another, the junction region typically comprising an outlet, conduit, chamber or other portion which permits the onward flow of liquid; wherein a liquid flowing along the reference flow path, upon reaching the junction region, has the effect of preventing the flow of liquid along the test flow path. The invention relates to a fluidic device for the passage of a liquid. It also relates to an assay device suitable for measurement of the amount and/or presence of an analyte in, or property of, a fluid sample.
    Type: Grant
    Filed: July 2, 2013
    Date of Patent: March 17, 2015
    Assignee: Alere Switzerland GmbH
    Inventors: Stephen John Carlisle, David Tolley
  • Patent number: 8980622
    Abstract: A biological sterilization indicator (BI) and a method of using same for assaying the lethality of a sterilization process. The BI can include a housing, which can include a first portion, and a second portion, which can be movable with respect to the first portion between a first and second position. The BI can further include a frangible container comprising a liquid. The BI can further include a spore reservoir and a projection positioned in the housing. The projection can be configured to fracture the container when the second portion of the housing is moved from the first position to the second position. The method can include maintaining a minimal cross-sectional area of space around the container when the second portion of the housing is in the first position, and fracturing the container in response to moving the second portion between the first and second positions.
    Type: Grant
    Filed: July 6, 2010
    Date of Patent: March 17, 2015
    Assignee: 3M Innovative Properties Company
    Inventors: Jeffrey D. Smith, Jeffrey C. Pederson, Sailaja Chandrapati
  • Patent number: 8980572
    Abstract: A method for generating and localizing a signal in a solid phase substrate detection system comprises applying a solution of target material to a substrate; binding the target with a specific affinity molecule having an attached label, the label comprising multiple signal precursor molecules; applying a carrier to the substrate, and treating the label to convert the signal precursor molecules to signal generating molecules. The carrier comprises solvent for the label and thickener for localizing the signal. The carrier may include developer that converts signal precursor molecules to signal generating molecules. Developer is not necessary if the signal precursor molecules are converted to signal generating molecules by e.g. temperature change, pH change, sonication, light irradiation, microwave heating. A test device for detecting target in a fluid sample, and a kit of parts for determining the presence of target in a fluid sample are also disclosed.
    Type: Grant
    Filed: June 14, 2010
    Date of Patent: March 17, 2015
    Assignee: Supernova Diagnostics, Inc.
    Inventors: Ling Wai Wong, Pui Yee Cangel Chan, Wing Cheung Mak, King Keung Sin, Reinhard Renneberg
  • Publication number: 20150072402
    Abstract: A biosensor includes a working electrode 101, a counter electrode 102 opposing the working electrode 101, a working electrode terminal 103 and a working electrode reference terminal 10 connected to the working electrode 101 by wires, and a counter electrode terminal 104 connected to the counter electrode 102 by a wire. By employing a structure with at least three electrodes, it is possible to assay a target substance without being influenced by the line resistance on the working electrode side.
    Type: Application
    Filed: October 10, 2014
    Publication date: March 12, 2015
    Inventors: Hiroya Ueno, Junji Nakatsuka
  • Publication number: 20150072365
    Abstract: An analytical test meter includes a meter housing containing a test strip connector that includes at least two terminals. A processor is disposed within the meter housing, as well as a current generator that generates a magnetic field in association with one of the terminals for attracting a contact of an analytical test strip for alignment or retention therewith. Detection of the presence of an analytical test strip relative to an electrical contact can cause an increase in the intensity of the magnetic field.
    Type: Application
    Filed: September 10, 2013
    Publication date: March 12, 2015
    Applicant: Cilag GmbH International
    Inventors: Brian GUTHRIE, Scott Sloss, Allan Macrae, Ruth Hunter
  • Publication number: 20150072374
    Abstract: According to embodiments of the present invention, a passive counter flow free microfluidic device for sorting a sample of flagellated cells is provided.
    Type: Application
    Filed: February 3, 2012
    Publication date: March 12, 2015
    Applicant: NEOBIOS PTE LTD
    Inventors: Soon Chye Ng, Swee Lian Liow, Naiqing Chen, Yen Wah Tong, Saif Abdul Kadir Khan, Boon Sing Fang
  • Patent number: 8975073
    Abstract: A microfluidic device includes, in one embodiment, a first silk film coupled to a second silk film with at least one microchannel therebetween.
    Type: Grant
    Filed: November 21, 2007
    Date of Patent: March 10, 2015
    Assignees: The Charles Stark Draper Laboratory, Inc., Trustees of Tufts College
    Inventors: Jeffrey T. Borenstein, Chris Bettinger, David Kaplan
  • Publication number: 20150064689
    Abstract: The present disclosure provides systems and methods for determining the transmissibility of a pathogen. The system described herein includes a flow device with a plurality of cell culture chambers. Cells, such as primary human tracheal or bronchial epithelial cells, are cultured within the flow device. Cells within a first cell culture chamber are infected with the pathogen. The pathogen's transmissibility is determined by flowing a gas through the flow device such that the gas flows over the infected cells and then over uninfected cells in a second cell culture chamber of the device. By quantifying the amount of virus present in the cells of the second cell culture chamber after a predetermined amount of time, the transmissibility of the pathogen is determined.
    Type: Application
    Filed: August 29, 2013
    Publication date: March 5, 2015
    Inventor: James Comolli
  • Patent number: 8968677
    Abstract: An improved apparatus and method for dispersion of a labeling conjugate in a diagnostic assay, the result being a one-step assay. By eliminating a conjugate pad as in conventional lateral diagnostic devices, and forming a frazil ice pellicle (FIP), rehydration and flow are improved resulting in better reproducibility, improved sensitivity, and reduced costs of individual assay devices. The formation of a frazil ice film formed on a super cooled surface of a sample receiving means simplifies assay assembly. Lyophilization of the FIP improves the release of a sample/analyte/label matrix into a macro channel as in a direct flow assay, while at the same time allowing reagents to mix and flow, thereby optimizing the assay performance. The reagents of the conjugate and the formation of the FIP stabilize the conjugate proteins and provide extended shelf life to the diagnostic assay device.
    Type: Grant
    Filed: January 22, 2013
    Date of Patent: March 3, 2015
    Assignee: Quantum Design International, Inc.
    Inventors: Ronald T. LaBorde, Nicholas J. Neild
  • Patent number: 8969069
    Abstract: Disclosed are a glycated protein measurement sensor and a portable glycated protein measurement apparatus. The glycated protein measurement sensor includes: a sensing film (300) formed on a predetermined base material (100); and first and second unit sensors (10?, 10?) including a positive (+) electrode (400) and a negative (?) electrode (500) disposed facing each other at a predetermined distance on both ends of the sensing film (300). A ligand composition (600?) including an aromatic boron acid combined with a first target material (700) as an effective component is disposed on the first sensing film (300) of the first unit sensor (10?). Also, a receptor (600?) combined with the first or second target material (700) is disposed on the second sensing film (300) of the second unit sensor (10?). Here, the first target material (700) is a glycated protein (700?), and the second target material (700) is a protein (700?).
    Type: Grant
    Filed: September 17, 2012
    Date of Patent: March 3, 2015
    Assignees: NDD, Inc., IM Healthcare Co., Ltd., Fuzbien Technology Institute Inc.
    Inventors: Saeyoung Ahn, Steingrimur Stefansson
  • Patent number: 8969073
    Abstract: The invention describes an appliance and a method, with the help of which specific bio-particles, but also dissolved bio-molecules can be recognized in and separated from fluids making use of suitable carriers and known immobilization methods. The appliance can be used both discontinuously and also for direct and continuous treatment of fluids. Fields of application of the invention are animals, bio-technology (including biological research) and medicinal diagnostics. Areas of application of the invention comprise, among others, therapy of humans, in particular direct treatment of blood.
    Type: Grant
    Filed: January 30, 2007
    Date of Patent: March 3, 2015
    Assignee: pluriSelect GmbH
    Inventor: Hans Werner Heinrich
  • Patent number: 8966813
    Abstract: To provide an accelerated aging seed testing kit system, a single sheet of plastic or other suitable formable sheet material is pressed into the shape of a compartment base having recesses for mounting a seed holder. A seed holder that includes a seed support and a seed support holder is formed. The seed support holder is formed of a single sheet of plastic having radially extending tabs that fit into the recesses of the container to support the seed support above the bottom of the test kit. A bypass channel for addition of an aqueous solution used in the prescribed test condition is provided in the seed holder. A lid is formed out of one piece of plastic having a bendable tab to serve as a port and the openings and connecting points of the lid and seed holder are positioned so they can only fit together in one orientation having the port above the bypass channel.
    Type: Grant
    Filed: October 29, 2007
    Date of Patent: March 3, 2015
    Assignee: Kamterter II, L.L.C.
    Inventors: Christopher Lee Petersen, John Alvin Eastin, Timothy Raymond Meyer
  • Patent number: 8969099
    Abstract: Provided is a microanalysis method and system using a Field Effect Transistor (FET). The microanalysis method includes a channel region having a receptor molecule fixed; forming a nano-particle conjugate in the channel region by supplying a sample for test and the nano-particle conjugate to the FET; growing a probe material on the channel region; and measuring a current flowing through the channel region, wherein the receptor molecule is a material that is selectively bonded to a target molecule in the sample for test.
    Type: Grant
    Filed: September 15, 2011
    Date of Patent: March 3, 2015
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Chil Seong Ah, Jong-Heon Yang, Chan Woo Park, Chang-Geun Ahn, Gun Yong Sung
  • Patent number: 8968545
    Abstract: Described are devices and methods for forming one or more nanomembranes including electroactive nanomembranes within a nanowell or nanotube, or combinations thereof, in a support material. Nanopores/nanochannels can be formed by the electroactive nanomembrane within corresponding nanowells. The electroactive nanomembrane is capable of controllably altering a dimension, a composition, and/or a variety of properties in response to electrical stimuli. Various embodiments also include devices/systems and methods for using the nanomembrane-containing devices for molecular separation, purification, sensing, etc.
    Type: Grant
    Filed: April 2, 2012
    Date of Patent: March 3, 2015
    Assignee: Lux Bio Group, Inc.
    Inventor: Gordon Holt
  • Publication number: 20150056643
    Abstract: The present technology relates generally to microfluidic devices for measuring platelet coagulation, and associated systems and methods. In some embodiments, a fluidics device includes an array of microstructures including pairs of generally rigid blocks and generally flexible posts. The fluidics device further includes at least one fluid channel configured to accept the array. The fluid channel is configured to induce fluid flow of a biological sample, such as whole blood, through the array. The fluidics device can further include a detection component configured to measure a degree of deflection of one or more of the flexible posts in the array. In some embodiments, the fluidics device comprises a handheld device and usable for point of care testing of platelet forces and coagulation.
    Type: Application
    Filed: March 14, 2013
    Publication date: February 26, 2015
    Inventors: Nathan J. Sniadecki, Lucas H. Ting, Shirin Feghhi, Kevin S. Bielawski, Nathan J. White
  • Publication number: 20150056686
    Abstract: A gas-borne pathogen sensor apparatus includes a chamber in a housing having a gas inlet, a gas outlet, and a collection area with a fluid exit port, a liquid misting device, and a sensor element. The liquid misting device is coupled to the chamber and is positioned to spray fluid into the chamber in the housing. The sensor element is positioned in the chamber in the housing and has one or more probes designed to mate with any of one or more targets in a gas supplied to the chamber in the housing through the gas inlet.
    Type: Application
    Filed: August 20, 2014
    Publication date: February 26, 2015
    Inventor: Michael D. Potter
  • Patent number: 8962305
    Abstract: A biosensor chip with nano-structures. The biosensor chip includes a RF biosensor, comprising an isolated substrate; a ground plane; a filtering circuit; at least one cell detection area with nano-structures and a protection layer. The RF biosensor can detect the existence of the cancer cells, high frequency biological effects and the cells relationship between transfers by noninvasive method. The RF biosensor according to the invention can provide high accuracy and sensitivity in cancer cells detection.
    Type: Grant
    Filed: March 19, 2012
    Date of Patent: February 24, 2015
    Assignee: Kun Shan University
    Inventors: Hung-Wei Wu, Yong-Han Hong, Yu-Fu Chen, Yung-Wei Chen, Shu-Ting Teng
  • Patent number: 8962242
    Abstract: A system for detecting electrical properties of a molecular complex is disclosed. The system includes an electrode electrically coupled to a molecular complex that outputs an electrical signal affected by an electrical property of the molecular complex, wherein the effect of the electrical property of the molecular complex on the electrical signal is characterized by an expected bandwidth. The system further includes an integrating amplifier circuit configured to:receive the electrical signal from the electrode. The integrating amplifier circuit is further configured to selectively amplify and integrate a portion of the electrical signal over time within a predetermined bandwidth, wherein the predetermined bandwidth is selected at least in part based on the expected bandwidth.
    Type: Grant
    Filed: October 12, 2011
    Date of Patent: February 24, 2015
    Assignee: Genia Technologies, Inc.
    Inventor: Roger Chen
  • Patent number: 8961765
    Abstract: Plastic electrophoresis separation chips are provided comprising a plurality of microfluidic channels and a detection window, where the detection window comprises a thin plastic; and the detection window comprises a detection region of each microfluidic channel. Such chips can be bonded to a support provided an aperture is provided in the support to allow detection of samples in the electrophoresis chip at the thin plastic detection window. Further, methods for electrophoretically separating and detecting a plurality of samples on the plastic electrophoresis separation chip are described.
    Type: Grant
    Filed: August 8, 2012
    Date of Patent: February 24, 2015
    Assignee: NetBio, Inc.
    Inventors: Eugene Tan, Cheuk Wai Kan, Heung Chuan Lam
  • Patent number: 8961898
    Abstract: The present invention provides a bilayer membrane produced using a microchannel capable of easily forming bilayer membranes such as planar lipid bilayer membranes in large quantities, and a production method thereof. A process for producing a bilayer membrane of the present invention comprises forming a state where two liquid phases or liquid and gaseous phases each containing amphipathic molecules are alternately arranged in a microchannel, discharging one of the two liquid phases or the gaseous phase of the liquid and gaseous phases through branch minichannels formed in the wall on one side or in the walls on both sides to contact the remaining liquid phases adjacent to each other, and thereby forming a side-by-side arrangement of bilayer membranes comprising the amphipathic molecules.
    Type: Grant
    Filed: March 28, 2008
    Date of Patent: February 24, 2015
    Assignee: Tokyo Institute of Technology
    Inventors: Takasi Nisisako, Takahiro Baba
  • Patent number: 8962302
    Abstract: A biological tissue processing substrate for fixing proteins in a biological tissue or degradation products of the proteins, the substrate comprising: a porous body that forms a contact surface with the biological tissue, the porous body holding in pores an enzyme for obtaining the proteins or the degradation products of the proteins from the biological tissue, wherein the proteins or the degradation products obtained by the action of the enzyme are brought into contact with a member consisting of a metal.
    Type: Grant
    Filed: November 3, 2006
    Date of Patent: February 24, 2015
    Assignee: Canon Kabushiki Kaisha
    Inventors: Kazuhiro Ban, Miki Ogawa, Norihiko Utsunomiya, Hiroyuki Hashimoto, Manabu Komatsu, Yohei Murayama
  • Patent number: 8962304
    Abstract: The present disclosure is related to an interface device for providing access to a network to be monitored. The interface device includes a plurality of elements, the elements being sensors and/or actuators. A selection circuit is provided for selecting a subset of elements among the plurality of elements, each element of the subset being arranged for outputting and/or receiving a signal. A local memory is provided for storing the subset.
    Type: Grant
    Filed: February 28, 2008
    Date of Patent: February 24, 2015
    Assignee: IMEC
    Inventors: Roeland Huys, Wolfgang Eberle, Carmen Bartic
  • Patent number: 8962258
    Abstract: Provided are a multiple immunoassay apparatus on a chip in which a structure comprising multiple microfluidic channels is associated with a tissue sample, which allows immunohistochemical reactions to be conducted therein, to examine various markers specific for certain diseases, and a method for performing multiple immunoassays using the same. The multiple immunoassay apparatus comprises: at least one antibody-introducing unit through which at least one antibody is introduced into the apparatus; at least one reaction unit in which the antibody reacts with a sample in an immunohistochemical pattern; and at least one fluid outlet through which a fluid including the antibody is discharged outside the apparatus.
    Type: Grant
    Filed: August 29, 2008
    Date of Patent: February 24, 2015
    Assignees: Korea Advanced Institute of Science and Technology, National Cancer Center
    Inventors: Je-Kyun Park, MinSeok Kim, Eun Sook Lee, Sun-Young Kong, Solm Kwon
  • Publication number: 20150051839
    Abstract: The invention provides a method for characterising a plasma cell associated disease in a patient comprising: (i) providing at least one sample from the patient; (ii) determining in the sample(s) two or more of; (a) the ?:? free light chain (FLC) ratio; (b) the ratio of ? light chains bound to a class of heavy chain:? light chain bound to the same class of heavy chain (HLC?:HLC ? ratio); (c) the total amount of FLC in the samples and (d) the total amount of ? light chains bound to the heavy chain class plus ? light chains bound to the same heavy chain class (total HLC); (iii) comparing each ratio or amount from (a) (b), (c) and/or (d) to predetermined values and assigning a score to each amount or ratio; and (iv) using the scores to characterise the plasma cell associated disease. Apparatus configured to carry out the method of the invention are also provided.
    Type: Application
    Filed: March 6, 2013
    Publication date: February 19, 2015
    Applicant: THE BINDING SITE GROUP LIMITED
    Inventors: Stephen Harding, Richard Hughes, Hugh Carr-Smith
  • Publication number: 20150050678
    Abstract: A modular analytical test meter includes a meter chassis or body and a plug-in analytical module that is electrically and mechanically attached in a releasable fashion to the meter chassis. When attached, the plug-in analytical module includes resident circuitry configured to measure for an analyte of interest from an analytical test strip, the module further including stored coded information such as firmware updates that can be utilized by the existing test meter without requiring replacement of an entire system.
    Type: Application
    Filed: August 13, 2013
    Publication date: February 19, 2015
    Applicant: LifeScan Scotland Limited
    Inventors: David Elder, Allan Faulkner, Allan Macrae, Keith Lawrie
  • Patent number: 8956858
    Abstract: The present invention relates to a Polymerase Chain Reaction and High Resolution Melt genetic identification system, and, more specifically, to a tactical and portable Polymerase Chain Reaction and High Resolution Melt genetic analysis and identification system that is configured to determine and communicate analysis and identification results and a tiered confidence/alert level related to the analysis and identification results.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: February 17, 2015
    Assignee: SRC, Inc.
    Inventors: Zachary J Dineen, David B. Knaebel
  • Patent number: 8956856
    Abstract: The present invention provides skin grafting and devices that comprise a systematic approach to the process of skin grafting, i.e., harvesting, post-excision processing and application of donor skin and pre and post-graft treatment of the recipient site.
    Type: Grant
    Filed: October 10, 2013
    Date of Patent: February 17, 2015
    Assignee: KCI Licensing, Inc.
    Inventors: Charles Seegert, Royce Johnson, A. David Boccuti, Andrew Nicholas Gentile, Edward S. Griffey, Blane Sanders
  • Publication number: 20150044760
    Abstract: The specification generally discloses systems and methods for mixing and delivering fluids in microfluidic systems. The fluids can contain, in some embodiments reagents that can participate in one or more chemical or biological reactions. Some embodiments relate to systems and methods employing one or more vent valves to controllably flow and/or mix portions of fluid within the microfluidic system. Advantageously, fluid control such as a sequence of fluid flow and/or a change in flow rate, can be achieved by opening and closing one or more vent valves and by applying a single source of fluid flow (e.g., a vacuum) operated at a substantially constant pressure. This can simplify the operation and use of the device by an intended user.
    Type: Application
    Filed: October 23, 2014
    Publication date: February 12, 2015
    Applicant: OPKO Diagnostics, LLC
    Inventors: Enqing Tan, Vincent Linder, Jason Taylor, David Steinmiller
  • Publication number: 20150040627
    Abstract: Composting Appliances are useful in reducing waste.
    Type: Application
    Filed: October 24, 2014
    Publication date: February 12, 2015
    Inventors: Jennifer Melissa Ross DEVINE, Russell Lance SPEILLER, Arthur Hampton NEERGAARD
  • Publication number: 20150040625
    Abstract: Composting Appliances are useful in reducing waste.
    Type: Application
    Filed: October 24, 2014
    Publication date: February 12, 2015
    Inventors: Jennifer Melissa Ross DEVINE, Russell Lance SPEILLER, Arthur Hampton NEERGAARD
  • Patent number: 8951484
    Abstract: Candidate cells, such as circulating tumor cells (CTCs), present with blood are captured using a multiple stage device, having successive stages configured to deviate candidate cells out of the blood while slowing down the flow rates of the deviated resultant for easier capture of CTCs through progressive stages. The devices can include separation channel and deviation channels formed of micro-post patterns dimensioned to deviate different desired candidate cells for analysis.
    Type: Grant
    Filed: January 31, 2013
    Date of Patent: February 10, 2015
    Assignee: The Regents of The University of Michigan
    Inventors: Tommaso F. Bersano-Begey, Daniel F. Hayes
  • Patent number: 8951725
    Abstract: The invention provides methods for identifying early stage non-small cell lung cancer (NSCLC) patients who will have a favorable prognosis for the recurrence of lung cancer after surgical resection. The invention is based on the discovery that assessment of chromosomal copy number abnormalities at two or more of chromosome 5p15, 7p12, 8q24 and centromere 6 can be used for prognostic classification. The invention preferably uses fluorescence in situ hybridization with fluorescently labeled nucleic acid probes to hybridize to patient samples to quantify the chromosomal copy number of the these genetic loci.
    Type: Grant
    Filed: April 14, 2008
    Date of Patent: February 10, 2015
    Assignee: Abbott Laboratories
    Inventors: Larry E. Morrison, John Coon
  • Patent number: 8951783
    Abstract: Systems and methods to analyze contaminants including a plurality of stages configured to detect contaminants in a sample, wherein the plurality of stages are configured to detect a plurality of contaminants at substantially the same time.
    Type: Grant
    Filed: November 23, 2010
    Date of Patent: February 10, 2015
    Inventor: Jaydeep Bhattacharya
  • Patent number: 8951782
    Abstract: An apparatus for separating cells using magnetic force includes: a separation channel portion including ferromagnetic particles, and provided with a flow path through which a cell fluid containing a plurality of cells having at least one of diamagnetic and paramagnetic properties; and a magnetic field controller that generates a magnetic field within the flow path so that the cells in the cell fluid flow within the flow path and are separated by height by a magnetic field. Accordingly, there are provided an apparatus for separating cells using magnetic force and a cell separation method using the same, by which cells can be easily separated using magnetic force.
    Type: Grant
    Filed: July 11, 2012
    Date of Patent: February 10, 2015
    Assignee: Korea Institute of Machinery & Materials
    Inventors: Sung Hwan Chang, Yeong-Eun Yoo, Doo-Sun Choi, Kyung-Hyun Whang
  • Patent number: 8951749
    Abstract: Disclosed herein are devices for detecting the presence of a target analyte in a fluid sample. The biosensor device can comprise at least a reaction chamber and a detection chamber. The device can comprise a amplifying mechanism such that one target analyte molecule present in the fluid sample can lead to generation/activation of multiple detection agent molecules, and therefore, an amplified signal. Also disclosed are the methods of manufacturing and using such a biosensor device.
    Type: Grant
    Filed: July 10, 2009
    Date of Patent: February 10, 2015
    Assignee: Universal Biosensors Pty Ltd
    Inventors: Dennis Rylatt, Alastair Hodges
  • Publication number: 20150037289
    Abstract: A method of preparing a stem cell preparation is provided. The method includes steps of collecting adipose tissue from a mammal, contacting that adipose tissue with an enzyme preparation to digest fat and connective tissue and preserve stem cells and collecting those stem cells. In addition a kit is provided for preparing a stem cell preparation.
    Type: Application
    Filed: February 22, 2013
    Publication date: February 5, 2015
    Inventors: Shaneel Masood Khan, Francis Edward Dwulet, Andrew Gregory Breite
  • Publication number: 20150037828
    Abstract: Aspects of the disclosure include methods for analyzing an analyte composition by mass spectrometry employing a macroporous metal organic polymer matrix. In practicing methods according to certain embodiments an analyte composition is applied to a macroporous metal organic polymer matrix, a voltage is applied to the macroporous metal organic polymer matrix sufficient to produce and expel analyte ions from the macroporous metal organic polymer matrix and the analyte ions are analyzed by mass spectrometry. In other embodiments, a composition having biological macromolecules is applied onto a surface-modified macroporous metal organic polymer matrix and analytes produced by reaction (e.g., enzymatic cleavage of the biological macromolecules) at or near the surface of the macroporous metal organic polymer matrix are measured by mass spectrometry.
    Type: Application
    Filed: July 31, 2014
    Publication date: February 5, 2015
    Inventors: Maria T. Dulay, Richard N. Zare, Livia Schiavinato Eberlin