Flip-chip-type Assembly Patents (Class 438/108)
  • Patent number: 8994160
    Abstract: A resin-encapsulated semiconductor device includes: a semiconductor element mounted on a die pad portion; a plurality of lead portions disposed so that distal end parts thereof are opposed to the die pad portion; a metal thin wire for connecting an electrode of the semiconductor element to the lead portion; and an encapsulating resin for partially encapsulating those components. A bottom surface part of the die pad portion, and a bottom surface part, an outer surface part, and an upper end part of the lead portion are exposed from the encapsulating resin. A plated layer is formed on the exposed lead bottom surface part and the exposed lead upper end part.
    Type: Grant
    Filed: September 18, 2013
    Date of Patent: March 31, 2015
    Assignee: Seiko Instruments Inc.
    Inventor: Noriyuki Kimura
  • Patent number: 8993376
    Abstract: A semiconductor device has a base substrate with first and second opposing surfaces. A plurality of cavities and base leads between the cavities is formed in the first surface of the base substrate. The first set of base leads can have a different height or similar height as the second set of base leads. A concave capture pad can be formed over the second set of base leads. Alternatively, a plurality of openings can be formed in the base substrate and the semiconductor die mounted to the openings. A semiconductor die is mounted between a first set of the base leads and over a second set of the base leads. An encapsulant is deposited over the die and base substrate. A portion of the second surface of the base substrate is removed to separate the base leads. An interconnect structure is formed over the encapsulant and base leads.
    Type: Grant
    Filed: October 28, 2011
    Date of Patent: March 31, 2015
    Assignee: STATS ChipPAC, Ltd.
    Inventors: Zigmund R. Camacho, Emmanuel A. Espiritu, Henry D. Bathan, Dioscoro A. Merilo
  • Patent number: 8993377
    Abstract: A semiconductor wafer has first and second opposing surfaces. A plurality of conductive vias is formed partially through the first surface of the semiconductor wafer. The semiconductor wafer is singulated into a plurality of first semiconductor die. The first semiconductor die are mounted to a carrier. A second semiconductor die is mounted to the first semiconductor die. A footprint of the second semiconductor die is larger than a footprint of the first semiconductor die. An encapsulant is deposited over the first and second semiconductor die and carrier. The carrier is removed. A portion of the second surface is removed to expose the conductive vias. An interconnect structure is formed over a surface of the first semiconductor die opposite the second semiconductor die. Alternatively, a first encapsulant is deposited over the first semiconductor die and carrier, and a second encapsulant is deposited over the second semiconductor die.
    Type: Grant
    Filed: September 13, 2011
    Date of Patent: March 31, 2015
    Assignee: STATS ChipPAC, Ltd.
    Inventors: Jun Mo Koo, Pandi C. Marimuthu, Seung Wook Yoon, Il Kwon Shim
  • Patent number: 8994192
    Abstract: A method of manufacture of an integrated circuit packaging system comprising: providing a package carrier; mounting an integrated circuit to the package carrier; and forming a perimeter antiwarpage structure on and along a perimeter of the package carrier.
    Type: Grant
    Filed: December 15, 2011
    Date of Patent: March 31, 2015
    Assignee: STATS ChipPAC Ltd.
    Inventor: DaeSik Choi
  • Patent number: 8994193
    Abstract: A semiconductor package includes: a metal plate including a first surface, a second surface and a side surface; a semiconductor chip on the first surface of the metal plate, the semiconductor chip comprising a first surface, a second surface and a side surface; a first insulating layer that covers the second surface of the metal plate; a second insulating layer that covers the first surface of the metal plate, and the first surface and the side surface of the semiconductor chip; and a wiring structure on the second insulating layer and including: a wiring layer electrically connected to the semiconductor chip; and an interlayer insulating layer on the wiring layer. A thickness of the metal plate is thinner than that of the semiconductor chip, and the side surface of the metal plate is covered by the first insulating layer or the second insulating layer.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: March 31, 2015
    Assignee: Shinko Electric Industries Co., Ltd.
    Inventors: Akihiko Tateiwa, Masato Tanaka, Akio Rokugawa
  • Patent number: 8994155
    Abstract: Packaging devices, methods of manufacture thereof, and packaging methods for semiconductor devices are disclosed. In one embodiment, a packaging device includes a substrate including an integrated circuit die mounting region. An underfill material flow prevention feature is disposed around the integrated circuit die mounting region.
    Type: Grant
    Filed: October 19, 2012
    Date of Patent: March 31, 2015
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Tsung-Fu Tsai, Yu-Chang Lin, Ying Ching Shih, Wei-Min Wu, Yian-Liang Kuo, Chia-Wei Tu
  • Patent number: 8993378
    Abstract: A method for assembling a flip chip ball grid array package includes mounting solder spheres to a ball grid array substrate, applying flux to a plurality of flip chip solder bumps provided on a diced wafer, aligning the ball grid array substrate over a chip on the diced wafer, picking and separating the chip from the diced wafer by urging the chip upwards towards the ball grid array substrate until the flip chip solder bumps on the chip come in contact with the ball grid array substrate, whereby the chip attaches to the ball grid array substrate in an upside-down orientation, and subjecting the chip and the ball grid array substrate to a thermal process whereby the solder spheres reflow and form solder balls and the flip chip solder bumps reflow and form solder joints between the chip and the ball grid array.
    Type: Grant
    Filed: September 6, 2011
    Date of Patent: March 31, 2015
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Yu-Chih Liu, Jing Ruei Lu, Wei-Ting Lin, Sao-Ling Chiu, Hsin-Yu Pan
  • Publication number: 20150084210
    Abstract: Generally discussed herein are systems and apparatuses that include a dense interconnect bridge and techniques for making the same. According to an example a technique can include creating a multidie substrate, printing an interconnect bridge on the multidie substrate, electrically coupling a first die to a second die by coupling the first and second dies through the interconnect bridge.
    Type: Application
    Filed: September 25, 2013
    Publication date: March 26, 2015
    Inventors: Chia-Pin Chiu, Kinya Ichikawa, Robert L. Sankman
  • Publication number: 20150084165
    Abstract: Embodiments of the present description include stacked microelectronic dice embedded in a microelectronic substrate and methods of fabricating the same. In one embodiment, at least one first microelectronic die is attached to a second microelectronic die, wherein an underfill material is provided between the second microelectronic die and the at least one first microelectronic die. The microelectronic substrate is then formed by laminating the first microelectronic die and the second microelectronic die in a substrate material.
    Type: Application
    Filed: September 24, 2013
    Publication date: March 26, 2015
    Inventors: Reinhard Mahnkopf, Wolfgang Molzer, Bernd Memmler, Edmund Goetz, Hans-Joachim Barth, Sven Albers, Thorsten Meyer
  • Patent number: 8987064
    Abstract: A method of manufacture of an integrated circuit packaging system includes: providing a lead-frame having a metal connector mounted thereon and having a peripheral mounting region; forming an insulation cover on the lead-frame and on the metal connector; connecting an integrated circuit die over the insulation cover; forming a top encapsulation on the integrated circuit die with the peripheral mounting region exposed from the top encapsulation; forming a routing layer, having a conductive land, from the lead-frame; and forming a bottom encapsulation partially encapsulating the routing layer and the insulation cover.
    Type: Grant
    Filed: January 11, 2013
    Date of Patent: March 24, 2015
    Assignee: STATS ChipPAC Ltd.
    Inventors: Byung Tai Do, Arnel Senosa Trasporto, Linda Pei Ee Chua
  • Patent number: 8987053
    Abstract: A semiconductor package including a plurality of stacked semiconductor die, and methods of forming the semiconductor package, are disclosed. In order to ease wirebonding requirements on the controller die, the controller die may be mounted directly to the substrate in a flip chip arrangement requiring no wire bonds or footprint outside of the controller die. Thereafter, a spacer layer may be affixed to the substrate around the controller die to provide a level surface on which to mount one or more flash memory die. The spacer layer may be provided in a variety of different configurations.
    Type: Grant
    Filed: February 11, 2013
    Date of Patent: March 24, 2015
    Assignee: SanDisk Technologies Inc.
    Inventors: Suresh Upadhyayula, Hem Takiar
  • Patent number: 8987054
    Abstract: In one embodiment, methods for making semiconductor devices are disclosed.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: March 24, 2015
    Assignee: Semiconductor Components Industries, L.L.C.
    Inventor: Darrell Truhitte
  • Patent number: 8987055
    Abstract: Provided is a method for packaging a low-k chip, comprising: attaching onto a carrier wafer a layer of temporary strippable film; arranging inversely a chip (2-1) onto the carrier wafer via the temporary strippable film; attaching thin film layer I (2-4) onto the carrier wafer for packaging; bonding a support wafer (2-5) onto the thin film layer I (2-4) and solidifying; forming a reconstructed wafer consisting of the chip (2-1), thin film layer I (2-4), and the support wafer; detaching the reconstructed wafer from the carrier wafer; completing a rewired metal wiring (2-6) on thin film layer I (2-4); forming a metal column (2-7) at an end of the rewired metal wiring (2-6); attaching thin film layer II (2-8) onto a surface of the metal column (2-7), packaging, and solidifying; coating a metal layer (2-9) on the top of the metal column (2-7), forming BGA solder balls (2-10) on the metal layer (2-9) by means of printing or ball planting; and finally slicing into individual BGA packages the reconstructed wafer hav
    Type: Grant
    Filed: October 21, 2011
    Date of Patent: March 24, 2015
    Assignee: Jiangyin Changdian Advanced Packaging Co., Ltd
    Inventors: Li Zhang, Zhiming Lai, Dong Chen, Jinhui Chen
  • Publication number: 20150076679
    Abstract: Methods of manufacturing semiconductor device assemblies include attaching a back side of a first semiconductor die to a substrate and structurally and electrically coupling a first end of laterally extending conductive elements to conductive terminals on or in a surface of the substrate. Second ends of the laterally extending conductive elements are structurally and electrically coupled to bond pads on or in an active surface of the first semiconductor die. Conductive structures are structurally and electrically coupled to bond pads of a second semiconductor die. At least some of the conductive structures are aligned with at least some of the bond pads of the first semiconductor die. An active surface of the second semiconductor die faces an active surface of the first semiconductor die. At least some of the conductive structures are structurally and electrically coupled to at least some of the bond pads of the first semiconductor die.
    Type: Application
    Filed: November 25, 2014
    Publication date: March 19, 2015
    Inventors: Eric Tan Swee Seng, Lee Choon Kuan
  • Patent number: 8980654
    Abstract: The ion implantation method includes setting an ion beam scanning speed and a mechanical scanning speed of an object during ion implantation using hybrid scan in advance and implanting ions based on the set ion beam scanning speed and the set mechanical scanning speed of the object. In the setting in advance, each of the ion beam scanning speeds is set based on each of ion beam scanning amplitudes changing severally according to a surface outline of an object which is irradiated with the ions so that an ion beam scanning frequency is maintained constant for any of ion beam scanning amplitudes, and the mechanical scanning speed of the object corresponding to the ion beam scanning speed is set so that an ion implantation dose per unit area to be implanted into the surface of the object is maintained constant.
    Type: Grant
    Filed: July 11, 2013
    Date of Patent: March 17, 2015
    Assignee: SEN Corporation
    Inventors: Shiro Ninomiya, Akihiro Ochi
  • Patent number: 8980694
    Abstract: Disclosed are a flip-chip carrier having individual pad masks (IPMs) and a fabricating method of a MPS-C2 package utilized from the same. The flip-chip carrier primarily comprises a substrate and a plurality of the IPMs. The substrate has a top surface and a plurality of connecting pads on the top surface. The IPMs cover the corresponding connecting pads in one-on-one alignment where each IPM consists of a photo-sensitive adhesive layer on the corresponding connecting pad and a pick-and-place body pervious to light formed on the photo-sensitive adhesive layer. After the photo-sensitive adhesive layers are irradiated by light penetrating through the pick-and-place bodies, the pick-and-place bodies can be pulled out by a pick-and-place process to expose the connecting pads from an encapsulant. The issues of solder bridging and package warpage can easily be solved in conventional MPS-C2 packages.
    Type: Grant
    Filed: September 21, 2011
    Date of Patent: March 17, 2015
    Assignee: Powertech Technology, Inc.
    Inventor: Shou-Chian Hsu
  • Patent number: 8981577
    Abstract: A method of manufacture of an integrated circuit packaging system includes: providing an interposer having an interposer first side and an interposer second side opposing the interposer first side; mounting an integrated circuit to the interposer first side, the integrated circuit having a non-active side and an active side with the non-active side facing the interposer; connecting first interconnects between the active side and the interposer first side, the first interconnects having a first density on the interposer first side; mounting the interposer over a package carrier with the interposer first side facing the package carrier; connecting second interconnects between the package carrier and the interposer second side, the second interconnects having a second density on the interposer second side, the second density that is approximately the same as the first density; and forming an encapsulation over the package carrier covering the interposer and the second interconnects.
    Type: Grant
    Filed: March 24, 2010
    Date of Patent: March 17, 2015
    Assignee: STATS ChipPAC Ltd.
    Inventor: Mukul Joshi
  • Patent number: 8978247
    Abstract: A method for forming an interconnection element having metalized structures includes forming metalized structures in an in-process unit that has a support material layer with first and second spaced-apart surfaces defining a thickness therebetween, a handling structure, and an insulating layer separating at least portions of the first surface of the support material layer from at least portions of the handling structure. The metalized structures are formed extending through the thickness of the support material layer. The method also includes etching at least a portion of the insulating layer to remove the handling structure from the in-process unit and further processing the in-process unit to form the interconnection element.
    Type: Grant
    Filed: May 22, 2012
    Date of Patent: March 17, 2015
    Assignee: Invensas Corporation
    Inventors: Se Young Yang, Cyprian Emeka Uzoh, Michael Huynh, Rajesh Katkar
  • Patent number: 8980744
    Abstract: This disclosure provides a method of fabricating a semiconductor stack and associated device, such as a capacitor and DRAM cell. In particular, a bottom electrode has a material selected for lattice matching characteristics. This material may be created from a relatively inexpensive metal oxide which is processed to adopt a conductive, but difficult-to-produce oxide state, with specific crystalline form; to provide one example, specific materials are disclosed that are compatible with the growth of rutile phase titanium dioxide (TiO2) for use as a dielectric, thereby leading to predictable and reproducible higher dielectric constant and lower effective oxide thickness and, thus, greater part density at lower cost.
    Type: Grant
    Filed: November 13, 2012
    Date of Patent: March 17, 2015
    Assignees: Intermolecular, Inc., Elpida Memory, Inc.
    Inventors: Hanhong Chen, Toshiyuki Hirota, Pragati Kumar, Xiangxin Rui, Sunil Shanker
  • Publication number: 20150069603
    Abstract: Electrically conductive pillars with a solder cap are formed on a substrate with an electroplating process. A flip-chip die having solder wettable pads is attached to the substrate with the conductive pillars contacting the solder wettable pads.
    Type: Application
    Filed: September 8, 2013
    Publication date: March 12, 2015
    Inventors: Chee Seng Foong, Boon Yew Low, Navas Khan Oratti Kalandar
  • Publication number: 20150069637
    Abstract: An integrated circuit (IC) package includes an IC die having a first surface and a second surface opposite of the first surface. The IC package includes first contact members coupled to the second surface of the IC die. The IC package includes a bottom substrate having a first surface and a second surface opposite of the first surface, where the first surface of the bottom substrate is coupled to the second surface of the IC die via the first contact members. The IC package includes an interposer substrate coupled to the first surface of the IC die via an adhesive material, where the adhesive material is disposed on at least a surface of the interposer substrate. The IC package includes second contact members coupled along a periphery of the interposer substrate, where the interposer substrate is coupled to the first surface of the bottom substrate via the second contact members.
    Type: Application
    Filed: September 18, 2013
    Publication date: March 12, 2015
    Applicant: Broadcom Corporation
    Inventors: Sam Ziqun ZHAO, Rezaur Rahman KHAN
  • Patent number: 8975537
    Abstract: A circuit substrate includes a resin layer; and an inorganic insulating layer including a groove portion penetrating the inorganic insulating layer in a thickness direction thereof. A part of the resin layer is in the groove portion.
    Type: Grant
    Filed: May 22, 2013
    Date of Patent: March 10, 2015
    Assignee: Kyocera Corporation
    Inventor: Katsura Hayashi
  • Patent number: 8975183
    Abstract: A method for forming a semiconductor structure. A semiconductor substrate including a plurality of dies mounted thereon is provided. The substrate includes a first portion proximate to the dies and a second portion distal to the dies. In some embodiments, the first portion may include front side metallization. The second portion of the substrate is thinned and a plurality of conductive through substrate vias (TSVs) is formed in the second portion of the substrate after the thinning operation. Prior to thinning, the second portion may not contain metallization. In one embodiment, the substrate may be a silicon interposer. Further back side metallization may be formed to electrically connect the TSVs to other packaging substrates or printed circuit boards.
    Type: Grant
    Filed: February 10, 2012
    Date of Patent: March 10, 2015
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventor: Jing-Cheng Lin
  • Patent number: 8976529
    Abstract: In a package structure, a stiffener ring is over and bonded to a top surface of a first package component. A second package component is over and bonded to the top surface of the first package component, and is encircled by the stiffener ring. A metal lid is over and bonded to the stiffener ring. The metal lid has a through-opening.
    Type: Grant
    Filed: January 14, 2011
    Date of Patent: March 10, 2015
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Wen-Yi Lin, Po-Yao Lin, Tsung-Shu Lin, Kuo-Chin Chang, Shou-Yi Wang
  • Patent number: 8975755
    Abstract: An embodiment of the disclosure provides a chip package which includes: a semiconductor substrate having a first surface and a second surface; a first recess extending from the first surface towards the second surface; a second recess extending from a bottom of the first recess towards the second surface, wherein a sidewall and the bottom of the first recess and a second sidewall and a second bottom of the second recess together form an exterior side surface of the semiconductor substrate; a wire layer disposed on the first surface and extending into the first recess and/or the second recess; an insulating layer located between the wire layer and the semiconductor substrate; a chip disposed on the first surface; and a conducting structure disposed between the chip and the first surface.
    Type: Grant
    Filed: February 3, 2014
    Date of Patent: March 10, 2015
    Assignee: Xintec Inc.
    Inventors: Yen-Shih Ho, Tsang-Yu Liu, Chia-Sheng Lin
  • Publication number: 20150063760
    Abstract: A fiber optic transceiver that is compatible with packaging into standard semiconductor packages and for SMT packaging, using materials and fabrication procedures that withstand solder assembly processes. The SMT package can have electrical contacts on the exterior of the package for creating electrical conduits to a substrate, such as a PCB, interposer, or circuit card within a larger assembly. The fiber optic transceiver can be of a non-SMT package configuration, being formed with electrical connection technology that allows direct connection to a substrate with electrical wiring, such as a PCB, interposer, or circuit card within a larger assembly. The fiber optic transceiver may have solderballs, metal posts or other electrical conduit technology that allows direct electrical connection to the substrate.
    Type: Application
    Filed: April 11, 2013
    Publication date: March 5, 2015
    Inventors: Richard J. Pommer, Joseph F. Ahadian, Charles B. Kuznia, Richard T. Hagan
  • Publication number: 20150061137
    Abstract: A package for holding a plurality of heterogeneous integrated circuits includes a first chip having a first conductive pad and a first substrate including a first semiconductor, and a second chip having a second conductive pad and a second substrate including a second semiconductor. The second semiconductor is different from the first semiconductor. The package also includes a molding structure in which the first chip and the second chip are embedded, a conductive structure over the first chip and conductively coupled to the first conductive pad and over the second chip and conductively coupled to the second conductive pad, and a passivation layer over the conductive structure. The passivation layer comprises an opening defined therein which exposes a portion of the second chip.
    Type: Application
    Filed: August 30, 2013
    Publication date: March 5, 2015
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Wan-Yu LEE, Chun-Hao TSENG, Jui Hsieh LAI, Tien-Yu HUANG, Ying-Hao KUO, Kuo-Chung YEE
  • Publication number: 20150060123
    Abstract: A method of assembling a flip chip on a leadframe package. A locking dual leadframe (LDLF) includes a top metal frame portion including protruding features and a die pad and a bottom metal frame portion having apertures positioned lateral to the die pad. The protruding features and apertures are similarly sized and alignable. A flipped integrated circuit (IC) die having a bottomside and a topside including circuitry connected to bond pads having solder balls on the bond pads is mounted with its topside onto the top metal frame portion. The top metal frame portion is aligned to the bottom metal frame portion so that the protruding features are aligned to the apertures. The bottomside of the IC die is pressed with respect to a top surface of the bottom frame portion, wherein the protruding features penetrate into the apertures.
    Type: Application
    Filed: September 4, 2013
    Publication date: March 5, 2015
    Applicant: Texas Instruments Incorporated
    Inventors: LEE HAN MENG @ EUGENE LEE, SUEANN LIM WEI FEN, ANIS FAUZI BIN ABDUL AZIZ
  • Publication number: 20150061103
    Abstract: A method of making an electrical assembly includes making a laminate substrate, embedding a plurality of integrated circuit dies in the laminate substrate, forming a plurality of through-holes in the laminate substrate and adding conductive material to the through-holes, and making at least one saw cut extending through the laminate substrate and through the plurality of through-holes and the conductive material therein to form at least one laminate block with a cut face and a plurality of sectioned through-holes.
    Type: Application
    Filed: August 28, 2013
    Publication date: March 5, 2015
    Applicants: Texas Instruments Deutschland GMBH, Texas Instruments Incorporated
    Inventors: Christopher Daniel Manack, Frank Stepniak, Anton Winkler
  • Patent number: 8970023
    Abstract: A semiconductor device includes a first die having a first active surface and a first backside surface opposite the first active surface, a second die having a second active surface and a second backside surface opposite the second active surface, and an interposer, the first active surface of the first die being electrically coupled to a first side of the interposer, the second active surface of the second die being electrically coupled to a second side of the interposer. The semiconductor device also includes a first connector over the interposer, a first encapsulating material surrounding the second die, the first encapsulating material having a first surface over the interposer, and a via electrically coupling the first connector and the interposer. A first end of the via is substantially coplanar with the first surface of the first encapsulating material.
    Type: Grant
    Filed: February 4, 2013
    Date of Patent: March 3, 2015
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Bruce C. S. Chou, Chih-Hsien Lin, Hsiang-Tai Lu, Jung-Kuo Tu, Tung-Hung Hsieh, Chen-Hua Lin, Mingo Liu
  • Patent number: 8969140
    Abstract: A reconstituted wafer includes a rigid mass with a flat surface and a base surface disposed parallel planar to the flat surface. A plurality of dice are embedded in the rigid mass. The plurality of dice include terminals that are exposed through coplanar with the flat surface. A process of forming the reconstituted wafer includes removing some of the rigid mass to expose the terminals, while retaining the plurality of dice in the rigid mass. A process of forming an apparatus includes separating one apparatus from the reconstituted wafer.
    Type: Grant
    Filed: August 14, 2013
    Date of Patent: March 3, 2015
    Assignee: Intel Corporation
    Inventors: Robert L. Sankman, John S. Guzek
  • Patent number: 8970051
    Abstract: A method including forming a contact pad array on an integrated circuit substrate, the contact pad array including a first plurality of contact pads and a second plurality of contact pads, wherein an accessible area of each of the first plurality of contact pads is different than an accessible area of each of the second plurality of contact pads; and depositing solder on the accessible area of the contact pads. An apparatus including an integrated circuit substrate including a body having a nonplanar shape and a surface including a first plurality of contact pads and a second plurality of contact pads, wherein an accessible area of each of the first plurality of contact pads is different than an accessible area of each of the second plurality of contact pads.
    Type: Grant
    Filed: June 28, 2013
    Date of Patent: March 3, 2015
    Assignee: Intel Corporation
    Inventors: Hualiang Shi, Shengquan E. Ou, Sairam Agraharam, Tyler N. Osborn
  • Publication number: 20150054149
    Abstract: A process and resultant article of manufacture made by such process comprises forming through vias needed to connect a bottom device layer in a bottom silicon wafer to the one in the top device layer in a top silicon wafer comprising a silicon-on-insulator (SOI) wafer. Through vias are disposed in such a way that they extend from the middle of the line (MOL) interconnect of the top wafer to the buried oxide (BOX) layer of the SOI wafer with appropriate insulation provided to isolate them from the SOI device layer.
    Type: Application
    Filed: August 21, 2013
    Publication date: February 26, 2015
    Applicant: International Business Machines Corporation
    Inventors: Sampath Purushothaman, Roy R. Yu
  • Patent number: 8962388
    Abstract: A printed circuit board assembly and method of assembly in which underfill is placed between a chip and substrate to support the chip. A trench is formed in the upper layer of the printed circuit board to limit the flow of the underfill and in particular to limit the underfill from contact with adjacent components so that the underfill does not interfere with adjacent components on the printed circuit board assembly.
    Type: Grant
    Filed: November 9, 2011
    Date of Patent: February 24, 2015
    Assignee: Cisco Technology, Inc.
    Inventors: Mohan R. Nagar, Kuo-Chuan Liu, Mudasir Ahmad, Bangalore J. Shanker, Jie Xue
  • Patent number: 8963146
    Abstract: By using a coating method, which is a method of manufacturing a transparent conductive film, with low-temperature heating lower than 300° C., a transparent conductive film with excellent transparency, conductivity, film strength, and resistance stability and a method of manufacturing this film are provided. In the method of manufacturing a transparent conductive film, a heat energy ray irradiating step is a step of irradiating with the energy rays while heating under an oxygen-containing atmosphere to a heating temperature lower than 300° C. to form the inorganic film, and the plasma processing step is a step of performing the plasma processing on the inorganic film under a non-oxidizing gas atmosphere at a substrate temperature lower than 300° C. to promote mineralization or crystallization of the film, thereby forming a conductive oxide fine-particle layer densely packed with conductive oxide fine particles having a metal oxide as a main component.
    Type: Grant
    Filed: November 5, 2010
    Date of Patent: February 24, 2015
    Assignee: Sumitomo Metal Mining Co., Ltd.
    Inventors: Masaya Yukinobu, Yuki Murayama, Takahito Nagano, Yoshihiro Otsuka
  • Patent number: 8962390
    Abstract: A method for manufacturing a chip packaging structure is disclosed. The manufacturing method includes steps of: providing a protection layer; forming a conductive trace layer on the protection layer; forming an adhesion layer on the conductive trace layer; placing a chip on the adhesion layer; and electrically connecting the chip to the conductive trace layer. Via these arrangements, the chip packaging structure made by the manufacturing method can have a smaller thickness.
    Type: Grant
    Filed: December 15, 2011
    Date of Patent: February 24, 2015
    Assignee: Dawning Leading Technology Inc.
    Inventor: Diann-Fang Lin
  • Patent number: 8963309
    Abstract: A semiconductor device includes a first substrate. A first semiconductor die is mounted to the first substrate. A bond wire electrically connects the first semiconductor die to the first substrate. A first encapsulant is deposited over the first semiconductor die, bond wire, and first substrate. The first encapsulant includes a penetrable, thermally conductive material. In one embodiment, the first encapsulant includes a viscous gel. A second substrate is mounted over a first surface of the first substrate. A second semiconductor die is mounted to the second substrate. The second semiconductor die is electrically connected to the first substrate. The first substrate is electrically connected to the second substrate. A second encapsulant is deposited over the first semiconductor die and second semiconductor die. An interconnect structure is formed on a second surface of the first substrate, opposite the first surface of the first substrate.
    Type: Grant
    Filed: July 13, 2011
    Date of Patent: February 24, 2015
    Assignee: STATS ChipPAC, Ltd.
    Inventors: Byung Tai Do, Seng Guan Chow, Heap Hoe Kuan, Linda Pei Ee Chua, Rui Huang
  • Patent number: 8964369
    Abstract: In an example, a solid-state data storage system comprises a housing forming an enclosure; a plurality of trays within the enclosure of the housing; a plurality of non-volatile, rewriteable solid-state memory chips mounted to flexible circuit substrates within each of the trays; and a controller configured to apply a power-sequencing scheme that supplies power to active flexible memory strands.
    Type: Grant
    Filed: January 26, 2011
    Date of Patent: February 24, 2015
    Assignee: Imation Corp.
    Inventor: Todd W. Abrahamson
  • Publication number: 20150050778
    Abstract: Disclosed is a method for producing a semiconductor device in which solder joints are made between a semiconductor chip with bumps and a substrate with electrodes corresponding to the bumps through a thermosetting adhesive layer, the method including the successive steps of: (A) forming a thermosetting adhesive layer in advance on a surface including bumps of the semiconductor chip; (B) laying a surface on the thermosetting adhesive layer side of the semiconductor chip, on which the thermosetting adhesive layer is formed, and a substrate one upon another, followed by pre-bonding using a heat tool to obtain a pre-bonded laminate; and (C) interposing a protective film having a thermal conductivity of 100 W/mK or more between the heat tool and a surface on the semiconductor chip side of the pre-bonded laminate, melting a solder between the semiconductor chips and the substrate and simultaneously curing the thermosetting adhesive layer using the heat tool.
    Type: Application
    Filed: February 20, 2013
    Publication date: February 19, 2015
    Inventors: Noboru Asahi, Toshihisa Nonaka, Shoichi Niizeki
  • Patent number: 8956916
    Abstract: A microelectronic assembly can include a substrate having first and second surfaces, at least two logic chips overlying the first surface, and a memory chip having a front surface with contacts thereon, the front surface of the memory chip confronting a rear surface of each logic chip. The substrate can have conductive structure thereon and terminals exposed at the second surface for connection with a component. Signal contacts of each logic chip can be directly electrically connected to signal contacts of the other logic chips through the conductive structure of the substrate for transfer of signals between the logic chips. The logic chips can be adapted to simultaneously execute a set of instructions of a given thread of a process. The contacts of the memory chip can be directly electrically connected to the signal contacts of at least one of the logic chips through the conductive structure of the substrate.
    Type: Grant
    Filed: August 18, 2014
    Date of Patent: February 17, 2015
    Assignee: Tessera, Inc.
    Inventors: Belgacem Haba, Ilyas Mohammed, Piyush Savalia
  • Patent number: 8956914
    Abstract: An integrated circuit package system comprising: forming a substrate having a solder mask with a support structure formed from the solder mask; mounting a first integrated circuit device over the support structure; connecting the substrate and the first integrated circuit device; and encapsulating the first integrated circuit device and the support structure.
    Type: Grant
    Filed: June 26, 2007
    Date of Patent: February 17, 2015
    Assignee: STATS ChipPAC Ltd.
    Inventors: Ja Eun Yun, Jong Wook Ju
  • Patent number: 8957516
    Abstract: A low cost and high performance flip chip package is disclosed. By assembling the package using a substrate panel level process, a separate fabrication of a substrate is avoided, thus enabling the use of a coreless substrate. The coreless substrate may include multiple stacked layers of laminate dielectric films having conductive traces and vias. As a result, electrical connection routes may be provided directly from die contact pads to package contact pads without the use of conventional solder bumps, thus accommodating very high density semiconductor dies with small feature sizes. The disclosed flip chip package provides lower cost, higher electrical performance, and improved thermal dissipation compared to conventional fabricated substrates with solder bumped semiconductor dies.
    Type: Grant
    Filed: April 7, 2014
    Date of Patent: February 17, 2015
    Assignee: Broadcom Corporation
    Inventors: Mengzhi Pang, Ken Zhonghua Wu, Matthew Kaufmann
  • Patent number: 8957512
    Abstract: An embodiment of an interposer is disclosed. For this embodiment of the interposer, a first circuit portion is created responsive to a first printing region. A second circuit portion is created responsive to a second printing region. The interposer has at least one of: (a) a length dimension greater than a maximum reticle length dimension, and (b) a width dimension greater than a maximum reticle width dimension.
    Type: Grant
    Filed: June 19, 2012
    Date of Patent: February 17, 2015
    Assignee: Xilinx, Inc.
    Inventor: Toshiyuki Hisamura
  • Publication number: 20150041976
    Abstract: A semiconductor device includes a first semiconductor chip having a pad electrode formed on an upper surface thereof; a resin section sealing the first semiconductor chip with the upper surface and a side surface of the first semiconductor chip being covered and a lower surface of die first semiconductor chip being exposed; a columnar electrode communicating between the upper surface and the lower surface of the resin section with the upper surface and the lower surface of the columnar electrode being exposed on the resin section and at least a part of the side surface of the columnar electrode being covered; and a bonding wire connecting the pad electrode and the columnar electrode with a part of the bonding wire being embedded in the columnar electrode as one end of the bonding wire being exposed on the lower surface of the columnar electrode and the remaining part of the bonding wire being covered with the resin section, and a method for manufacturing the same.
    Type: Application
    Filed: October 22, 2014
    Publication date: February 12, 2015
    Inventor: Kouichi MEGURO
  • Patent number: 8951839
    Abstract: A semiconductor device has a semiconductor die mounted over the carrier. An encapsulant is deposited over the carrier and semiconductor die. The carrier is removed. A first interconnect structure is formed over the encapsulant and a first surface of the die. A second interconnect structure is formed over the encapsulant and a second surface of the die. A first protective layer is formed over the first interconnect structure and second protective layer is formed over the second interconnect structure prior to forming the vias. A plurality of vias is formed through the second interconnect structure, encapsulant, and first interconnect structure. A first conductive layer is formed in the vias to electrically connect the first interconnect structure and second interconnect structure. An insulating layer is formed over the first interconnect structure and second interconnect structure and into the vias. A discrete semiconductor component can be mounted to the first interconnect structure.
    Type: Grant
    Filed: March 15, 2010
    Date of Patent: February 10, 2015
    Assignee: STATS ChipPAC, Ltd.
    Inventors: Yaojian Lin, Pandi Chelvam Marimuthu
  • Patent number: 8951840
    Abstract: A manufacturing method for Flip Chip on Chip (FCoC) package based on multi-row Quad Flat No-lead (QFN) package is provided wherein the lower surface of plate metallic base material are half-etched to form grooves. Insulation filling material is filled in the half-etched grooves. The upper surface of plate metallic base material is half-etched to form chip pad and multi-row of leads. Encapsulating first IC chip, second IC chip, solder bumps, underfill material, and metal wire to form an array of FCoC package based on the type of multi-row QFN package. Sawing and separating the FCoC package array, and forming FCoC package unit.
    Type: Grant
    Filed: December 4, 2012
    Date of Patent: February 10, 2015
    Assignee: Beijing University of Technology
    Inventors: Fei Qin, Guofeng Xia, Tong An, Chengyan Liu, Wei Wu, Wenhui Zhu
  • Publication number: 20150035147
    Abstract: A fine pitch stud POP structure and method is disclosed. The studs are made in bonding pads on the top surface of a lower substrate, which greatly increase the height of the interconnection such as solder balls. In addition, the lower substrate and the upper substrate are connected by reflowing two solder balls on them separately. The two features make the diameter of the bonding balls greatly reduce and further make the pitch between two bonding balls on the lower substrate or the upper substrate greatly reduce, and then the fine pitch POP is achieved.
    Type: Application
    Filed: April 15, 2014
    Publication date: February 5, 2015
    Inventors: Jiangang LU, Yuan LU, Weidong HUANG, Hongjie WANG, Peng SUN
  • Patent number: 8945995
    Abstract: A method comprises forming semiconductor flip chip interconnects having electrical connecting pads and electrically conductive posts terminating in distal ends operatively associated with the pads. We solder bump the distal ends by injection molding, mask the posts on the pads with a mask having a plurality of through hole reservoirs and align the reservoirs in the mask to be substantially concentric with the distal ends. Injecting liquid solder into the reservoirs and allowing it to cool provides solidified solder on the distal ends, which after mask removal produces a solder bumped substrate which we position on a wafer to leave a gap between the wafer and the substrate. The wafer has electrically conductive sites on the surface for soldering to the posts. Abutting the sites and the solder bumped posts followed by heating joins the wafer and substrate. The gap is optionally filled with a material comprising an underfill.
    Type: Grant
    Filed: August 30, 2013
    Date of Patent: February 3, 2015
    Assignee: International Business Machines Corporation
    Inventors: Jae-Woong Nah, Da-Yuan Shih
  • Patent number: 8945983
    Abstract: A method embodiment includes forming a packaging unit by attaching a die to a packaging substrate, applying plasma treatment to a first portion of the packaging substrate, wherein the first portion corresponds to a portion of the packaging substrate underneath the die, not applying plasma treatment to a second portion of the packaging substrate, wherein the second portion of the packaging substrate surrounds the first portion of the packaging substrate, and applying an underfill material over the first portion of the packaging substrate.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: February 3, 2015
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yen-Hsin Liu, Cing He Chen, Kewei Zuo, Chien Rhone Wang
  • Patent number: 8945989
    Abstract: A stiffened semiconductor die package has a semiconductor die including an integrated circuit. The die has an active side with die bonding pads and an opposite inactive side. A conductive frame that acts as a ground plane surrounds all edges of the die and a mold compound covers the conductive frame and the edges of the die. A thermally conductive sheet is attached to the inactive side of the die. A dielectric support structure with external connector pads with solder deposits is attached to the active side of the die. The external connector pads are selectively electrically coupled to the die bonding pads.
    Type: Grant
    Filed: June 1, 2014
    Date of Patent: February 3, 2015
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Kesvakumar V. C. Muniandy, Navas Khan Oratti Kalandar