Utilizing A Coating To Perfect The Dicing Patents (Class 438/114)
  • Patent number: 9408311
    Abstract: A method of manufacturing an electronic component module includes sealing a surface of an aggregate substrate on which a plurality of electronic components are mounted with a sealing resin and cutting boundary portions between electronic component modules from an outer surface of the sealing resin to a position at least partially through the aggregate substrate to form first grooves. A shield layer is formed by coating the outer surface of the sealing resin with a conductive resin and filling the first grooves with the conductive resin, and recesses are formed at positions on the shield layer where the first grooves are formed. The boundary portions between electronic component modules are cut along the corresponding recesses so that second grooves each having a width smaller than the width of a corresponding one of the recesses are formed, and the aggregate substrate is singulated into the individual electronic component modules.
    Type: Grant
    Filed: July 5, 2013
    Date of Patent: August 2, 2016
    Assignee: Murata Manufacturing Co., Ltd.
    Inventors: Koichi Kanryo, Akio Katsube, Shunsuke Kitamura
  • Patent number: 9368456
    Abstract: A semiconductor package includes a dielectric layer in which a chip is embedded, interconnection parts disposed on a first surface of the dielectric layer, through connectors each of which penetrates a portion of the dielectric layer over the chip to electrically couple the chip to a corresponding one of the interconnection parts, a shielding plate covering a second surface of the dielectric layer that is opposite to the first surface, and a shielding encapsulation part connected to one of the interconnection parts and covering sidewalls of the dielectric layer. The shielding encapsulation part includes a portion contacting the shielding plate.
    Type: Grant
    Filed: May 29, 2014
    Date of Patent: June 14, 2016
    Assignee: SK HYNIX INC.
    Inventor: Qwan Ho Chung
  • Patent number: 9299592
    Abstract: A package structure and a packaging method of wafer level chip scale package are provided. The packaging method includes: providing a carrier, and disposing a plurality of chips on the carrier; forming a plurality of adhesive layers on a surface of the corresponding chips; covering a conductive cover plate, bonding the conductive cover plate with the chips through the adhesive layers, and dividing out a plurality of packaging spaces by the conductive cover plate for disposing the chips respectively; and providing an insulation material to fill the packaging spaces through via holes on the conductive cover plate to form a first insulation structure; finally, removing the carrier.
    Type: Grant
    Filed: December 18, 2014
    Date of Patent: March 29, 2016
    Assignees: NIKO SEMICONDUCTOR CO., LTD., Super Group Semiconductor Co. LTD.
    Inventors: Chih-Cheng Hsieh, Hsiu-Wen Hsu, Chun-Ying Yeh, Chung-Ming Leng
  • Patent number: 9236429
    Abstract: A semiconductor structure includes a substrate, a dam element, a first isolation layer, a second isolation layer, and a conductive layer. The substrate has a conductive pad, a trench, a sidewall, a first surface, and a second surface opposite to the first surface. The conductive pad is located on the second surface. The trench has a first opening at the first surface, and has a second opening at the second surface. The dam element is located on the second surface and covers the second opening. The dam element has a concave portion that is at the second opening. The first isolation layer is located on a portion of the sidewall. The second isolation layer is located on the first surface and the sidewall that is not covered by the first isolation layer, such that an interface is formed between the first and second isolation layers.
    Type: Grant
    Filed: April 29, 2015
    Date of Patent: January 12, 2016
    Assignee: XINTEC INC.
    Inventors: Yu-Lin Yen, Sheng-Hao Chiang, Hung-Chang Chen, Ho-Ku Lan, Chen-Mei Fan
  • Patent number: 9196534
    Abstract: A method for preparing semiconductor devices in a flip chip process comprises forming deep grooves surrounding each of the semiconductor chips; depositing a first plastic package material to form a first plastic package layer covering front surface of the semiconductor wafer and filling the deep grooves; depositing a metal layer at back surface of the semiconductor wafer after grinding; grinding an outermost portion of the metal layer thus forming a ring area located at back surface around edge of the semiconductor wafer not covered by the metal layer; cutting the first plastic package layer, the semiconductor wafer, the metal layer and the first plastic package material filled in the deep grooves along a straight line formed by two ends of each of the deep grooves filled with the first plastic package material; and picking up the semiconductor devices and mounting on a substrate without flipping the semiconductor devices.
    Type: Grant
    Filed: February 24, 2013
    Date of Patent: November 24, 2015
    Assignee: Alpha and Omega Semiconductor Incorporated
    Inventors: Yan Xun Xue, Ping Huang, Hamza Yilmaz, Yueh-Se Ho, Lei Shi, Liang Zhao, Ping Li Wu, Lei Duan, Yuping Gong
  • Patent number: 9177919
    Abstract: A chip package including a first substrate having a first surface and a second surface opposite thereto is provided. The first substrate has a micro-electric element and a plurality of conducting pads adjacent to the first surface. The first substrate has a plurality of openings respectively exposing a portion of each conducting pad. A second substrate is disposed on the first surface. An encapsulation layer is disposed on the first surface and covers the second substrate. A redistribution layer is disposed on the second surface and extends into the openings to electrically connect the conducting pads.
    Type: Grant
    Filed: November 13, 2014
    Date of Patent: November 3, 2015
    Assignee: XINTEC INC.
    Inventors: Chien-Hung Liu, Ying-Nan Wen
  • Patent number: 9165895
    Abstract: A method for separating a plurality of dies is provided.
    Type: Grant
    Filed: November 7, 2011
    Date of Patent: October 20, 2015
    Assignee: INFINEON TECHNOLOGIES AG
    Inventors: Helmut Brunner, Manfred Engelhardt
  • Patent number: 9153566
    Abstract: A semiconductor device manufacturing method includes forming grooves in a surface of a semiconductor substrate, stacking a plurality of semiconductor chips in each area of the semiconductor substrate surrounded by the grooves to form stacked bodies, forming a first sealing resin layer that covers spaces between the plurality of semiconductor chips and lateral sides of the stacked bodies, separating the semiconductor substrate to singulate the stacked bodies, mounting the stacked bodies on a wiring substrate, forming a second sealing resin layer that seals the stacked bodies on the wiring substrate, separating the wiring substrate to singulate a portion of the wiring substrate with a single stacked body thereon, and grinding a portion of the semiconductor substrate in a thickness direction from a side of the semiconductor substrate opposite to the stacked bodies, after forming the first sealing resin layer and before singulating the wiring substrate.
    Type: Grant
    Filed: September 2, 2014
    Date of Patent: October 6, 2015
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Takao Sato
  • Patent number: 9142457
    Abstract: The present invention provides a dicing die bond film in which yielding and breaking of the dicing film are prevented and in which the die bond film can be suitably broken with a tensile force. In the dicing die bond film of the present invention, the tensile strength of the contact part in which the outer circumference of the push-up jig contacts the dicing film at 25° C. is 15 N or more and 80 N or less and the yield point elongation is 80% or more, the tensile strength of the wafer bonding part of the dicing film at 25° C. is 10 N or more and 70 N or less and the yield point elongation is 30% or more, [(the tensile strength of the contact part)?(the tensile strength of the wafer bonding part)] is 0 N or more and 60 N or less, and the breaking elongation rate of the die bond film at 25° C. is more than 40% and 500% or less.
    Type: Grant
    Filed: September 21, 2011
    Date of Patent: September 22, 2015
    Assignee: NITTO DENKO CORPORATION
    Inventors: Shumpei Tanaka, Takeshi Matsumura
  • Patent number: 9130056
    Abstract: Methods of dicing semiconductor wafers, each wafer having a plurality of integrated circuits, are described. In an example, a method of dicing a semiconductor wafer having integrated circuits on a front side thereof involves laminating a pre-patterned bi-layer wafer-level underfill material stack on the integrated circuits of the semiconductor wafer. The pre-patterned bi-layer wafer-level underfill material stack has regions corresponding to the integrated circuits and gaps corresponding to dicing streets between the integrated circuits. The method also involves plasma etching to form trenches in the semiconductor wafer in alignment with the dicing streets to singulate the integrated circuits. An upper layer of the pre-patterned bi-layer wafer-level underfill material stack protects the integrated circuits during the plasma etching.
    Type: Grant
    Filed: October 3, 2014
    Date of Patent: September 8, 2015
    Assignee: Applied Materials, Inc.
    Inventors: James M. Holden, James S. Papanu, Wei-Sheng Lei, Brad Eaton, Ajay Kumar
  • Patent number: 9087764
    Abstract: A method and structure for forming an array of micro devices is disclosed. An array of micro devices is formed over an array of stabilization posts included in a stabilization layer. The stabilization layer is bonded to a spacer side of a carrier substrate. The spacer side of the carrier substrate includes raised spacers extending from a spacer-side surface of the carrier substrate.
    Type: Grant
    Filed: July 26, 2013
    Date of Patent: July 21, 2015
    Assignee: Luxvue Technology Corporation
    Inventors: Clayton Ka Tsun Chan, Andreas Bibl
  • Patent number: 9076882
    Abstract: The subject matter of the present description relates to methods for the precise integration of microelectronic dice within a multichip package which substantially reduce or eliminate any misalign caused by the movement of the microelectronic dice during the integration process. These methods may include the use of a temporary adhesive in conjunction with a carrier having at least one recess for microelectronic die alignment, the use of a precision molded carrier for microelectronic die alignment, the use of magnetic alignment of microelectronic dice on a reusable carrier, and/or the use of a temporary adhesive with molding processes on a reusable carrier.
    Type: Grant
    Filed: June 3, 2013
    Date of Patent: July 7, 2015
    Assignee: Intel Corporation
    Inventors: Aleksandar Aleksov, Ravindranath V Mahajan, Omkar Karhade, Nitin Deshpande
  • Patent number: 9041198
    Abstract: Maskless hybrid laser scribing and plasma etching wafer dicing processes are described. In an example, a method of dicing a semiconductor wafer having a front surface with a plurality of integrated circuits thereon and having a passivation layer disposed between and covering metal pillar/solder bump pairs of the integrated circuits involves laser scribing, without the use of a mask layer, the passivation layer to provide scribe lines exposing the semiconductor wafer. The method also involves plasma etching the semiconductor wafer through the scribe lines to singulate the integrated circuits, wherein the passivation layer protects the integrated circuits during at least a portion of the plasma etching. The method also involves thinning the passivation layer to partially expose the metal pillar/solder bump pairs of the integrated circuits.
    Type: Grant
    Filed: October 22, 2013
    Date of Patent: May 26, 2015
    Assignee: Applied Materials, Inc.
    Inventors: Wei-Sheng Lei, Brad Eaton, James S. Papanu, Ajay Kumar
  • Publication number: 20150125997
    Abstract: A method of packaging an integrated circuit includes forming a first integrated circuit and a second integrated circuit on a wafer, the first and second integrated circuit separated by a singulation region. The method includes covering the first and second integrated circuits with a molding compound, and sawing through the molding compound and a top portion of the wafer using a beveled saw blade, while leaving a bottom portion of the wafer remaining. The method further includes sawing through the bottom portion of the wafer using a second saw blade, the second saw blade having a thickness that is less than a thickness of the beveled saw blade. The resulting structure is within the scope of the present disclosure.
    Type: Application
    Filed: November 7, 2013
    Publication date: May 7, 2015
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Yen-Ping Wang, Ming-Kai Liu, Kai-Chiang Wu
  • Publication number: 20150118797
    Abstract: A method of packaging an integrated circuit includes forming a first integrated circuit and a second integrated circuit on a wafer, the first and second integrated circuit separated by a singulation region. The method includes covering the first and second integrated circuits with a molding compound, and sawing through a top portion of the molding compound using a first beveled saw blade, while leaving a bottom portion of the molding compound remaining. The method further includes sawing through the bottom portion of the molding compound and the wafer using a second saw blade, the second saw blade having a thickness that is less than a thickness of the first saw blade. The resulting structure is within the scope of the present disclosure.
    Type: Application
    Filed: October 30, 2013
    Publication date: April 30, 2015
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Ming-Kai Liu, Yen-Ping Wang, Kai-Chiang Wu
  • Patent number: 9012304
    Abstract: In one embodiment, a method of singulating semiconductor die from a semiconductor wafer includes forming a material on a surface of a semiconductor wafer and reducing a thickness of portions of the material. Preferably, the thickness of the material is reduced near where singulation openings are to be formed in the semiconductor wafer.
    Type: Grant
    Filed: June 1, 2012
    Date of Patent: April 21, 2015
    Assignee: Semiconductor Components Industries, LLC
    Inventors: Gordon M. Grivna, John M. Parsey, Jr.
  • Patent number: 9006004
    Abstract: A method includes bonding a first package component on a first surface of a second package component, and probing the first package component and the second package component from a second surface of the second package component. The step of probing is performed by probing through connectors on the second surface of the second package component. The connectors are coupled to the first package component. After the step of probing, a third package component is bonded on the first surface of the second package component.
    Type: Grant
    Filed: March 23, 2012
    Date of Patent: April 14, 2015
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Jing-Cheng Lin, Szu Wei Lu
  • Patent number: 9000434
    Abstract: A semiconductor device including a semiconductor substrate having a surface including an active semiconductor device including one of a laser and a photodiode; and a visual indicator disposed on the semiconductor body and at least adjacent to a portion of said active semiconductor device, the indicator having a state that shows if damage to the active semiconductor device may have occurred.
    Type: Grant
    Filed: December 10, 2012
    Date of Patent: April 7, 2015
    Assignee: Emcore Corporation
    Inventors: Richard Carson, Elaine Taylor, Douglas Collins
  • Patent number: 8999816
    Abstract: Approaches for protecting a wafer during plasma etching wafer dicing processes are described. In an example, a method of dicing a semiconductor wafer with a front surface having a plurality of integrated circuits thereon involves laminating a pre-patterned mask on the front surface of the semiconductor wafer. The pre-patterned mask covers the integrated circuits and exposes streets between the integrated circuits. The method also involves plasma etching the semiconductor wafer through the streets to singulate the integrated circuits. The pre-patterned mask protects the integrated circuits during the plasma etching.
    Type: Grant
    Filed: April 18, 2014
    Date of Patent: April 7, 2015
    Assignee: Applied Materials, Inc.
    Inventors: James M. Holden, Aparna Iyer, Brad Eaton, Ajay Kumar
  • Patent number: 8987058
    Abstract: A plurality of macro and micro alignment marks may be formed on a wafer. The macro alignment marks may be formed in pairs at opposite edges of the wafer. The micro alignment marks may be formed to align to streets on the wafer along a first and second direction. A molding compound may be formed on the wafer. The macro alignment marks may be exposed from the molding compound. A pair of the micro alignment marks may be exposed from the molding compound at opposite ends of the streets along the first and the second direction. The wafer may be aligned to a dicing tool using pairs of the macro alignment marks. The dicing tool may be aligned to the streets using pairs of the micro alignment marks. The wafer may be diced using successive pairs of micro alignment marks along the first and second direction.
    Type: Grant
    Filed: April 23, 2013
    Date of Patent: March 24, 2015
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yu-Peng Tsai, Wen-Hsiung Lu, Cheng-Ting Chen, Hsien-Wei Chen, Ming-Da Cheng, Chung-Shi Liu
  • Patent number: 8980673
    Abstract: Provided are a solar cell and a method of manufacturing the same. The method of manufacturing the solar cell includes stacking a solar cell device layer containing GaN on a sacrificial substrate, etching the solar cell device layer to expose the sacrificial substrate, thereby forming one or more solar cell devices comprising the solar cell device layer, anisotropically etching the exposed sacrificial substrate, contacting the solar cell devices to a stamping processor to remove the solar cell devices from the sacrificial substrate, and transferring the solar cell devices onto a receiving substrate. A high temperature semiconductor process may be performed on a substrate such as a silicon substrate to transfer the solar cell devices onto the substrate, thereby manufacturing flexible solar cells. Also, a large number of solar cells may be excellently aligned on a large area. In addition, economical solar cells may be manufactured.
    Type: Grant
    Filed: January 30, 2014
    Date of Patent: March 17, 2015
    Assignees: LG Siltron Incorporated, Korea Advanced Institute of Science
    Inventors: Keon Jae Lee, Sang Yong Lee, Seung Jun Kim
  • Patent number: 8962452
    Abstract: In one embodiment, a method of singulating semiconductor die from a semiconductor wafer includes forming a material on a surface of a semiconductor wafer and reducing a thickness of portions of the material. Preferably, the thickness of the material is reduced near where singulation openings are to be formed in the semiconductor wafer.
    Type: Grant
    Filed: December 2, 2013
    Date of Patent: February 24, 2015
    Assignee: Semiconductor Components Industries, LLC
    Inventor: Gordon M. Grivna
  • Patent number: 8956917
    Abstract: According to one embodiment, a manufacturing method of a semiconductor device is disclosed. The method includes: (a) forming cutting grooves in an element formation surface of a semiconductor wafer on which semiconductor elements are formed; (b) applying a protection tape on the element formation surface of the semiconductor wafer; (c) grinding a rear surface of the semiconductor wafer to thin the semiconductor wafer and to divide the semiconductor wafer into a plurality of semiconductor chips on which the semiconductor elements are formed; (d) forming an adhesive layer on the rear surface of the semiconductor wafer; (e) separating and cutting the adhesive layer for each of the semiconductor chips; and (f) removing the protection tape. The (e) is performed by spraying a high-pressure air to the adhesive layer formed on the rear surface of the semiconductor wafer while melting or softening the adhesive layer by heating.
    Type: Grant
    Filed: January 19, 2012
    Date of Patent: February 17, 2015
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Tetsuya Kurosawa, Shinya Takyu, Akira Tomono
  • Patent number: 8951843
    Abstract: The present invention provides a laminated sheet that can prevent the decrease in adhering strength of a resin composition layer and the deterioration in electrical reliability and in which a back grinding tape can be peeled from a plurality of semiconductor elements collectively after dicing. The laminated sheet has a back grinding tape in which a pressure-sensitive adhesive layer is formed on a base, and a resin composition layer that is provided on the pressure-sensitive adhesive layer of the back grinding tape, wherein the tensile modulus of the pressure-sensitive adhesive layer at 23° C. is 0.1 to 5.0 MPa, and the T-peeling strength between the pressure-sensitive adhesive layer and the resin composition layer is 0.1 to 5 N/20 mm at 23° C. and 300 mm/min.
    Type: Grant
    Filed: December 12, 2012
    Date of Patent: February 10, 2015
    Assignee: Nitto Denko Corporation
    Inventors: Hiroyuki Senzai, Shumpei Tanaka, Koji Mizuno
  • Publication number: 20150035133
    Abstract: A method is described for making electronic modules includes molding onto a substrate panel a matrix panel defining a plurality of cavities, attaching semiconductor die to the substrate panel in respective cavities of the molded matrix panel, electrically connecting the semiconductor die to the substrate panel, affixing a cover to the molded matrix panel to form an electronic module assembly, mounting the electronic module assembly on a carrier tape, and separating the electronic module assembly into individual electronic modules. An electronic module is described which includes a substrate, a wall member molded onto the substrate, the molded wall member defining a cavity, at least one semiconductor die attached to the substrate in the cavity and electrically connected to the substrate, and a cover affixed to the molded wall member over the cavity.
    Type: Application
    Filed: August 2, 2013
    Publication date: February 5, 2015
    Applicant: STMicroelectronics Pte Ltd.
    Inventor: Wing Shenq Wong
  • Patent number: 8936970
    Abstract: A light-emitting structure comprises a semiconductor light-emitting element which includes a first connection point and a second connection point. The light-emitting structure further includes a first electrode electrically connected to the first connection point, and a second electrode electrically connected the second connection point. The first electrode and the second electrode can form a concave on which the semiconductor light-emitting element is located.
    Type: Grant
    Filed: September 8, 2011
    Date of Patent: January 20, 2015
    Assignee: Epistar Corporation
    Inventor: Chia-Liang Hsu
  • Patent number: 8916453
    Abstract: A semiconductor wafer includes a first main face and a second main face opposite to the first main face and a number of semiconductor chip regions. The wafer is diced along dicing streets to separate the semiconductor chip regions from each other. At least one metal layer is formed on the first main face of each one of the semiconductor chip regions.
    Type: Grant
    Filed: November 21, 2012
    Date of Patent: December 23, 2014
    Assignee: Infineon Technologies AG
    Inventors: Gopalakrishnan Trichy Rengarajan, Armin Tilke
  • Patent number: 8916420
    Abstract: An embodiment provides a chip package including a substrate, a cavity extending downward from an upper surface of the substrate, a metal layer overlying the substrate and conformally covering a sidewall and a bottom portion of the cavity, a chip having an upper surface and located on the metal layer in the cavity, wherein the upper surface is not lower than an upper surface of the metal layer outside of the cavity, and the protective layer covering the chip.
    Type: Grant
    Filed: May 22, 2013
    Date of Patent: December 23, 2014
    Inventors: Baw-Ching Perng, Chun-Lung Huang
  • Patent number: 8912669
    Abstract: Provided are a sealing resin sheet, wherein a clean, smooth and flat ground surface is obtained by grinding after resin sealing, a method for producing an electronic component package using the same, and an electronic component package obtained by the production method. The present invention provides a sealing resin sheet, wherein a ground surface has a mean surface roughness Ra of 1 ?m or less when grinding is performed under conditions of a grind bite peripheral velocity of 1000 m/minute, a feed pitch of 100 ?m and a cut depth of 10 ?m after a heat curing treatment is performed at 180° C. for 1 hour; and a Shore D hardness at 100° C. after the heat curing treatment is 70 or more.
    Type: Grant
    Filed: July 3, 2013
    Date of Patent: December 16, 2014
    Assignee: Nitto Denko Corporation
    Inventors: Eiji Toyoda, Yusaku Shimizu
  • Patent number: 8906745
    Abstract: A method of dividing a semiconductor wafer in which a sheet of deformable material engaging the metal layer side of the wafer has pressurized fluid applied thereto to cause the metal layer to break at the locations of wafer scribe streets.
    Type: Grant
    Filed: May 9, 2014
    Date of Patent: December 9, 2014
    Assignee: Micro Processing Technology, Inc.
    Inventors: Paul C. Lindsey, Jr., Darrell Foote
  • Patent number: 8906743
    Abstract: Methods for making semiconductor devices are disclosed herein. A method configured in accordance with a particular embodiment includes forming a spacer material on an encapsulant such that the encapsulant separates the spacer material from an active surface of a semiconductor device and at least one interconnect projecting away from the active surface. The method further includes molding the encapsulant such that at least a portion of the interconnect extends through the encapsulant and into the spacer material. The interconnect can include a contact surface that is substantially co-planar with the active surface of the semiconductor device for providing an electrical connection with the semiconductor device.
    Type: Grant
    Filed: January 11, 2013
    Date of Patent: December 9, 2014
    Assignee: Micron Technology, Inc.
    Inventors: Chan Yoo, Todd O. Bolken
  • Patent number: 8900925
    Abstract: In a method for manufacturing a diode, a semiconductor crystal wafer is used to produce a p-n or n-p junction, which extends in planar fashion across the top side of a semiconductor crystal wafer. Separation edges form perpendicularly to the top side of the semiconductor crystal wafer, which edges extend across the p-n or n-p junction. The separation of the semiconductor crystal wafer is achieved in that, starting from a disturbance, a fissure is propagated by local heating and local cooling of the semiconductor crystal wafer. The separation fissure thus formed extends along crystal planes of the semiconductor crystal, which avoids the formation of defects in the area of the p-n or n-p junction.
    Type: Grant
    Filed: June 19, 2013
    Date of Patent: December 2, 2014
    Assignee: Robert Bosch GmbH
    Inventors: Richard Spitz, Alfred Goerlach, Robert Kolb
  • Publication number: 20140346642
    Abstract: A surface mountable electronic component free of connecting wires comprises a semiconductor substrate, wherein a plurality of solderable connection areas are arranged at the underside of the component. The component comprises at least one recess is formed in the region of the edges bounding the underside; and in that the recess is covered with an insulating layer. A method for the manufacture of such a component comprises the formation of corresponding recesses.
    Type: Application
    Filed: September 6, 2012
    Publication date: November 27, 2014
    Applicant: VISHAY SEMICONDUCTOR GMBH
    Inventor: Claus Mähner
  • Patent number: 8895363
    Abstract: Consistent with an example embodiment, there is a method for assembling a wafer level chip scale processed (WLCSP) device from a wafer substrate, the method comprises grinding the back-side of the wafer substrate to a prescribed thickness. A plurality of trenches is sawed along a plurality of device die boundaries on a back-side surface of the wafer, the trenches having a bevel profile. The plurality of trenches is etched until the bevel profile of the plurality of trenches is rounded.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: November 25, 2014
    Assignee: NXP B.V.
    Inventors: Hartmut Buenning, Sascha Moeller, Guido Albermann, Thomas Rohleder, Michael Zernack
  • Patent number: 8895345
    Abstract: The present invention provides a dicing method that achieves excellent dicing properties at low costs by removing a metal film through a metal processing operation with a diamond tool and then performing pulse laser beam irradiation. The dicing method is a method of dicing a substrate to be processed, devices being formed in the substrate to be processed, a metal film being formed on one surface of the substrate to be processed.
    Type: Grant
    Filed: June 13, 2011
    Date of Patent: November 25, 2014
    Assignee: Toshiba Kikai Kabushiki Kaisha
    Inventor: Takanobu Akiyama
  • Patent number: 8890292
    Abstract: A method for manufacturing a semiconductor device includes forming at least one stripe-shaped protection film over a multilayer film in a scribe region of a semiconductor substrate having a plurality of semiconductor element regions formed therein, the protection film having a thickness larger in a center portion thereof than at an end surface thereof and being made of a member which transmits a laser beam, and removing the multilayer film in the scribe region by irradiating the protection film with a laser beam.
    Type: Grant
    Filed: September 17, 2013
    Date of Patent: November 18, 2014
    Assignee: Fujitsu Semiconductor Limited
    Inventor: Naoyuki Watanabe
  • Patent number: 8883615
    Abstract: Approaches for cleaning a wafer during hybrid laser scribing and plasma etching wafer dicing processes are described. In an example, a method of dicing a semiconductor wafer having a front surface having a plurality of integrated circuits thereon involves forming an underfill material layer between and covering metal pillar/solder bump pairs of the integrated circuits. The method also involves forming a mask layer on the underfill material layer. The method also involves laser scribing mask layer and the underfill material layer to provide scribe lines exposing portions of the semiconductor wafer between the integrated circuits. The method also involves removing the mask layer. The method also involves, subsequent to removing the mask layer, plasma etching the semiconductor wafer through the scribe lines to singulate the integrated circuits, wherein the second insulating layer protects the integrated circuits during at least a portion of the plasma etching.
    Type: Grant
    Filed: August 8, 2014
    Date of Patent: November 11, 2014
    Assignee: Applied Materials, Inc.
    Inventors: James Matthew Holden, Wei-Sheng Lei, James S. Papanu, Ajay Kumar
  • Patent number: 8871614
    Abstract: A semiconductor die and a related method of processing a semiconductor wafer are disclosed in which a first interlayer insulator having a recess region of varying configuration and defining a scribe line is associated with at least one protective layer formed with a characterizing inclined side surface.
    Type: Grant
    Filed: December 7, 2010
    Date of Patent: October 28, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Sun-joon Kim, Hyeoung-won Seo
  • Patent number: 8841170
    Abstract: A method of singulating semiconductor devices in the close proximity to active structures by controlling interface charge of semiconductor device sidewalls is provided that includes forming a scribe on a surface of a semiconductor devices, where the scribe is within 5 degrees of a crystal lattice direction of the semiconductor device, cleaving the semiconductor device along the scribe, where the devices are separated, using a coating process to coat the sidewalls of the cleaved semiconductor device with a passivation material, where the passivation material is disposed to provide a fixed charge density at a semiconductor interface of the sidewalls, and where the fixed charge density interacts with charge carriers in the bulk of the material.
    Type: Grant
    Filed: October 21, 2011
    Date of Patent: September 23, 2014
    Assignees: The Regents of the University of California, Naval Research Laboratory
    Inventors: Vitaliy Fadeyev, Hartmut F. W. Sadrozinski, Marc Christophersen, Bernard F. Phlips
  • Publication number: 20140264784
    Abstract: Consistent with an example embodiment, there is a semiconductor device having a front-side surface, back-side surface, and vertical surfaces. The semiconductor device comprises an active device die having electrical contacts on the front-side surface. A metal shield is plated on the back-side surface and the vertical surfaces of the active device die. Conductive links connect the plated metal shield to selected electrical contacts on the front-side surface.
    Type: Application
    Filed: March 14, 2013
    Publication date: September 18, 2014
    Inventors: Chung Hsiung Ho, Wen Hung Huang, Wen-Jen Kuo, W.H. Lin, ChihLi Huang, Pao Tung Pan, I. Pin Chen, Li Ching Wang
  • Patent number: 8835283
    Abstract: A fabrication method for producing semiconductor chips with enhanced die strength comprises following steps: forming a semiconductor wafer with enhanced die strength by comprising the substrate, the active layer on the front side of the substrate and the backside metal layer on the backside of the substrate, wherein at least one integrated circuit forms in the active layer; forming a protection layer on a front side of the semiconductor wafer; dicing the semiconductor wafer by at least one laser dicing process and removing the laser dicing residues and removing said protection layer by at least one etching process, whereby plural semiconductor chips with enhanced die strength are produced, and wherein the backside metal layer of said semiconductor chip fully covers the backside of said semiconductor chip after dicing.
    Type: Grant
    Filed: August 20, 2013
    Date of Patent: September 16, 2014
    Assignee: WIN Semiconductors Corp.
    Inventor: Chang-Hwang Hua
  • Publication number: 20140248745
    Abstract: An embodiment 3DIC device includes a semiconductor chip, a die, and a polymer. The semiconductor chip includes a semiconductor substrate, wherein the semiconductor substrate comprises a first edge, and a dielectric layer over the semiconductor substrate. The die is disposed over and bonded to the semiconductor chip. The polymer is molded onto the semiconductor chip and the die. The polymer includes a portion level with the dielectric layer, wherein the portion of the polymer comprises a second edge vertically aligned to the first edge of the semiconductor substrate and a third edge contacting the dielectric layer, wherein the second and the third edges are opposite edges of the portion of the polymer.
    Type: Application
    Filed: May 12, 2014
    Publication date: September 4, 2014
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chih-Wei Wu, Szu Wei Lu, Jing-Cheng Lin, Shin-Puu Jeng, Chen-Hua Yu
  • Patent number: 8822275
    Abstract: A composite wafer includes a molded wafer and a second wafer. The molded wafer includes a plurality of first components, and the second wafer includes a plurality of second components. The second wafer is combined with the molded wafer to form the composite wafer. At least one of the first components is aligned with at least one of the second components to form a multi-component element. The multi-component element is singulatable from the composite wafer.
    Type: Grant
    Filed: April 30, 2012
    Date of Patent: September 2, 2014
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Michael Renne Ty Tan, Georgios Panotopoulos, Paul Kessler Rosenberg, Sagi Varghese Mathai, Wayne Victor Sorin, Susant K Patra
  • Patent number: 8822325
    Abstract: A chip package and a fabrication method thereof are provided according to an embodiment of the invention. The chip package includes a semiconductor substrate containing a chip and having a device area and a peripheral bonding pad area. A plurality of conductive pads is disposed at the peripheral bonding pad area and a passivation layer is formed over the semiconductor substrate to expose the conductive pads. An insulating protective layer is formed on the passivation layer at the device area. A packaging layer is disposed over the insulating protective layer to expose the conductive pads and the passivation layer at the peripheral bonding pad area. The method includes forming an insulating protective layer to cover a plurality of conductive pads during a cutting process and removing the insulating protective layer on the conductive pads through an opening of a packaging layer.
    Type: Grant
    Filed: August 2, 2013
    Date of Patent: September 2, 2014
    Inventors: Ching-Yu Ni, Chia-Ming Cheng, Nan-Chun Lin
  • Patent number: 8815644
    Abstract: A wafer processing method for processing a wafer having a device area and a peripheral marginal area surrounding the device area. The method includes: (i) attaching an adhesive tape having an annular adhesive layer only in a peripheral area thereof to the front side of the wafer, whereby the front side of the wafer is fully covered with the adhesive tape and the annular adhesive layer is positioned to correspond to the peripheral marginal area of the wafer, without the annular adhesive layer making contact with the device area; (ii) applying a laser beam to the wafer along division lines to thereby form a plurality of modified layers inside the wafer; (iii) attaching a protective tape to the back side of the wafer and peeling the adhesive tape from the front side of the wafer; and (iv) applying an external force to the wafer to divide the wafer.
    Type: Grant
    Filed: April 25, 2013
    Date of Patent: August 26, 2014
    Assignee: Disco Corporation
    Inventor: Karl Priewasser
  • Patent number: 8815643
    Abstract: A semiconductor wafer contains a plurality of die with contact pads disposed on a first surface of each die. Metal vias are formed in trenches in the saw street guides and are surrounded by organic material. Traces connect the contact pads and metal vias. The metal vias can be half-circle vias or full-circle vias. Metal vias are also formed through the contact pads on the active area of the die. Redistribution layers (RDL) are formed on a second surface of the die opposite the first surface. Repassivation layers are formed between the RDL for electrical isolation. The die are stackable and can be placed in a semiconductor package with other die. The vias through the saw streets and vias through the active area of the die, as well as the RDL, provide electrical interconnect to the adjacent die.
    Type: Grant
    Filed: February 7, 2011
    Date of Patent: August 26, 2014
    Assignee: STATS ChipPAC, Ltd.
    Inventors: Byung Tai Do, Heap Hoe Kuan, Linda Pei Ee Chua
  • Publication number: 20140231971
    Abstract: In various embodiments, a chip arrangement may be provided. The chip arrangement may include a metallic carrier. The chip arrangement may also include at least one chip arranged on the metallic carrier, wherein the at least one chip includes a chip contact, wherein the chip contact is electrically coupled to the metallic carrier. The chip arrangement may also include encapsulation material at least partially encapsulating the at least one chip. The chip arrangement may also include an electrically conductive shielding structure formed over at least a portion of the encapsulation material to electrically contact the metallic carrier.
    Type: Application
    Filed: February 20, 2013
    Publication date: August 21, 2014
    Applicant: INFINEON TECHNOLOGIES AG
    Inventors: Horst Theuss, Beng Keh See
  • Patent number: 8809694
    Abstract: A circuit module includes a substrate that has a substantially rectangular parallelepiped shape and includes a plurality of inner conductive layers, an electronic component disposed on a first main surface of the substrate, an insulating layer disposed on the first main surface of the substrate so as to cover the electronic component, a shielding layer disposed on a surface of the insulating layer, and a ground electrode connected to the plurality of inner conductive layers. At least two of the inner conductive layers are directly connected to the shielding layer.
    Type: Grant
    Filed: June 28, 2012
    Date of Patent: August 19, 2014
    Assignee: Murata Manufacturing Co., Ltd.
    Inventor: Masato Yoshida
  • Patent number: 8803298
    Abstract: With the use of a conductive shield formed on the top or bottom side of a semiconductor integrated circuit, an electrostatic breakdown (malfunctions of the circuit or damages of a semiconductor element) of the semiconductor integrated circuit due to electrostatic discharge is prevented, and sufficient communication capability is obtained. With the use of a pair of insulators which sandwiches the semiconductor integrated circuit, a highly reliable semiconductor device that is reduced in thickness and size and has resistance to an external stress can be provided. A semiconductor device can be manufactured with high yield while defects of shapes and characteristics due to an external stress or electrostatic discharge are prevented in the manufacturing process.
    Type: Grant
    Filed: January 20, 2012
    Date of Patent: August 12, 2014
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Yoshiaki Oikawa, Shingo Eguchi
  • Patent number: 8802507
    Abstract: A semiconductor package device, a semiconductor package structure, and fabrication methods thereof are provided, which mainly includes disposing a plurality of semiconductor chips on a wafer formed with TSVs (Through Silicon Vias) and electrically connecting the semiconductor chips to the TSVs; encapsulating the semiconductor chips with an encapsulant; and disposing a hard component on the encapsulant. The hard component ensures flatness of the wafer during a solder bump process and provides support to the wafer during a singulation process such that the wafer can firmly lie on a singulation carrier, thereby overcoming the drawbacks of the prior art, namely difficulty in mounting of solder bumps, and difficulty in cutting of the wafer.
    Type: Grant
    Filed: November 2, 2012
    Date of Patent: August 12, 2014
    Assignee: Siliconware Precision Industries Co., Ltd.
    Inventors: Cheng-Chia Chiang, Chin-Huang Chang, Chien-Ping Huang, Chih-Ming Huang, Jung-Pin Huang