Utilizing A Coating To Perfect The Dicing Patents (Class 438/114)
  • Patent number: 7985624
    Abstract: Provided is a method of manufacturing a semiconductor device including: arranging multiple dies planarly between a first lead frame plate and a second lead frame plate, which face each other, to connect the multiple semiconductor chips to each of the first lead frame plate and the second lead frame plate; filling a resin between the first lead frame plate and the second lead frame plate to seal the multiple dies; performing a first dicing on a laminated body including the first lead frame plate, the resin, and the second lead frame plate, between the adjacent dies, to separate at least the first lead frame plate by cutting; applying plating to the laminated body with at least the first lead frame plate being separated by cutting; and performing a second dicing on a remainder of the laminated body between the adjacent dies, to separate the laminated body into individual semiconductor devices.
    Type: Grant
    Filed: September 3, 2008
    Date of Patent: July 26, 2011
    Assignee: Renesas Electronics Corporation
    Inventor: Yoshiharu Kaneda
  • Patent number: 7985661
    Abstract: In one embodiment, semiconductor die are singulated from a semiconductor wafer by etching openings completely through the semiconductor wafer.
    Type: Grant
    Filed: March 29, 2010
    Date of Patent: July 26, 2011
    Assignee: Semiconductor Components Industries, LLC
    Inventor: Gordon M. Grivna
  • Patent number: 7981727
    Abstract: Electronic device wafer level scale packages and fabrication methods thereof. A semiconductor wafer with a plurality of electronic devices formed thereon is provided. The semiconductor wafer is bonded with a supporting substrate. The back of the semiconductor substrate is thinned. A first trench is formed by etching the semiconductor exposing an inter-layered dielectric layer. An insulating layer is conformably deposited on the back of the semiconductor substrate. The insulating layer on the bottom of the first trench is removed to create a second trench. The insulating layer and the ILD layer are sequentially removed exposing part of a pair of contact pads. A conductive layer is conformably formed on the back of the semiconductor. After the conductive layer is patterned, the conductive layer and the contact pads construct an S-shaped connection. Next, an exterior connection and terminal contact pads are subsequently formed.
    Type: Grant
    Filed: November 28, 2007
    Date of Patent: July 19, 2011
    Inventors: Chien-Hung Liu, Sih-Dian Lee
  • Publication number: 20110171782
    Abstract: A method of placing a die includes providing an embedded plane. The embedded plane has a openings, grid lines, and protruding portions. Each of the plurality of openings are surrounding by a subset of the plurality of grid lines. At least one of the protruding portions extends into one of the openings. A die is placed into one of the openings and at least one of the protruding portions bends during such placement so that it is in contact with at least a portion of a minor surface of the die.
    Type: Application
    Filed: January 14, 2010
    Publication date: July 14, 2011
    Inventor: Vijay Sarihan
  • Patent number: 7972904
    Abstract: A wafer level packaging method is revealed. Firstly, a wafer with a plurality of bumps disposed on a surface is provided. Placing a dielectric tape on a mold plate is followed. Then, the wafer is laminated with the mold plate to make the dielectric tape be compliantly bonded to the surface of the wafer and to make the bumps be embedded in the dielectric tape. After removing the mold plate, flattening the dielectric tape to form a plurality of exposed surfaces of the bumps wherein the exposed surfaces and the flattened surface of the dielectric tape are coplanar. Therefore, the exposed surfaces of the bumps can be regarded as effective alignment points for easy pattern recognition of the wafer level packaged wafers during singulation process.
    Type: Grant
    Filed: April 14, 2009
    Date of Patent: July 5, 2011
    Assignee: Powertech Technology Inc.
    Inventor: Wen-Jeng Fan
  • Publication number: 20110151624
    Abstract: A coating for a microelectronic device comprises a polymer film (131) containing a filler material (232). The polymer film has a thermal conductivity greater than 3 W/m·K and a thickness (133) that does not exceed 10 micrometers. The polymer film may be combined with a dicing tape (310) to form a treatment (300) that simplifies a manufacturing process for a microelectronic package (100) and may be used in order to manage a thermal profile of the microelectronic device.
    Type: Application
    Filed: December 21, 2009
    Publication date: June 23, 2011
    Inventors: Dingying Xu, Leonel R. Arana, Nachiket R. Raravikar, Mohit Mamodia, Rajasekaran Swaminathan, Rahul Manepalli
  • Patent number: 7964449
    Abstract: In a laser processing step S3, boundary sections among semiconductor elements 2 of a resist film 4 are exposed to a laser beam 13a, to thus form in the resist film 4 boundary grooves 5—which partition the semiconductor elements 2 from each other—and to uncover a surface 1b of a semiconductor wafer 1 in the boundary grooves 5. In a plasma etching step S6, the surface 1b of the semiconductor wafer 1 exposed in the boundary grooves 5 is etched by means of plasma Pf of a fluorine-based gas, to thus separate the semiconductor wafer 1 into individual semiconductor chips 1? along the boundary grooves 5. Between the laser processing step S3 and the plasma etching step S6, there is performed processing pertaining to a boundary-groove-surface smoothing step S5 for smoothing, by means of plasma Po of oxygen gas, surfaces of the boundary grooves 5 having assumed an irregular shape in the laser processing step S3.
    Type: Grant
    Filed: August 24, 2007
    Date of Patent: June 21, 2011
    Assignee: Panasonic Corporation
    Inventors: Hiroshi Haji, Kiyoshi Arita
  • Patent number: 7957157
    Abstract: A printed circuit board including: a semiconductor package; a board; first to fourth electrodes on a second face of the semiconductor package; fifth to eighth electrodes on a mount region of the board; a first conductor connecting the first electrode with the second electrode; a second conductor connecting the third electrode with the fourth electrode; a third conductor connecting the sixth electrode with the seventh electrode; fourth conductors respectively connecting to the fifth electrode and the eighth electrode; conductive bonding portions bonding each of the electrodes on the second face with corresponding one of the electrodes on the mount region; and a determination circuit connected to the fourth conductors and configured to determine a difference between a value of current supplied to one of the fourth conductors and a value of current received through the other fourth conductor.
    Type: Grant
    Filed: February 26, 2010
    Date of Patent: June 7, 2011
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Yuuichi Koga
  • Patent number: 7955955
    Abstract: A semiconductor product comprises a semiconductor substrate having a top surface and a bottom surface including a semiconductor chip. The semiconductor substrate has a top surface and a perimeter. A barrier is formed in the chip within the perimeter. An Ultra Deep Isolation Trench (UDIT) is cut in the top surface of the chip extending down therein between the perimeter and the barrier. A ILD structure with low-k pSICOH dielectric and hard mask layers is formed over the substrate prior to forming the barrier and the UDIT. The ILD structure interconnection structures can be recessed down to the substrate aside from the UDIT.
    Type: Grant
    Filed: May 10, 2007
    Date of Patent: June 7, 2011
    Assignee: International Business Machines Corporation
    Inventors: Michael W. Lane, Xiao Hu Liu, Thomas M. Shaw, Mukta G. Farooq, Robert Hannon, Ian D. W. Melville
  • Patent number: 7951649
    Abstract: The invention relates to the collective fabrication of n 3D module. It comprises a step of fabricating a batch of n dies i at one and the same thin plane wafer (10) of thickness es comprising silicon, covered on one face with electrical connection pads (20), called test pads, and then with a thin electrically insulating layer (4) of thickness ei, forming the insulating substrate provided with at least one silicon electronic component (11) having connection pads (2) connected to the test pads (20) through the insulating layer.
    Type: Grant
    Filed: August 3, 2007
    Date of Patent: May 31, 2011
    Assignee: 3D Plus
    Inventor: Christian Val
  • Patent number: 7951645
    Abstract: A power module with low thermal resistance buffers the stress put on a substrate during a package molding operation to virtually always prevent a fault in the substrate of the module. The power module includes a substrate, a conductive adhesive layer formed on the substrate, a device layer comprising a support tab, a power device, and a passive device which are formed on the conductive adhesive layer, and a sealing material hermetically sealing the device layer. The support tab is buffers the stress applied by a support pin to the substrate, thereby virtually always preventing a ceramic layer included in the substrate from cracking or breaking. As a result, a reduction in the isolation breakdown voltage of the substrate is virtually always prevented and the failure of the entire power module is do to a reduction in the breakdown voltage of the substrate is virtually always prevented.
    Type: Grant
    Filed: February 9, 2010
    Date of Patent: May 31, 2011
    Assignee: Fairchild Korea Semiconductor, Ltd
    Inventors: Keun-hyuk Lee, O-seob Jeon, Seung-won Lim
  • Patent number: 7947530
    Abstract: The present invention relates to a method of manufacturing a wafer level package including the steps of: preparing a substrate wafer including a plurality of pads formed on a bottom surface, a plurality of chips positioned on a top surface, and dicing lines for dividing the chips; forming external connection units on the pads; coating resin on the dicing lines by positioning masks on the substrate wafer to expose only the dicing lines; removing the masks; encapsulating the chips positioned between the resin by coating the chips with encapsulant; removing the resin coated on the dicing lines; and cutting a wafer level package along the dicing lines exposed by removing the resin into units.
    Type: Grant
    Filed: May 5, 2009
    Date of Patent: May 24, 2011
    Assignee: Samsung Electro-Mechanics Co., Ltd.
    Inventors: Jin Gu Kim, Young Do Kweon, Hyung Jin Jeon, Seung Wook Park, Hee Kon Lee, Seon Hee Moon
  • Patent number: 7947574
    Abstract: A laser processing method is provided, which, even when a substrate formed with a laminate part including a plurality of functional devices is thick, can cut the substrate and laminate part with a high precision. This laser processing method irradiates a substrate 4 with laser light L while using a rear face 21 as a laser light entrance surface and locating a light-converging point P within the substrate 4, so as to form modified regions 71, 72, 73 within the substrate 4. Here, the quality modified region 71 is formed at a position where the distance between the front face 3 of the substrate 4 and the end part of the quality modified region 71 on the front face side is 5 ?m to 15 ?m. When the quality modified region 71 is formed at such a position, a laminate part 16 (constituted by interlayer insulating films 17a, 17b here) formed on the front face 3 of the substrate 4 is also cut along a line to cut with a high precision together with the substrate 4.
    Type: Grant
    Filed: March 26, 2010
    Date of Patent: May 24, 2011
    Assignee: Hamamatsu Photonics K.K.
    Inventors: Takeshi Sakamoto, Kenshi Fukumitsu
  • Publication number: 20110115072
    Abstract: There is provided a UV energy curable tape comprising an adhesive material including a UV energy curable oligomer, a UV energy initiator, and a material which emits optical light when the tape composition is substantially fully cured. A semiconductor chip made using the tape is also provided.
    Type: Application
    Filed: January 21, 2011
    Publication date: May 19, 2011
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Timothy C. Krywanczyk, Donald W. Brouillette, Steven A. Martel, Matthew R. Whalen
  • Publication number: 20110115070
    Abstract: A semiconductor wafer contains first semiconductor die. TSVs are formed through the semiconductor wafer. Second semiconductor die are mounted to a first surface of the semiconductor wafer. A first tape is applied to on a second surface of the semiconductor wafer. A protective material is formed over the second die and first surface of the wafer. The protective material can be encapsulant or polyvinyl alcohol and water. The wafer is singulated between the second die into individual die-to-wafer packages each containing the second die stacked on the first die. The protective material protects the wafer during singulation. The die-to-wafer package can be mounted to a substrate. A build-up interconnect structure can be formed over the die-to-wafer package. The protective material can be removed. Underfill material can be deposited beneath the first and second die. An encapsulant is deposited over the die-to-wafer package.
    Type: Application
    Filed: November 13, 2009
    Publication date: May 19, 2011
    Applicant: STATS CHIPPAC, LTD.
    Inventors: TaegKi Lim, JaEun Yun, SungYoon Lee
  • Patent number: 7943421
    Abstract: A method of forming integrated circuits includes laminating a patterned film including an opening onto a wafer, wherein a bottom die in the wafer is exposed through the opening. A top die is placed into the opening. The top die fits into the opening with substantially no gap between the patterned film and the top die. The top die is then bonded onto the bottom die, followed by curing the patterned film.
    Type: Grant
    Filed: December 5, 2008
    Date of Patent: May 17, 2011
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Weng-Jin Wu, Hung-Jung Tu, Ku-Feng Yang, Jung-Chih Hu, Wen-Chih Chiou
  • Publication number: 20110097852
    Abstract: A wafer processing method of processing a wafer having on a front surface a device area where a plurality of devices are formed by being sectioned by predetermined dividing lines, and an outer circumferential redundant area surrounding the device area, includes the steps of: sticking a protection tape to the front surface of the wafer; holding a protection tape side of the wafer by a rotatable chuck table, positioning a cutting blade on a rear surface of the wafer, and rotating the chuck table to cut a boundary portion between the device area and the outer circumferential redundant area to form a separation groove; grinding only the rear surface of the wafer corresponding to the device area to form a circular recessed portion to leave the ring-like outer circumferential redundant area as a ring-like reinforcing portion, the wafer being such that the device area and the ring-like outer circumferential redundant area are united by the protection tape; and conveying the wafer supported by the ring-like reinforci
    Type: Application
    Filed: October 12, 2010
    Publication date: April 28, 2011
    Applicant: DISCO CORPORATION
    Inventor: Kazuma Sekiya
  • Patent number: 7932599
    Abstract: A semiconductor component and a method for its production in semiconductor chip size, can have a semiconductor chip, which has external contacts of the semiconductor component that are arranged in the manner of a flip-chip on its active upper side. The semiconductor chip can be encapsulated by a plastic compound at least on its rear side and its side edges. The outer contacts, which can be arranged on external contact connecting areas, can project from the active upper side.
    Type: Grant
    Filed: December 11, 2006
    Date of Patent: April 26, 2011
    Assignee: Sony Corporation
    Inventors: Helmut Kiendl, Horst Theuss, Michael Weber
  • Patent number: 7932594
    Abstract: An electronic component sealing substrate capable of configuring an electronic apparatus in which the influence of electromagnetic coupling and radio frequency noises between an electrical connection path and a micro electronic mechanical system is suppressed is provided.
    Type: Grant
    Filed: November 16, 2006
    Date of Patent: April 26, 2011
    Assignee: Kyocera Corporation
    Inventors: Toshihiko Maeda, Katsuyuki Yoshida, Kouzou Makinouchi
  • Patent number: 7927922
    Abstract: A dice rearrangement package structure is provided, which a dice having an active surface and a bottom surface, and a plurality of pads is disposed on the active surface; a package body is provided to cover the dices and the plurality of pads being exposed; one ends of plurality of metal traces is electrically connected to the each pads; a protection layer is provided to cover the active surface and the other ends of the exposed metal traces is electrically connected to the plurality of conductive elements, the characteristic in that the package body is a B-stage material.
    Type: Grant
    Filed: August 14, 2008
    Date of Patent: April 19, 2011
    Assignees: Chipmos Technologies Inc, Chipmos Technologies (Bermuda) Ltd
    Inventors: Geng-Shin Shen, Yu-Ren Chen
  • Patent number: 7927921
    Abstract: A uniform layer of non-conductive material, e.g., epoxy, is screen printed onto the backside of an integrated circuit wafer to a required thickness, and then heated until it is hard cured (C-stage). The integrated circuit wafer having the hard cured coating is then sawn apart to separate the individual integrated circuit dice. A non-conductive adhesive is dispensed onto mating faces of die attach paddles of leadframes. The dice are placed into the non-conductive adhesive and then the die and die attach paddle assembly are heated to hard cure the adhesive between the mating faces of the die and die attach paddle. This provides long term electrical isolation of the integrated circuit die from the die attach paddle, and effectively eliminates silver migration from the die attach paddle which causes conductive paths to form that increase unwanted leakage currents in the die and ultimately cause failure during operation thereof.
    Type: Grant
    Filed: May 27, 2009
    Date of Patent: April 19, 2011
    Assignee: Microchip Technology Incorporated
    Inventors: Ekgachai Kenganantanon, Surapol Sawatjeen
  • Patent number: 7923298
    Abstract: Methods for fabricating an imager die package and resulting die packages are disclosed. An imager die packaging process may include dicing through a fabrication substrate comprising a plurality of imager die. Thereafter, known good die (KGD) qualified from the imager die are repopulated, face down on a high temperature-compatible temporary carrier, the KGD on the temporary carrier are encapsulated and thereafter removed as a reconstructed wafer from the temporary carrier. Furthermore, a first plurality of discrete conductive elements on a back side of the reconstructed wafer may be partially exposed and, optionally, a second plurality of discrete conductive elements may be applied to the first plurality of discrete conductive elements. The encapsulated KGD are then singulated.
    Type: Grant
    Filed: September 7, 2007
    Date of Patent: April 12, 2011
    Assignee: Micron Technology, Inc.
    Inventors: Steven Oliver, Warren M. Farnworth
  • Patent number: 7915085
    Abstract: A method and apparatus for coating a plurality of semiconductor devices that is particularly adapted to coating LEDs with a coating material containing conversion particles. One method according to the invention comprises providing a mold with a formation cavity. A plurality of semiconductor devices are mounted within the mold formation cavity and a curable coating material is injected or otherwise introduced into the mold to fill the mold formation cavity and at least partially cover the semiconductor devices. The coating material is cured so that the semiconductor devices are at least partially embedded in the cured coating material. The cured coating material with the embedded semiconductor devices is removed from the formation cavity. The semiconductor devices are separated so that each is at least partially covered by a layer of the cured coating material.
    Type: Grant
    Filed: September 18, 2003
    Date of Patent: March 29, 2011
    Assignee: Cree, Inc.
    Inventors: Michael S. Leung, Eric J. Tarsa, James Ibbetson
  • Patent number: 7905012
    Abstract: A method for manufacturing an electronic component includes: a step of temporarily bonding a substrate to a support plate with an adhesive sheet; a step of forming a cut groove for dividing the substrate into individual chips by providing the substrate with a cut extending in the thickness direction from a second surface side, located opposite the first surface side, to a certain part of the support plate; a step of forming a continuous electrode on the second surface and on a peripheral surface located inside the cut groove, of each of the chips by sputtering, for example; and a step of detaching the chips from the support plate. An electrode on the first surface of the substrate may be formed prior to the temporary bonding step, and the electrode formed on the peripheral surface may be connected to the electrode on the first surface.
    Type: Grant
    Filed: February 12, 2008
    Date of Patent: March 15, 2011
    Assignee: TDK Corporation
    Inventors: Hajime Kuwajima, Hitoshi Ohkubo, Manabu Ohta
  • Patent number: 7901967
    Abstract: A method for dicing a semiconductor substrate includes: forming a reforming layer in the substrate by irradiating a laser beam on the substrate; forming a groove on the substrate along with a cutting line; and applying a force to the substrate in order to cutting the substrate at the reforming layer as a starting point of cutting. The groove has a predetermined depth so that the groove is disposed near the reforming layer, and the force provides a stress at the groove.
    Type: Grant
    Filed: November 16, 2006
    Date of Patent: March 8, 2011
    Assignee: DENSO CORPORATION
    Inventors: Atsushi Komura, Muneo Tamura, Kazuhiko Sugiura, Hirotsugu Funato, Yumi Maruyama, Tetsuo Fujii, Kenji Kohno
  • Patent number: 7901973
    Abstract: To a transparent substrate (20) on which a plurality of spacers (5) are formed, an infrared cut filter (IRCF) substrate (27) is attached. The IRCF substrate (27) has a coefficient of thermal expansion smaller than the transparent substrate (20) and approximately equal to a wafer (31). Next, the transparent substrate (20) is diced into plural pieces to form a plurality of cover glasses (6). Then heat cure adhesive (32) is coated on each spacer (5) and the spacers (5) are attached on the wafer (31) on which a plurality of light receiving section (3) and pads (10) are previously formed. Finally, the heat cure adhesive (32) is heated to be cured.
    Type: Grant
    Filed: December 11, 2006
    Date of Patent: March 8, 2011
    Assignee: Fujifilm Corporation
    Inventor: Kiyofumi Yamamoto
  • Patent number: 7892884
    Abstract: A structure and method of manufacture for an improved multi-chip semiconductor package that reduces package resistance to a negligible level, and offers superior thermal performance. Housing of multiple dies is facilitated by providing electrically isolated lead frames that are separated from a common base carrier by a non-conductive layer of laminating material. A silicon die is attached inside a cavity formed in each lead frame. Direct connection of the active surface of the silicon die to the printed circuit board is then made by an array of solder bumps that is distributed across the surface of each die as well as the edges of the lead frame adjacent to each die.
    Type: Grant
    Filed: March 19, 2009
    Date of Patent: February 22, 2011
    Assignee: Fairchild Semiconductor Corporation
    Inventor: Rajeev Joshi
  • Publication number: 20110039372
    Abstract: A method is provided for manufacturing a plurality of packages. The method comprises the steps of: applying a means for adhering two or more covers to a substrate; positioning the two or more covers onto the substrate to create one or more channels bounded by the two or more covers and the substrate; coupling the covers to the substrate; depositing a material into the one or more channels; performing a process on the material to affix the material; and singulating along the channels to create the plurality of packages.
    Type: Application
    Filed: August 13, 2010
    Publication date: February 17, 2011
    Inventors: Peter V. Loeppert, Denise P. Czech, Lawrence A. Grunert, Kurt B. Friel, Qing Wang
  • Patent number: 7888172
    Abstract: A chip package structure is provided, includes a chip that having a plurality of pads and an adhesive layer on the back side; an encapsulated structure is covered around the four sides of the chip to expose the pads, and the through holes is formed within the encapsulated structure; a patterned first protective layer is formed on the portion surface of encapsulated structure, the portion of active surface of the chips, and the pads of the chip and the through holes are to be exposed; a metal layer is formed on the portion surface of the patterned first protective layer and formed to electrically connect the pads and to fill with the through holes; the patterned second protective layer is formed on the patterned first protective layer and the portion of metal layer, and the portion surface of metal layer is to be exposed; a patterned UBM layer is formed on the exposed surface of the metal layer and the portion surface of the patterned second protective layer; and the conductive elements is formed on the patter
    Type: Grant
    Filed: December 9, 2008
    Date of Patent: February 15, 2011
    Assignees: Chipmos Technologies Inc, Chipmos Technologies (Bermuda) Ltd
    Inventor: Cheng-Tang Huang
  • Patent number: 7888180
    Abstract: A semiconductor apparatus includes a semiconductor device having electrodes on its opposed frontside and backside, respectively, a first external electrode connected to the electrode at the frontside, the first external electrode having a first major surface generally parallel to the frontside of the semiconductor device, and a first side surface generally perpendicular to the first major surface, and a second external electrode having a second major surface generally parallel to the backside of the semiconductor device, a second side surface generally perpendicular to the second major surface, and a projection protruding perpendicular to the second major surface and connected to the electrode at the backside, The first side surface of the first external electrode and the second side surface of the second external electrode serve as mount surfaces. The semiconductor device is located between the first external electrode and the second external electrode.
    Type: Grant
    Filed: May 30, 2008
    Date of Patent: February 15, 2011
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Takao Nogi, Kentaro Suga
  • Patent number: 7875500
    Abstract: The invention provides an adhesive sheet which can be stuck to a wafer at low temperatures of 100° C. or below, which is soft to the extent that it can be handled at room temperature, and which can be cut simultaneously with a wafer under usual cutting conditions; a dicing tape integrated type adhesive sheet formed by lamination of the adhesive sheet and a dicing tape; and a method of producing a semiconductor device using them. In order to achieve this object, the invention is characterized by specifying the breaking strength, breaking elongation, and elastic modulus of the adhesive sheet in particular numerical ranges.
    Type: Grant
    Filed: July 17, 2008
    Date of Patent: January 25, 2011
    Assignee: Hitachi Chemical Company, Ltd.
    Inventors: Teiichi Inada, Michio Mashino, Michio Uruno
  • Patent number: 7875528
    Abstract: A method, system and program product for bonding two circuitry-including semiconductor substrates, and a related stage, are disclosed. In one embodiment, a method of bonding two circuitry-including substrates includes: providing a first stage for holding a first circuitry-including substrate and a second stage for holding a second circuitry-including substrate; identifying an alignment mark on each substrate; determining a location and a topography of each alignment mark using laser diffraction; creating an alignment model for each substrate based on the location and topography the alignment mark thereon; and bonding the first and second circuitry-including substrates together while aligning the first and second substrate based on the alignment model.
    Type: Grant
    Filed: February 7, 2007
    Date of Patent: January 25, 2011
    Assignee: International Business Machines Corporation
    Inventors: Douglas C. La Tulipe, Jr., Steven E. Steen, Anna W. Topol
  • Patent number: 7871901
    Abstract: A method of manufacturing semiconductor chips including forming dividing-groove portions in accordance with dividing regions on the second surface of a semiconductor wafer where an insulating film is placed in the dividing regions of the first surface and performing etching of the entire second surface and the surfaces of the dividing-groove portions by performing plasma etching from the second surface. Thereby corner portions on the second surface side are removed, while the insulating film is exposed from the etching bottom portion by removing the dividing-groove portions in the dividing regions. Also, by continuously performing the plasma etching in a state in which the exposed insulating film is surface charged with electric charge due to ions in plasma, corner portions on in contact with the insulating film on the first surface side are removed, and semiconductor chips that have a high transverse rupture strength are provided.
    Type: Grant
    Filed: April 17, 2006
    Date of Patent: January 18, 2011
    Assignee: Panasonic Corporation
    Inventors: Kiyoshi Arita, Akira Nakagawa
  • Patent number: 7867820
    Abstract: Economical methods for forming a co-planar multi-chip wafer-level packages are proposed. Partial wafer bonding and partial wafer dicing techniques are used to create chips as well as pockets. The finished chips are then mounted in the corresponding pockets of a carrier substrate, and global interconnects among the chips are formed on the top planar surface of the finished chips. The proposed methods facilitate the integration of chips fabricated with different process steps and materials. There is no need to use a planarization process such as chemical-mechanical polish to planarize the top surfaces of the chips. Since the chips are precisely aligned to each other and all the chips are mounted facing up, the module is ready for global wiring, which eliminates the need to flip the chips from an upside-down position.
    Type: Grant
    Filed: May 15, 2008
    Date of Patent: January 11, 2011
    Assignee: International Business Machines Corporation
    Inventors: Lloyd G. Burrell, Howard Hao Chen, Louis L. Hsu, Wolfgang Sauter
  • Patent number: 7867829
    Abstract: There is provided a semiconductor device manufacturing method which prevents cracking of an overcoat during polishing process, and a semiconductor wafer and a semiconductor device which have an overcoat free from cracking. A plurality of divided overcoats 10 are formed on each chip 3 in a chip region 2 and on each unavailable chip pattern in an unavailable region in the periphery of the chips 3 on the surface of a semiconductor wafer 1, and the semiconductor wafer 1 is mounted upside down on a table with an intervening film so that the back surface of the semiconductor wafer 1 is polished.
    Type: Grant
    Filed: December 29, 2006
    Date of Patent: January 11, 2011
    Assignee: Mitsubishi Electric Corporation
    Inventor: Yukitaka Hori
  • Publication number: 20110003435
    Abstract: Electromagnetic shielding for an integrated circuit packaged device. The method includes forming shielding structures by forming openings in an encapsulated structure. The openings are filled with conductive material that surrounds at least one die. The encapsulated structure may include a plurality of integrated circuit die. A layered redistribution structure is formed on one side of the encapsulated structure.
    Type: Application
    Filed: January 15, 2010
    Publication date: January 6, 2011
    Applicant: FREESCALE SEMICONDUCTOR, INC.
    Inventors: JINBANG TANG, DARREL FREAR, JONG-KAI LIN, MARC A. MANGRUM, ROBERT E. BOOTH, LAWRENCE N. HERR, KENNETH R. BURCH
  • Patent number: 7863161
    Abstract: In a method of cutting a wafer, a supporting member is attached to an upper surface of the wafer on which semiconductor chips are formed. An opening is formed at a lower surface of the wafer along a scribe lane of the wafer. The lower surface of the wafer may be plasma-etched to reduce a thickness of the wafer. A tensile tape may be attached to the lower surface of the wafer. Here, the tensile tape includes sequentially stacked tensile films having different tensile modules. The supporting member is then removed. The tensile tape is cooled to increase the tensile modules between the tensile films. The tensile tape is tensed until the tensile films are cut using the tensile modules difference to separate the tensile tape from the semiconductor chips. Thus, the lower surface of the wafer may be plasma-etched without using an etching mask.
    Type: Grant
    Filed: June 13, 2008
    Date of Patent: January 4, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Dae-Sang Chan, Jun-Young Ko, Wha-Su Sin, Jae-Yong Park
  • Patent number: 7863104
    Abstract: A method of fabricating a semiconductor chip includes the providing an adhesive layer on the outer area of the active surface of a device wafer and attaching a rigid body to the active surface by the adhesive layer. The device wafer is thinned by treating the passive surface of the device wafer. A first backing tape is connected to the passive surface of the device wafer. The outer portion of the rigid body is separated from the central portion of the rigid body and the outer portion of the device wafer is separated from the central portion of the device wafer. The central portion of the rigid body, the outer portion of the device wafer and the outer portion of the rigid body are removed from the first backing tape. The device wafer may be diced into semiconductor chips.
    Type: Grant
    Filed: October 7, 2008
    Date of Patent: January 4, 2011
    Assignee: Infineon Technologies AG
    Inventors: Werner Kroeninger, Manfred Kotek, Adolf Koller, Abdul Rahman Mohamed
  • Patent number: 7858493
    Abstract: In one example embodiment, a process for cleaving a wafer cell includes several acts. First a wafer cell is affixed to an adhesive film. Next, the adhesive film is stretched substantially uniformly. Then, the adhesive film is further stretched in a direction that is substantially orthogonal to a predetermined reference direction. Next, the wafer cell is scribed to form a notch that is oriented substantially parallel to the predetermined reference direction. Finally, the wafer cell is cleaved at a location substantially along the notch.
    Type: Grant
    Filed: February 22, 2008
    Date of Patent: December 28, 2010
    Assignee: Finisar Corporation
    Inventors: Weizhong Sun, Tsurugi Sudo, Jing Chai
  • Patent number: 7858438
    Abstract: A semiconductor device has a chip, a first bump electrode, a conductive wire and a second bump electrode. The chip has at least one contact pad, and the first bump electrode is formed on the contact pad. The conductive wire is disposed on an active surface of the chip and electrically connected to the first bump electrode. The second bump electrode is formed on the conductive wire, and the second bump electrode is not disposed over any contact pad of the chip. In addition, a method for packaging a chip and an IC package are also disclosed.
    Type: Grant
    Filed: June 13, 2007
    Date of Patent: December 28, 2010
    Assignee: Himax Technologies Limited
    Inventors: Chien-Ru Chen, Ying-Lieh Chen
  • Publication number: 20100314744
    Abstract: A chip package structure includes a substrate, a die, and a package body. The substrate includes a single patterned, electrically conductive layer, and a patterned dielectric layer adjacent to an upper surface of the electrically conductive layer. A part of a lower surface of the electrically conductive layer forms first contact pads for electrical connection externally. The patterned dielectric layer exposes a part of the upper surface of the electrically conductive layer to form second contact pads. The electrically conductive layer exposes the lower surface of the patterned dielectric layer on a lower periphery of the substrate. The die is electrically connected to the second contact pads, the patterned dielectric layer and the die being positioned on the same side of the electrically conductive layer. The package body is disposed adjacent to the upper surface of the electrically conductive layer and covers the patterned dielectric layer and the die.
    Type: Application
    Filed: May 13, 2010
    Publication date: December 16, 2010
    Inventors: Shih-Fu Huang, Yuan-Chang Su, Chia-Cheng Chen, Ta-Chun Lee, Kuang-Hsiung Chen
  • Patent number: 7851265
    Abstract: A semiconductor device is provided comprising: a semiconductor element including a plurality of electrodes; first wirings coupled to the electrodes and directed toward a center of the semiconductor element from a portion coupled to the electrodes; second wirings coupled between the first wirings and external terminals, the second wirings being directed to an outer area of the semiconductor element relative to the center; and at least one resin layer formed between the first wirings and the second wirings.
    Type: Grant
    Filed: July 30, 2007
    Date of Patent: December 14, 2010
    Assignee: Seiko Epson Corporation
    Inventor: Haruki Ito
  • Patent number: 7851333
    Abstract: An apparatus comprises a device layer structure, a device integrated into the device layer structure, an insulating carrier substrate and an insulating layer being continuously positioned between the device layer structure and the insulating carrier substrate, the insulating layer having a thickness which is less than 1/10 of a thickness of the insulating carrier substrate. An apparatus further comprises a device integrated into a device layer structure disposed on an insulating layer, a housing layer disposed on the device layer structure and housing the device, a contact providing an electrical connection between the device and a surface of the housing layer opposed to the device layer structure and a molding material surrounding the housing layer and the insulating layer, the molding material directly abutting on a surface of the insulating layer being opposed to the device layer structure.
    Type: Grant
    Filed: March 15, 2007
    Date of Patent: December 14, 2010
    Assignee: Infineon Technologies AG
    Inventors: Klaus-Guenter Oppermann, Martin Franosch, Martin Handtmann
  • Patent number: 7851266
    Abstract: A microelectronic device wafer includes an adhesive molded in-situ on the wafer. Adhesives and wafers are positioned in molds and a method that includes drawing in the molds at least a partial vacuum and partially curing the adhesive provides an in-situ molded adhesive that is positioned on the wafer. The adhesives can be in liquid, solid, or other forms prior to molding. During molding, the adhesive can be partially cured by heating or irradiating.
    Type: Grant
    Filed: November 26, 2008
    Date of Patent: December 14, 2010
    Assignee: Micron Technologies, Inc.
    Inventors: Tongbi Jiang, Shijian Luo
  • Patent number: 7846776
    Abstract: Methods for releasably attaching sacrificial support members to microfeature workpieces and microfeature devices formed using such methods are disclosed herein. One embodiment, for example, is directed to a method for processing a microfeature workpiece releasably attached to a first support member. The workpiece includes a microelectronic substrate, a plurality of microelectronic dies on and/or in the substrate, and a sacrificial support member attached to an active side of the substrate. The method can include separating individual dies from the workpiece by cutting through the sacrificial support member and the substrate while the workpiece is attached to the first support member. The method can also include attaching a singulated die and corresponding portion of the sacrificial support member as a unit to a second support member.
    Type: Grant
    Filed: August 17, 2006
    Date of Patent: December 7, 2010
    Assignee: Micron Technology, Inc.
    Inventors: William A. Polinsky, Michael B. Ball
  • Patent number: 7838983
    Abstract: The present invention connects a first wiring portion located at one side of a substrate and a second wiring portion located at the other side. A side electrode connected to the first wiring portion is formed, and the second wiring portion is formed on an insulating layer formed on the substrate. An exposed end of the second wiring portion formed when singulated into individual semiconductor package and the side electrode are wired by ink jet system using nano metal particles. Particularly, when copper is used, the wiring by the ink jet system is performed by the reduction of a metal surface oxidation film and/or removal of organic matters by atomic hydrogen.
    Type: Grant
    Filed: April 4, 2006
    Date of Patent: November 23, 2010
    Assignee: Kyushu Institute of Technology
    Inventor: Masamichi Ishihara
  • Patent number: 7838424
    Abstract: An improved Wafer-Level Chip-Scale Packaging (WLCSP) process is described that includes forming a plurality of conductive pillars on a first surface of a semiconductor wafer. One or more grooves are dry etched into the first surface of the semiconductor wafer, where the grooves define at least one boundary between each of a plurality of die within the semiconductor wafer. A layer of encapsulating material is deposited over the first surface. A recess is then cut in each of the grooves through the encapsulating material, where the cutting leaves a piece of semiconductor material on the second surface of the semiconductor wafer. The second surface is then ground to remove the piece of semiconductor material, where the removal of this material separates the plurality of die.
    Type: Grant
    Filed: July 3, 2007
    Date of Patent: November 23, 2010
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Tjandra Winata Karta, Steven Hsu, Chien-Hsiun Lee, Gene Wu, Jimmy Liang
  • Patent number: 7833881
    Abstract: Packaged semiconductor components and methods for manufacturing packaged semiconductor components. In one embodiment a semiconductor component comprises a die having a semiconductor substrate and an integrated circuit. The substrate has a first side, a second side, a sidewall between the first and second sides, a first indentation at the sidewall around a periphery of the first side, and a second indentation at the sidewall around a periphery of the second side. The component can further include a first exterior cover at the first side and a second exterior cover at the second side. The first exterior cover has a first extension in the first indentation, and the second exterior cover has a second extension in the second indentation. The first and second extensions are spaced apart from each other by an exposed portion of the sidewall.
    Type: Grant
    Filed: March 2, 2007
    Date of Patent: November 16, 2010
    Assignee: Micron Technology, Inc.
    Inventor: Warren M. Farnworth
  • Publication number: 20100283129
    Abstract: An upper surface of a semiconductor substrate includes a first portion where a dielectric film is provided, and a second portion where the dielectric film is not provided, wherein the second portion is located in the periphery of the first portion. The upper surface of the semiconductor substrate is covered with a sealing resin.
    Type: Application
    Filed: May 4, 2010
    Publication date: November 11, 2010
    Inventors: Michinari TETANI, Takashi Yui, Minoru Fujisaku
  • Patent number: 7830020
    Abstract: An integrated circuit package system that includes: providing an electrical interconnect system including an inner lead-finger system and an outer lead-finger system; stacking a first device, a second device, and a third device between and over the electrical interconnect system; connecting the first device and the second device to the inner lead-finger system; and connecting the third device to the outer lead-finger system.
    Type: Grant
    Filed: June 21, 2007
    Date of Patent: November 9, 2010
    Assignee: Stats Chippac Ltd.
    Inventors: Frederick Rodriguez Dahilig, Sheila Marie L. Alvarez, Antonio B. Dimaano, Jr., Dioscoro A. Merilo