And Encapsulating Patents (Class 438/124)
  • Publication number: 20140048959
    Abstract: A microelectronic package having an encapsulated substrate comprising a plurality of microelectronic devices encapsulated within an encapsulation material, wherein the encapsulated structure may have an active surface proximate the active surfaces of the plurality of microelectronic devices, and wherein at least one of the plurality of microelectronic devices may have a height greater than another of the plurality of microelectronic devices (e.g. non-coplanar), The microelectronic package further includes a bumpless build-up layer structure formed proximate the encapsulated structure active surface. The microelectronic package may also have an active surface microelectronic device positioned proximate the encapsulated structure active surface and in electrical contact with at least one of the plurality of microelectronic devices of the encapsulated substrate.
    Type: Application
    Filed: June 8, 2012
    Publication date: February 20, 2014
    Inventor: Chuan Hu
  • Patent number: 8653661
    Abstract: A package structure having an MEMS element is provided, which includes: a protection layer having openings formed therein; conductors formed in the openings, respectively; conductive pads formed on the protection layer and the conductors; a MEMS chip disposed on the conductive pads; and an encapsulant formed on the protection layer for encapsulating the MEMS chip. By disposing the MEMS chip directly on the protection layer to dispense with the need for a carrier, such as a wafer or a circuit board that would undesirably add to the thickness, the present invention reduces the overall thickness of the package to thereby achieve miniaturization.
    Type: Grant
    Filed: June 28, 2011
    Date of Patent: February 18, 2014
    Assignee: Siliconware Precision Industries Co., Ltd.
    Inventors: Chang-Yueh Chan, Chien-Ping Huang, Chun-Chi Ke, Shih-Kuang Chiu
  • Patent number: 8652882
    Abstract: A chip packaging method includes the steps of: attaching a first tape to a metal plate; patterning the metal plate to form a plurality of terminal pads and a plurality of leads, wherein the plurality of terminal pads and the plurality of leads are disposed on two opposite sides of a central void region, the plurality of terminal pads on each side are arranged in at least two rows spaced apart from each other in the direction away from the central void region, and each lead has a first end portion extending to the central void region and a second end portion connecting to a corresponding terminal pad; attaching a second tape having openings to the plurality of terminal pads, wherein each of the openings exposes the central void region and the first end portions of the leads; removing the first tape; attaching a chip to the plurality of terminal pads and the plurality of leads, wherein a plurality of bond pads on the chip are corresponding to the central void region; and connecting the bond pads to the first en
    Type: Grant
    Filed: June 23, 2011
    Date of Patent: February 18, 2014
    Assignee: Chipmos Technologies Inc.
    Inventors: Yu Tang Pan, Shih Wen Chou
  • Publication number: 20140042610
    Abstract: The invention discloses a package structure with at least one portion of a first conductive element disposed in a through-opening of a first substrate. A conductive structure is disposed on the first substrate and the first conductive element, wherein the conductive structure is electrically connected to the first substrate and said at least one first I/O terminal of the first conductive element. The conductive structure comprises at least one of a second conductive element, a second substrate or a conductive pattern.
    Type: Application
    Filed: August 10, 2012
    Publication date: February 13, 2014
    Applicant: CYNTEC CO., LTD.
    Inventors: JENG-JEN LI, BAU-RU LU
  • Publication number: 20140045280
    Abstract: A method for packaging integrated circuit chips (die) is described that includes providing a base substrate with package level contacts, coating a base substrate with adhesive, placing dies on the adhesive, electrically connecting the die to the package level contacts, and removing the backside of the base substrate to expose the backside of the package level contacts. Accordingly, an essentially true chip scale package is formed. Multi-chip modules are formed by filling gaps between the chips with an encapsulant. In an embodiment, chips are interconnected by electrical connections between package level contacts in the base substrate. In an embodiment, substrates each having chips are adhered back-to-back with through vias formed in aligned saw streets to interconnect the back-to-back chip assembly.
    Type: Application
    Filed: October 14, 2013
    Publication date: February 13, 2014
    Applicant: Micron Technology, Inc
    Inventors: Chia Y. Poo, Low S. Waf, Boon S. Jeung, Eng M. Koon, Chua S. Kwang
  • Publication number: 20140035170
    Abstract: The present invention include a semiconductor device and a method therefor, the method includes disposing a sheet-shaped resin at a side opposite to the chip mounting portion mounting semiconductor chips to be mounted on the chip mounting portion, and forming a resin sealing portion between the sheet-shaped resin and the chip mounting portion, to seal the semiconductor chips. According to an aspect of the present invention, it is possible to provide a semiconductor device and a fabrication method therefor, by which it is possible to reduce the size of the package and to prevent the generation of an unfilled portion in a resin sealing portion or a filler-removed portion or to prevent the exposure of wire from the resin sealing portion.
    Type: Application
    Filed: August 16, 2013
    Publication date: February 6, 2014
    Applicant: SPANSION LLC
    Inventors: Koji Taya, Masanori Onodera
  • Patent number: 8642381
    Abstract: A semiconductor wafer has a plurality of first semiconductor die. A second semiconductor die is mounted to the first semiconductor die. A shielding layer is formed between the first and second semiconductor die. An electrical interconnect, such as conductive pillar, bump, or bond wire, is formed between the first and second semiconductor die. A conductive TSV can be formed through the first and second semiconductor die. An encapsulant is deposited over the first and second semiconductor die and electrical interconnect. A heat sink is formed over the second semiconductor die. An interconnect structure, such as a bump, can be formed over the second semiconductor die. A portion of a backside of the first semiconductor die is removed. A protective layer is formed over exposed surfaces of the first semiconductor die. The protective layer covers the exposed backside and sidewalls of the first semiconductor die.
    Type: Grant
    Filed: July 16, 2010
    Date of Patent: February 4, 2014
    Assignee: STATS ChipPAC, Ltd.
    Inventors: Reza A. Pagaila, DaeSik Choi, Jun Mo Koo
  • Patent number: 8643181
    Abstract: A method of manufacture of an integrated circuit packaging system includes: forming a rounded interconnect on a package carrier having an integrated circuit attached thereto, the rounded interconnect having an actual center; forming an encapsulation over the package carrier covering the rounded interconnect; removing a portion of the encapsulation over the rounded interconnect with an ablation tool; calculating an estimated center of the rounded interconnect; aligning the ablation tool over the estimated center; and exposing a surface area of the rounded interconnect with the ablation tool.
    Type: Grant
    Filed: March 24, 2010
    Date of Patent: February 4, 2014
    Assignee: STATS ChipPAC Ltd.
    Inventors: JoHyun Bae, SeongHun Mun, SeungYun Ahn
  • Patent number: 8642388
    Abstract: A method for manufacturing LEDs includes following steps: forming circuit structures on a substrate, each circuit structure having a first metal layer and a second metal layer formed on opposite surfaces of the substrate and a connecting section interconnecting the first and second metal layers; cutting through each circuit structure along a middle of the connecting section to form first and second electrical connecting portions insulated from each other via a gap therebetween; arranging LED chips on the substrate and electrically connecting the LED chips to the first and second electrical connecting portions; forming an encapsulation on the substrate to cover the LED chips; and cutting through the substrate and the encapsulation between the first and second electrical connecting portions of neighboring circuit structures to obtain the LEDs.
    Type: Grant
    Filed: December 21, 2011
    Date of Patent: February 4, 2014
    Assignee: Advanced Optoelectronics Technology, Inc.
    Inventor: Chao-Hsiung Chang
  • Patent number: 8642395
    Abstract: A process for assembling a Chip-On-Lead packaged semiconductor device includes the steps of: mounting and sawing a wafer to provide individual semiconductor dies; performing a first molding operation on a lead frame; depositing epoxy on the lead frame via a screen printing process; attaching one of the singulated dies on the lead frame with the epoxy, where the die attach is done at room temperature; and curing the epoxy in an oven. Throughput improvements may be ascribed to not including a hot die attach process. An optional plasma cleaning step may be performed, which greatly improves wire bonding quality and a second molding quality. In addition, since a first molding operation is performed before the formation of epoxy to avoid the problem of the epoxy hanging in the air, the delamination risk between the epoxy and the die is avoided.
    Type: Grant
    Filed: March 19, 2010
    Date of Patent: February 4, 2014
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Zhe Li, Qingchun He, Guanhua Wang, Zhijie Wang, Nan Xu
  • Patent number: 8642394
    Abstract: An electronic device and method of manufacturing. One embodiment includes attaching a first semiconductor chip to a first metallic clip. The first semiconductor chip is placed over a leadframe after the attachment of the first semiconductor chip to the first metallic clip.
    Type: Grant
    Filed: January 28, 2008
    Date of Patent: February 4, 2014
    Assignee: Infineon Technologies AG
    Inventors: Abdul Rahman Mohamed, Stanley Job Doraisamy, Tien Lai Tan, Ralf Otremba
  • Patent number: 8643166
    Abstract: A method of manufacture of an integrated circuit packaging system includes: forming a lead having a lead bottom body, a lead top body, and a lead top conductive layer directly on the lead top body, the lead top conductive layer having a top protrusion and a top non-vertical portion, the lead bottom body having a horizontally contiguous structure; connecting an integrated circuit to the top protrusion; and forming an encapsulation covering the integrated circuit and exposing a top non-vertical upper side of the top non-vertical portion.
    Type: Grant
    Filed: December 15, 2011
    Date of Patent: February 4, 2014
    Assignee: Stats Chippac Ltd.
    Inventors: Zigmund Ramirez Camacho, Henry Descalzo Bathan, Emmanuel Espiritu
  • Publication number: 20140027920
    Abstract: A semiconductor device includes a first semiconductor chip including a first surface and a plurality of first electrodes disposed on the first surface; a second semiconductor chip including a second surface which faces the first surface, a plurality of second electrodes each of which includes at least one end disposed on the second surface, and a plurality of first protrusions each of which surrounds the one end of each of the second electrodes on an electrode by electrode basis; a plurality of conductive joint materials each of which joins a third electrode included in the first electrodes to the one end of an electrode which faces the third electrode among the second electrodes; and a plurality of first underfill resins each of which is disposed inside one of the first protrusions and covers one of the conductive joint materials on a material by material basis.
    Type: Application
    Filed: July 24, 2013
    Publication date: January 30, 2014
    Applicant: FUJITSU SEMICONDUCTOR LIMITED
    Inventor: Takeshi Kodama
  • Publication number: 20140030854
    Abstract: Some exemplary embodiments of high voltage cascoded III-nitride semiconductor package utilizing clips on a package support surface have been disclosed. One exemplary embodiment comprises a III-nitride transistor attached to a package support surface and having an anode of a diode stacked over a source of the III-nitride transistor, a first conductive clip coupled to a gate of the III-nitride transistor and the anode of the diode, and a second conductive clip coupled to a drain of the III-nitride transistor. The conductive clips are connected to the package support surface and expose respective flat portions that are surface mountable. In this manner, reduced package footprint, improved surge current capability, and higher performance may be achieved compared to conventional wire bonded packages. Furthermore, since a low cost printed circuit board (PCB) may be utilized for the package support surface, expensive leadless fabrication processes may be avoided for cost effective manufacturing.
    Type: Application
    Filed: September 26, 2013
    Publication date: January 30, 2014
    Applicant: International Rectifier Corporation
    Inventors: Chuan Cheah, Dae Keun Park
  • Publication number: 20140030855
    Abstract: A method of manufacturing a flip chip package includes: providing a board including a conductive pad disposed inside a mounting region of the board on which the electronic device is to be mounted, and a connection pad disposed outside the mounting region; forming a resin layer on the board; forming a trench by removing a part of the resin layer or forming an uneven portion at a portion of a surface of the resin layer; forming, on the trench or uneven portion, a dam member preventing leakage of an underfill between the mounting region and the connection pad; and mounting the electronic device on the mounting region.
    Type: Application
    Filed: September 27, 2013
    Publication date: January 30, 2014
    Applicant: SAMSUNG ELECTRO-MECHANICS CO., LTD.
    Inventors: Ey Yong KIM, Young Hwan SHIN, Soon Jin CHO, Jong Yong KIM, Jin Seok LEE
  • Patent number: 8637974
    Abstract: A method of manufacture of an integrated circuit packaging system includes: providing a die attach pad integrally connected to a connector portion and a lead; attaching an integrated circuit die to the die attach pad; connecting an internal interconnect to the integrated circuit die and the lead; forming an encapsulation over the integrated circuit die; removing the connector portion to separate the die attach pad and the lead; and forming an isolation cover between the die attach pad and the lead.
    Type: Grant
    Filed: June 14, 2012
    Date of Patent: January 28, 2014
    Assignee: STATS ChipPAC Ltd.
    Inventor: Zheng Zheng
  • Patent number: 8637349
    Abstract: A combined battery and device apparatus and associated method. This apparatus includes a first conductive layer, a battery comprising a cathode layer; an anode layer, and an electrolyte layer located between and electrically isolating the anode layer from the cathode layer, wherein the anode or the cathode or both include an intercalation material, the battery disposed such that either the cathode layer or the anode layer is in electrical contact with the first conductive layer, and an electrical circuit adjacent face-to-face to and electrically connected to the battery. Some embodiments further include a photovoltaic cell and/or thin-film capacitor. In some embodiments, the substrate includes a polymer having a melting point substantially below 700 degrees centigrade. In some embodiments, the substrate includes a glass. For example, some embodiments include a battery deposited directly on the back of a liquid-crystal display (LCD) device.
    Type: Grant
    Filed: December 27, 2010
    Date of Patent: January 28, 2014
    Assignee: Cymbet Corporation
    Inventors: Mark L. Jenson, Jody J. Klaassen
  • Publication number: 20140021627
    Abstract: A semiconductor device is provided with a semiconductor element having a plurality of electrodes, a plurality of terminals electrically connected to the plurality of electrodes, and a sealing resin covering the semiconductor element. The sealing resin covers the plurality of terminals such that a bottom surface of the semiconductor element in a thickness direction is exposed. A first terminal, which is one of the plurality of terminals, is disposed in a position that overlaps a first electrode, which is one of the plurality of electrodes, when viewed in the thickness direction. The semiconductor device is provided with a conductive connection member that contacts both the first terminal and the first electrode.
    Type: Application
    Filed: April 2, 2012
    Publication date: January 23, 2014
    Applicant: ROHM CO., LTD.
    Inventors: Akihiro Kimura, Takeshi Sunaga
  • Patent number: 8633063
    Abstract: A method of manufacture of an integrated circuit packaging system includes: forming a peripheral lead having a peripheral lead bottom side, a peripheral lead top side, a peripheral lead non-horizontal side, a peripheral lead horizontal ridge, and a peripheral lead conductive plate, the peripheral lead horizontal ridge protruding from the peripheral lead non-horizontal side; forming a central lead adjacent to the peripheral lead; forming a first top distribution layer on the peripheral lead top side; connecting an integrated circuit to the first top distribution layer; applying an insulation layer directly on a bottom extent of the first top distribution layer and a peripheral lead ridge lower side of the peripheral lead horizontal ridge; and attaching a heatsink to the central lead under the integrated circuit.
    Type: Grant
    Filed: March 21, 2012
    Date of Patent: January 21, 2014
    Assignee: Stats Chippac Ltd.
    Inventors: Byung Tai Do, Arnel Senosa Trasporto, Linda Pei Ee Chua
  • Patent number: 8633061
    Abstract: A package structure includes a metal sheet having perforations; a semiconductor chip having an active surface and an opposite inactive surface, wherein the active surface has electrode pads thereon, conductive bumps are disposed on the electrode pads, the semiconductor chip is combined with the metal sheet via the inactive surface thereof, a protective buffer layer is formed on the active surface to cover the conductive bumps, and the perforations are arranged around a periphery of the inactive surface of the semiconductor chip; an encapsulant formed on the metal sheet and in the perforations, for encapsulating the semiconductor chip and exposing the protective buffer layer; and a circuit fan-out layer formed on the encapsulant and the protective buffer layer and having conductive vias penetrating the protective buffer layer and electrically connecting to the conductive bumps. A method of fabricating the package structure and a package-on-package device including the package structure are also provided.
    Type: Grant
    Filed: July 23, 2013
    Date of Patent: January 21, 2014
    Assignee: Unimicron Technology Corporation
    Inventors: Tzyy-Jang Tseng, Dyi-Chung Hu, Yu-Shan Hu
  • Patent number: 8633602
    Abstract: According to one embodiment, a manufacturing method of a semiconductor device is disclosed. The method includes: stacking and adhering a second semiconductor chip on a first semiconductor chip via an adhesive layer; adjusting at least one of an elasticity modulus of the adhesive layer, a sink amount of the adhesive layer, a thickness of a protective film at a surface of the first chip, and an elasticity modulus of the protective film such that “y” in a following formula is 70 or less; and sealing the chips by a molding resin with filler particles. y=74.7?82.7a1+273.2a2?9882a3+65.8a4 a1: a logarithm of the modulus of elasticity [MPa] of the adhesive layer a2: the sink amount [mm] of the adhesive layer a3: the thickness [mm] of the protective film a4: a logarithm of the modulus of elasticity [MPa] of the protective film.
    Type: Grant
    Filed: March 15, 2012
    Date of Patent: January 21, 2014
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Nobuhito Suzuya, Atsushi Yoshimura, Hideko Mukaida
  • Patent number: 8629537
    Abstract: An integrated circuit package system is provided forming a die support system from a padless lead frame having die supports with each substantially equally spaced from another, and attaching an integrated circuit die having a peripheral area on the die supports.
    Type: Grant
    Filed: January 23, 2006
    Date of Patent: January 14, 2014
    Assignee: Stats Chippac Ltd.
    Inventors: Zigmund Ramirez Camacho, Henry D. Bathan, Arnel Trasporto, Jeffrey D. Punzalan
  • Publication number: 20140008811
    Abstract: A method comprises fabricating an interconnect structure comprising a plurality of conductive interconnects encased in a dielectric structure and coupling each of the conductive interconnects to a corresponding bond pad of a package substrate and bond pad of a die. A device package comprises a substrate having a first plurality of bond pads disposed at a first surface of the substrate and a die having a first surface facing the first surface of the substrate and a second surface opposite the first surface, the die comprising a second plurality of bond pads disposed at the second surface. The device package further comprises an interconnect structure comprising a plurality of conductive interconnects encased in a dielectric structure, each of the conductive interconnects coupled to a corresponding bond pad of the first plurality of bond pads and to a corresponding bond pad of the second plurality of bond pads.
    Type: Application
    Filed: July 9, 2012
    Publication date: January 9, 2014
    Applicant: FREESCALE SEMICONDUCTOR, INC.
    Inventors: Weng Foong Yap, Lai Cheng Law, Boh Kid Wong
  • Patent number: 8623708
    Abstract: A method of manufacture of an integrated circuit packaging system includes providing a lead-frame having an inner portion and a bottom cover directly on a bottom surface of the inner portion; forming an insulation cover directly on the lead-frame with the insulation cover having a connection opening; connecting an integrated circuit die to the lead-frame through the connection opening with the integrated circuit die over the insulation cover; forming a top encapsulation directly on the insulation cover; forming a routing layer having a conductive land directly on the bottom cover by shaping the lead-frame; and forming a bottom encapsulation directly on the conductive land with the bottom cover exposed from the bottom encapsulation.
    Type: Grant
    Filed: July 5, 2012
    Date of Patent: January 7, 2014
    Assignee: Stats Chippac Ltd.
    Inventors: Byung Tai Do, Arnel Senosa Trasporto, Linda Pei Ee Chua
  • Patent number: 8624381
    Abstract: A semiconductor module, comprises a package molding compound layer comprising an integrated circuit (IC) device embedded within a package molding compound, the integrated circuit device and the package molding compound having a common surface. Structures are formed to connect the semiconductor module to an external board, the structures electrically connected to the integrated circuit device. A layer is formed on the common surface, the layer comprising at least one integrated antenna structure, the integrated antenna structure being coupled to the IC device.
    Type: Grant
    Filed: March 22, 2013
    Date of Patent: January 7, 2014
    Assignee: Infineon Technologies AG
    Inventors: Rudolf Lachner, Linus Maurer, Maciej Wojnowski
  • Patent number: 8617413
    Abstract: A method for encapsulating structures (11) (typically MEMS structures) supported by a carrier substrate (12) (typically made of glass or silicon), includes: application, on the carrier substrate (12), of at least one cover (7) supported by a mould (1, 2, 6), the mould including a catching layer (6), each cover (7) being in contact with the catching layer (6); then fastening of at least one cover (7) onto the carrier substrate (12); and then separation of the mould (1, 2, 6) from the at least one cover (7). The catching layer (6) includes a fluoropolymer. Preferably, the mould (1, 2, 6) is mechanically separated from the at least one cover (7), by pulling the mould (1, 2, 6) away from the at least one cover (7). Thus, the mould (1) can be reused, which considerably simplifies encapsulating operations carried out on an industrial scale.
    Type: Grant
    Filed: July 31, 2009
    Date of Patent: December 31, 2013
    Assignee: KFM Technology
    Inventors: Sebastien Brault, Elisabeth Dufour-Gergam, Martial Desgeorges
  • Patent number: 8618653
    Abstract: An integrated circuit package system includes: providing a singulated, layered structure equivalent in size to an integrated circuit die and having an adhesive layer, an electrical insulator layer, and a heat slug; attaching the integrated circuit die to a base; attaching bond wires to a top of the base for electrical connection between the integrated circuit die and the base; attaching the singulated, layered structure to the integrated circuit die wherein the bond wires are surrounded by the adhesive layer; and encapsulating the integrated circuit die and a portion of the heat slug with a molding compound.
    Type: Grant
    Filed: January 30, 2008
    Date of Patent: December 31, 2013
    Assignee: Stats Chippac Ltd.
    Inventors: WonJun Ko, Taeg Ki Lim, Sungmin Song
  • Patent number: 8617933
    Abstract: A method of manufacture of an integrated circuit packaging system includes: forming a lead having a lead overhang at an obtuse angle to a lead top side and having a lead ridge protruding from a lead non-horizontal side, the lead overhang having a lead overhang-undercut side at an acute angle to a lead overhang non-horizontal side; forming a lead conductive cap completely covering the lead overhang non-horizontal side and the lead top side; forming a package paddle adjacent the lead; mounting an integrated circuit over the package paddle; and forming an encapsulation over the integrated circuit, the package paddle, and the lead.
    Type: Grant
    Filed: May 27, 2011
    Date of Patent: December 31, 2013
    Assignee: Stats Chippac Ltd.
    Inventors: Zigmund Ramirez Camacho, Henry Descalzo Bathan, Emmanuel Espiritu, Dioscoro A. Merilo
  • Patent number: 8618664
    Abstract: A semiconductor package includes a chip, a carrier, a bonding wire and a molding compound. The chip includes a pad. The carrier includes a finger and has an upper surface and a lower surface opposite to the upper surface, wherein the upper surface supports the chip. The bonding wire is extended from the finger to the pad for electrically connecting the chip to the carrier, wherein the bonding wire defines a projection portion on the upper surface of the carrier, a straight line is defined to pass through the finger and pad, there is a predetermined angle between the tangent line of the projection portion at the finger and the straight line. The molding compound seals the chip and the bonding wire, and covers the carrier.
    Type: Grant
    Filed: March 23, 2010
    Date of Patent: December 31, 2013
    Assignee: Advanced Semiconductor Engineering, Inc.
    Inventor: Sheng Wei Lin
  • Publication number: 20130341789
    Abstract: A semiconductor device is made by forming solder bumps over a copper carrier. Solder capture indentations are formed in the copper carrier to receive the solder bumps. A semiconductor die is mounted to the copper carrier using a die attach adhesive. The semiconductor die has contact pads formed over its active surface. An encapsulant is deposited over the copper carrier, solder bumps, and semiconductor die. A portion of the encapsulant is removed to expose the solder bumps and contact pads. A conductive layer is formed over the encapsulant to connect the solder bumps and contact pads. The conductive layer operates as a redistribution layer to route electrical signals from the solder bumps to the contact pads. The copper carrier is removed. An insulating layer is formed over the conductive layer and encapsulant. A plurality of semiconductor devices can be stacked and electrically connected through the solder bumps.
    Type: Application
    Filed: August 27, 2013
    Publication date: December 26, 2013
    Applicant: STATS ChipPAC, Ltd.
    Inventors: Zigmund R. Camacho, Lionel Chien Hui Tay, Henry D. Bathan, Dioscoro A. Merilo, Jeffrey D. Punzalan
  • Publication number: 20130341784
    Abstract: A semiconductor device includes a ball grid array (BGA) package including first bumps. A first semiconductor die is mounted to the BGA package between the first bumps. The BGA package and first semiconductor die are mounted to a carrier. A first encapsulant is deposited over the carrier and around the BGA package and first semiconductor die. The carrier is removed to expose the first bumps and first semiconductor die. An interconnect structure is electrically connected to the first bumps and first semiconductor die. The BGA package further includes a substrate and a second semiconductor die mounted, and electrically connected, to the substrate. A second encapsulant is deposited over the second semiconductor die and substrate. The first bumps are formed over the substrate opposite the second semiconductor die. A warpage balance layer is formed over the BGA package.
    Type: Application
    Filed: June 21, 2012
    Publication date: December 26, 2013
    Applicant: STATS ChipPAC, LTD.
    Inventors: Yaojian Lin, Kang Chen
  • Publication number: 20130344661
    Abstract: This disclosure provides a semiconductor package and a method of fabricating the same. The semiconductor package includes an insulating layer; a plurality of traces and connection pads disposed in the insulating layer and protruded from the insulating layer; a plurality of bumps formed on the plurality of traces; a semiconductor chip disposed on the bumps; and an encapsulant formed on the insulating layer to encapsulate the semiconductor chip, the plurality of bumps, traces and connection pads. When the encapsulant is formed, voids can be prevented from being generated in the traces and the connection pads and thus the yield of process is significantly increased.
    Type: Application
    Filed: August 20, 2013
    Publication date: December 26, 2013
    Applicant: SILICONWARE PRECISION INDUSTRIES CO., LTD.
    Inventors: Pang-Chun Lin, Yueh-Ying Tsai, Yong-Liang Chen
  • Publication number: 20130341780
    Abstract: A chip arrangement is provided. The chip arrangement including: a chip including at least one electrically conductive contact; a passivation material formed over the at least one electrically conductive contact; an encapsulation material formed over the passivation material; one or more holes formed through the encapsulation material and the passivation material, wherein the passivation material at least partially surrounds the one or more holes; and electrically conductive material provided within the one or more holes, wherein the electrically conductive material is electrically connected to the at least one electrically conductive contact.
    Type: Application
    Filed: June 20, 2012
    Publication date: December 26, 2013
    Applicant: INFINEON TECHNOLOGIES AG
    Inventors: Thorsten Scharf, Boris Plikat, Henrik Ewe, Anton Prueckl, Stefan Landau
  • Publication number: 20130334668
    Abstract: A method of manufacture of an integrated circuit packaging system includes: forming an integrated circuit device having a device contact surface, a device lateral side, and a device backside opposite the device contact surface; forming a device shell, having a shell lip, contiguous with the device backside and the device lateral side, the shell lip adjacent to and coplanar with the device contact surface; attaching a substrate to the integrated circuit device, the device shell between the integrated circuit device and the substrate; and forming an encapsulation on the substrate and covering the integrated circuit device and the device shell.
    Type: Application
    Filed: June 13, 2012
    Publication date: December 19, 2013
    Inventors: DaeWook Yang, Yeongbeom Ko
  • Publication number: 20130334694
    Abstract: A packaging substrate is provided, including: a metal board having a first surface and a second surface opposite to the first surface, wherein the first surface has a plurality of first openings for defining a first core circuit layer therebetween, the second surface has a plurality of second openings for defining a second core circuit layer therebetween, each of the first and second openings has a wide outer portion and a narrow inner portion, and the inner portion of each of the second openings is in communication with the inner portion of a corresponding one of the first openings; a first encapsulant formed in the first openings; a second encapsulant formed in the second openings; and a surface circuit layer formed on the first encapsulant and the first core circuit layer. The present invention effectively reduces the fabrication cost and increases the product reliability.
    Type: Application
    Filed: October 4, 2012
    Publication date: December 19, 2013
    Applicant: SILICONWARE PRECISION INDUSTRIES CO., LTD.
    Inventors: Chi-Ching Ho, Yu-Chih Yu, Ying-Chou Tsai
  • Publication number: 20130337614
    Abstract: Various embodiments provide a method for manufacturing a chip package, the method including: forming an encapsulation material over a chip; compressing an encapsulation material over a chip by a film arranged over the encapsulation material, thereby molding the encapsulation material over the chip; wherein a material from the film is deposited over at least part of the encapsulation material.
    Type: Application
    Filed: June 14, 2012
    Publication date: December 19, 2013
    Applicant: INFINEON TECHNOLOGIES AG
    Inventors: Edward Fuergut, Ralf Wombacher
  • Patent number: 8610292
    Abstract: A resin sealing method of a semiconductor device includes: positioning semiconductor devices at predetermined positions of an adhesive layer formed on a support body and adhering the semiconductor devices thereto, sealing a part of each of the semiconductor devices with resin by curing a first seal resin in a fluidization state so as to fix the semiconductor devices adhered to the predetermined positions of the adhesive layer formed on the support body, setting the semiconductor devices fixed to the predetermined positions of the adhesive layer formed on the support body in a mold and sealing the exposure parts of the semiconductor devices exposed from the first seal resin with a second seal resin, and removing the support body and the adhesive layer from the semiconductor devices sealed with the resin.
    Type: Grant
    Filed: November 29, 2012
    Date of Patent: December 17, 2013
    Assignee: Shinko Electric Industries Co., Ltd.
    Inventor: Teruaki Chino
  • Patent number: 8609469
    Abstract: A method of manufacturing a semiconductor device includes: supplying a supercritical fluid mixed with an under-fill material to a stacked unit, which has a plurality of stacked semiconductor chips; and filling the under-fill material in the space between the plurality of the semiconductor chips, by heating the stacked unit placed in the inside of the high-pressure vessel and curing the under-fill material flowing in the space between the plurality of the semiconductor chips by a polymerization reaction, while the supercritical fluid is being supplied.
    Type: Grant
    Filed: April 4, 2011
    Date of Patent: December 17, 2013
    Assignee: Elpida Memory, Inc.
    Inventors: Hiroyuki Ode, Hiroaki Ikeda
  • Patent number: 8610253
    Abstract: A lead frame includes a die stage; an inner lead provided near the die stage; and a bus bar provided between the die stage and the inner lead and supported by a hanging lead, wherein the hanging lead is inclined with respect to the inner lead, and a wire connection face of the bus bar is displaced with respect to a wire connection face of the inner lead in a direction of a frame thickness.
    Type: Grant
    Filed: June 27, 2011
    Date of Patent: December 17, 2013
    Assignee: Fujitsu Semiconductor Limited
    Inventors: Takahiro Yurino, Hiroshi Aoki, Tatsuya Takaku
  • Publication number: 20130330883
    Abstract: A semiconductor package includes: a chip having an active surface with a plurality of electrode pads and an inactive surface opposite to the active surface; an encapsulant encapsulating the chip and having opposite first and second surfaces, the first surface being flush with the active surface of the chip; and first and second metal layers formed on the second surface of the encapsulant, thereby providing a rigid support to the overall structure to prevent warpage and facilitating heat dissipation of the overall structure.
    Type: Application
    Filed: August 12, 2013
    Publication date: December 12, 2013
    Applicant: Siliconware Precision Industries Co., Ltd.
    Inventors: Jung-Pang Huang, Hui-Min Huang, Kuan-Wei Chuang, Chun-Tang Lin, Yih-Jenn Jiang
  • Patent number: 8603865
    Abstract: According to one embodiment, a semiconductor storage device includes an organic board provided with external connection terminals on one surface and formed as an individual piece into a plane shape substantially identical to that of an area where the external connection terminals are provided, a lead frame having a mounting area positioned relative to the organic board, and a semiconductor memory chip bonded to the mounting area.
    Type: Grant
    Filed: June 19, 2013
    Date of Patent: December 10, 2013
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Ryoji Matsushima
  • Publication number: 20130320527
    Abstract: A semiconductor device includes a semiconductor chip, and a terminal connected with the semiconductor chip. The terminal has a first surface and a second surface spaced from each other in a thickness direction. The semiconductor device also includes a sealing resin covering the semiconductor chip and the terminal. The sealing resin is so configured that the first surface of the terminal is exposed from the sealing resin. The terminal is formed with an opening to be filled with the sealing resin.
    Type: Application
    Filed: August 7, 2013
    Publication date: December 5, 2013
    Applicant: Rohm Co., Ltd.
    Inventors: Takeshi SUNAGA, Akihiro KIMURA
  • Publication number: 20130320489
    Abstract: A semiconductor device includes a fuse pattern disposed over a semiconductor substrate, an epoxy mold compound (EMC) layer disposed over the fuse pattern, a first package substrate disposed over the EMC layer, an insulating film disposed over the first package substrate, and a second package substrate disposed over the insulating film. To the first package substrate, a Vss voltage or a negative voltage lower than the Vss voltage is applied to prevent impurities from migrating to the fuse pattern.
    Type: Application
    Filed: November 28, 2012
    Publication date: December 5, 2013
    Applicant: SK HYNIX INC.
    Inventor: Yu Jin LEE
  • Patent number: 8598034
    Abstract: A method of manufacture of a package-on-package system includes: providing a substrate connection; attaching a semiconductor die to the substrate connection using an adhesive, with the substrate connection affixed directly by the adhesive; forming an encapsulant around the semiconductor die to have a bottom exposed surface coplanar with a bottom surface of the substrate connection and to have a top exposed surface with through openings extending therefrom through the bottom exposed surface; and creating through vias by applying solder into the through openings, the through vias coplanar with the bottom exposed surface of the encapsulant and coplanar with the top exposed surface of the encapsulant.
    Type: Grant
    Filed: November 16, 2012
    Date of Patent: December 3, 2013
    Assignee: STATS ChipPac Ltd.
    Inventors: DongSam Park, JoungIn Yang
  • Patent number: 8597979
    Abstract: Three dimensional Panel-Level Packaging (3D-PLP) fabrication techniques for mass-production of small, simple three dimensional electronic component packages or units such as a DC-DC Converters are described where each package or unit consists of at least an active semiconductor die and a passive, two-terminal electrical circuit element (capacitor inductor and/or resistor).
    Type: Grant
    Filed: July 24, 2013
    Date of Patent: December 3, 2013
    Inventor: Lajos Burgyan
  • Patent number: 8597989
    Abstract: The yield of semiconductor devices is improved. In an upper die of a resin molding die including a pair of the upper die and a lower die, by lengthening the radius of the cross section of an inner peripheral surface of a second corner part facing an injection gate of a cavity more than that of the other corner part, a void contained in a resin in resin injection can be pushed out into an air vent without allowing the void to remain in the second corner part of the cavity. Consequently, the occurrence of the void in the cavity can be prevented and then the occurrence of the appearance defect of the semiconductor device can be prevented.
    Type: Grant
    Filed: December 24, 2012
    Date of Patent: December 3, 2013
    Assignee: Renesas Electronics Corporation
    Inventors: Makio Okada, Hidetoshi Kuraya, Toshio Tanabe, Yoshinori Fujisaki, Kotaro Arita
  • Patent number: 8598693
    Abstract: A rear surface opposite to one plane of a die pad is formed to be exposed from one plane of a sealing resin. In addition, a concave portion disposed to be parallel with at least a first side of an outermost edge of a central structure and a second side adjacent to the first side, respectively, is formed in the one plane of the sealing resin. Here, a depth of the concave portion is equal to or greater than a height of the outermost edge of the central structure.
    Type: Grant
    Filed: August 9, 2011
    Date of Patent: December 3, 2013
    Assignee: Renesas Electronics Corporation
    Inventor: Kenji Nishikawa
  • Patent number: 8592967
    Abstract: A semiconductor apparatus comprising an integrated semiconductor circuit device having pluralities of electrode pads, pluralities of first external terminals connected to the electrode pads of the integrated semiconductor circuit device, an inductor disposed in a region surrounded by the first external terminals, and a resin portion sealing them, the integrated semiconductor circuit device being arranged on an upper surface of the inductor, and the inductor being exposed from a lower surface of the resin portion together with the first external terminals.
    Type: Grant
    Filed: January 28, 2010
    Date of Patent: November 26, 2013
    Assignee: Hitachi Metals, Ltd.
    Inventor: Tohru Umeno
  • Patent number: 8592256
    Abstract: There is provided a circuit board manufacturing method that makes it possible to manufacture a next-generation semiconductor device in a stable manner and improve the yield during secondary mounting processing. A circuit board 11 with a thickness of 230 ?m manufactured using a cyanate-based prepreg 12 containing a resin composition with which a glass cloth is impregnated is heated at a higher temperature than a glass transition temperature of the resin composition after it is cured before reflow processing.
    Type: Grant
    Filed: February 8, 2008
    Date of Patent: November 26, 2013
    Assignee: Sumitomo Bakelite Co., Ltd.
    Inventors: Yoshitaka Okugawa, Keiichi Tsukurimichi, Hitoshi Kawaguchi
  • Patent number: 8592962
    Abstract: A Quad Flat No Leads (QFN) package includes a lead frame, a chip, an encapsulant, and a protective layer. The lead frame includes a plurality of leads. Each of the leads has a lower surface that is divided into a contact area and a non-contact area. The chip is configured on and electrically connected to the lead frame. The encapsulant encapsulates the chip and the leads and fills spaces between the leads. The contact areas and the non-contact areas of the leads are exposed by the encapsulant. The protective layer covers the non-contact areas of the leads.
    Type: Grant
    Filed: August 29, 2011
    Date of Patent: November 26, 2013
    Assignee: Advanced Semiconductor Engineering, Inc.
    Inventors: Kuang-Hsiung Chen, Sheng-Ming Wang, Hsiang-Ming Feng, Yu-Ying Lee, Mei-Lin Hsieh