Insulative Housing Or Support Patents (Class 438/125)
  • Publication number: 20110233767
    Abstract: The semiconductor device manufacturing method includes the steps of attaching two or more solder particles on at least one electrode among a plurality of electrodes of an electronic component, arranging the electrode of the electronic component and an electrode of a circuit board so as to oppose each other, abutting the solder particles attached on a surface of the electrode of the electronic component to the electrode of the circuit board and heating the solder particles, and connecting electrically the electrode of the electronic component and the electrode of the circuit board via two or more solder joint bodies made by melting the solder particles.
    Type: Application
    Filed: March 4, 2011
    Publication date: September 29, 2011
    Applicant: Panasonic Corporation
    Inventor: Daisuke SAKURAI
  • Patent number: 8026129
    Abstract: A stacked integrated circuit package system is provided forming a first stack layer having a first integrated circuit die on a first substrate, forming a second stack layer having a second integrated circuit die on a second substrate, and mechanically and electrically connecting a spacer layer having a first passive component between the second stack layer and the first stack layer.
    Type: Grant
    Filed: March 10, 2006
    Date of Patent: September 27, 2011
    Assignee: STATS ChipPAC Ltd.
    Inventors: Philip Lyndon Cablao, Dario S. Filoteo, Jr., Leo A. Merilo, Emmanuel Espiritu, Rachel Layda Abinan, Allan Ilagan
  • Patent number: 8026594
    Abstract: A sensor device having small variations in sensor characteristics and improved resistance to electrical noise is provided. This sensor device has a sensor unit, which is provided with a frame having an opening, a movable portion held in the opening to be movable relative to the frame, and a detecting portion for outputting an electric signal according to a positional displacement of the movable portion, and a package substrate made of a semiconductor material, and bonded to a surface of the sensor unit. The package substrate has an electrical insulating film on a surface facing the sensor unit. The package substrate is bonded to the sensor unit by forming a direct bonding between an activated surface of the electrical insulating film and an activated surface of the sensor unit at room temperature.
    Type: Grant
    Filed: November 24, 2006
    Date of Patent: September 27, 2011
    Assignee: Panasonic Electric Works Co., Ltd.
    Inventors: Takafumi Okudo, Yuji Suzuki, Yoshiyuki Takegawa, Toru Baba, Kouji Gotou, Hisakazu Miyajima, Kazushi Kataoka, Takashi Saijo
  • Patent number: 8026580
    Abstract: A multi chip housing has a lead frame to which plural die are soldered. A heat spreader conductive cap encloses a volume containing the plural die or chips and is fixed to the periphery of the lead frame. The tops of the die are closely spaced from the interior of the cap and the volume is filled with a thermally conductive, electrically insulating plastic encapsulant.
    Type: Grant
    Filed: November 1, 2006
    Date of Patent: September 27, 2011
    Assignee: International Rectifier Corporation
    Inventor: Mark Pavier
  • Publication number: 20110228464
    Abstract: An apparatus includes a coreless substrate with an embedded die that is integral to the coreless substrate, and at least one device assembled on a surface that is opposite to a ball-grid array disposed on the coreless substrate. The apparatus may include an over-mold layer to protect the at least one device assembled on the surface.
    Type: Application
    Filed: March 17, 2010
    Publication date: September 22, 2011
    Inventors: John S. Guzek, Vijay K. Nair
  • Patent number: 8021924
    Abstract: A method for fabricating an encapsulant cavity integrated circuit package system includes: forming a first integrated circuit package with an inverted bottom terminal having an encapsulant cavity and an interposer, and attaching a component on the interposer in the encapsulant cavity.
    Type: Grant
    Filed: September 28, 2010
    Date of Patent: September 20, 2011
    Assignee: STATS ChipPAC Ltd.
    Inventors: Il Kwon Shim, Byung Joon Han, Kambhampati Ramakrishna, Seng Guan Chow
  • Patent number: 8023269
    Abstract: A circuit assembly (34) resistant to high-temperature and high g centrifugal force is disclosed. A printed circuit board (42) is first fabricated from alumina and has conductive traces of said circuit formed thereon by the use of a thick film gold paste. Active and passive components of the circuit assembly are attached to the printed circuit board by means of gold powder diffused under high temperature. Gold wire is used for bonding between the circuit traces and the active components in order to complete the circuit assembly (34). Also, a method for manufacturing a circuit assembly resistant to elevated temperature is disclosed.
    Type: Grant
    Filed: August 15, 2008
    Date of Patent: September 20, 2011
    Assignees: Siemens Energy, Inc., Arkansas Power Electronics International, Inc.
    Inventors: David J. Mitchell, Anand A. Kulkarni, Ramesh Subramanian, Edward R. Roesch, Rod Waits, Roberto Schupbach, John R. Fraley, Alexander B. Lostetter, Brice McPherson, Bryon Western
  • Patent number: 8021931
    Abstract: A method for electrically connecting an integrated circuit to a via in a substrate is disclosed. The method can include deforming a ball over the via to form a bump and attaching a bond wire to the bump. The method also can include attaching the bond wire to the integrated circuit, such as by forming an end of the bond wire into a second ball and deforming the second ball over the integrated circuit. Alternatively, the method can include forming an end of the bond wire into a ball and deforming the ball over the via. Embodiments of a disclosed integrated circuit and substrate assembly can include, for example, a bump aligned with at least a portion of a via in a substrate and a bond wire attached to the integrated circuit and the bump. Other embodiments can include a via with a top metal cap and an upper plating.
    Type: Grant
    Filed: November 20, 2007
    Date of Patent: September 20, 2011
    Assignee: Stats Chippac, Inc.
    Inventors: Dario S. Filoteo, Jr., Emmanuel A. Espiritu
  • Patent number: 8021920
    Abstract: The invention relates to a metal-ceramic substrate for electric circuits or modules, the substrate including a ceramic layer which is provided with at least one metallic layer of a first type applied to a surface of the ceramic layer in a plane manner. An insulating layer made up of a glass-containing material is applied to at least one partial region of a surface of the metallic layer of the first type, the surface opposing the ceramic layer, and a metallic layer of a second type is applied to the insulating layer, the insulating layer and the metallic layer of a second type respectively being thinner then the ceramic layer and the metallic layer of the first type.
    Type: Grant
    Filed: January 6, 2010
    Date of Patent: September 20, 2011
    Assignee: Curamik Electronics GmbH
    Inventors: Jürgen Schulz-Harder, Peter Haberl
  • Patent number: 8021930
    Abstract: A semiconductor device has a temporary carrier with a designated area for a first semiconductor die. A dam material is deposited on the carrier around the designated area for a first semiconductor die. The first semiconductor die is mounted to the designated area on the carrier. An encapsulant is deposited over the first semiconductor die and carrier. The dam material is selected to have a CTE that is equal to or less than the CTE of the encapsulant. The carrier is removed to expose the encapsulant and first semiconductor die. A first interconnect structure is formed over the encapsulant. An EMI shielding layer can be formed over the first semiconductor die. A second interconnect structure is formed over a back surface of the first semiconductor die. A conductive pillar is formed between the first and second interconnect structures. A second semiconductor die is mounted to the second interconnect structure.
    Type: Grant
    Filed: August 12, 2009
    Date of Patent: September 20, 2011
    Assignee: STATS ChipPAC, Ltd.
    Inventor: Reza A. Pagaila
  • Patent number: 8021932
    Abstract: To provide a semiconductor device with improved reliability. The semiconductor device includes a wiring board, a microcomputer chip flip-chip bonded over the wiring board via gold bumps, a first memory chip laminated over the microcomputer chip, wires for coupling the first memory chip to the wiring board, an underfill material with which a flip-chip coupling portion of the microcomputer chip is filled, and a sealing member for sealing the microcomputer chip and the first memory chip with resin. Further, the corner of a second opening portion of a solder resist film of the wiring board corresponding to the corner of the chip on the air vent side in charging the underfill material is made close to the microcomputer chip, which can improve the wettability and spread of the underfill material at the second opening portion, thus reducing the exposure of leads to the second opening portion, thereby improving the reliability of the semiconductor device.
    Type: Grant
    Filed: April 27, 2009
    Date of Patent: September 20, 2011
    Assignee: Renesas Electronics Corporation
    Inventors: Yusuke Ota, Michiaki Sugiyama, Toshikazu Ishikawa, Mikako Okada
  • Patent number: 8017871
    Abstract: A wired circuit board assembly sheet has a plurality of wired circuit boards, distinguishing marks for distinguishing defectiveness of the wired circuit boards, and a supporting sheet for supporting the plurality of wired circuit boards and the distinguishing marks. Each of the distinguishing marks has an indication portion for indicating a specified one of the wired circuit boards.
    Type: Grant
    Filed: June 24, 2009
    Date of Patent: September 13, 2011
    Assignee: Nitto Denko Corporation
    Inventors: Toshiki Naito, Tetsuya Ohsawa, Kouji Kataoka
  • Patent number: 8017446
    Abstract: Method for manufacturing a rigid power module with a layer that is electrically insulating and conducts well thermally and has been deposited as a coating, the structure having sprayed-on particles that are fused to each other, of at least one material that is electrically insulating and conducts well thermally, having the following steps: manufacturing a one-piece lead frame; populating the lead frame with semiconductor devices, possible passive components, and bonding corresponding connections, inserting the thus populated lead frame into a compression mould so that accessibility of part areas of the lead frame is ensured, pressing a thermosetting compression moulding compound into the mould while enclosing the populated lead frame, coating the underside of the thus populated lead frame by thermal spraying in at least the electrically conducting areas and overlapping also the predominant areas of the spaces, filled with mold compound.
    Type: Grant
    Filed: March 24, 2010
    Date of Patent: September 13, 2011
    Assignee: Danfoss Silicon Power GmbH
    Inventors: Ronald Eisele, Mathias Kock, Teoman Senyildiz
  • Patent number: 8017435
    Abstract: The present invention relates to the field of electronic devices and their associated driver and/or controller integrated circuits and in particular to the mechanical packaging of electronic devices and to the packaging of electronic devices and their associated driver and/or controller integrated circuits.
    Type: Grant
    Filed: June 1, 2007
    Date of Patent: September 13, 2011
    Assignee: Wafer-Level Packaging Portfolio LLC
    Inventors: Juergen Leib, Hidefumi Yamamoto
  • Patent number: 8013454
    Abstract: An active matrix substrate includes a first substrate, a driving integrated circuit chip mounted on the first substrate with an anisotropic electrically conductive layer, and an insulating member. The insulating member isolates a terminal from a wiring and a bump electrode that are adjacent to the terminal portion and isolates a bump electrode facing the terminal portion from a bump electrode and a wiring that are adjacent to the bump electrode.
    Type: Grant
    Filed: June 13, 2006
    Date of Patent: September 6, 2011
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Kenichi Yamashita, Tetsuya Aita
  • Publication number: 20110212577
    Abstract: A power device includes a discrete inductor having contacts formed on a first surface of the discrete inductor and at least one semiconductor component mounted on the first surface of the discrete inductor and coupled to the contacts. The discrete inductor further includes contacts formed on a second surface opposite the first surface and routing connections connecting the first surface contacts to corresponding second surface contacts. The semiconductor components may be flip chip mounted onto the discrete inductor contacts or wire bonded thereto.
    Type: Application
    Filed: August 26, 2010
    Publication date: September 1, 2011
    Inventor: François Hébert
  • Patent number: 8008130
    Abstract: In accordance with the present invention, during formation of the interconnection board, the interconnection board remains securely fixed to a high rigidity plate being higher in rigidity than the interconnection board for suppressing the interconnection board from being bent.
    Type: Grant
    Filed: March 23, 2007
    Date of Patent: August 30, 2011
    Assignee: Renesas Electronics Corporation
    Inventor: Hirokazu Honda
  • Patent number: 8008125
    Abstract: An embedded chip package (ECP) includes a plurality of re-distribution layers joined together in a vertical direction to form a lamination stack, each re-distribution layer having vias formed therein. The embedded chip package also includes a first chip embedded in the lamination stack and a second chip attached to the lamination stack and stacked in the vertical direction with respect to the first chip, each of the chips having a plurality of chip pads. The embedded chip package further includes an input/output (I/O) system positioned on an outer-most re-distribution layer of the lamination stack and a plurality of metal interconnects electrically coupled to the I/O system to electrically connect the first and second chips to the I/O system. Each of the plurality of metal interconnects extends through a respective via to form a direct metallic connection with a metal interconnect on a neighboring re-distribution layer or a chip pad on the first or second chip.
    Type: Grant
    Filed: March 6, 2009
    Date of Patent: August 30, 2011
    Assignee: General Electric Company
    Inventors: Paul Alan McConnelee, Kevin M. Durocher, Donald Paul Cunningham
  • Publication number: 20110204521
    Abstract: A chip-scale semiconductor device package includes a die, an insulating substrate having a through hole, a first metal layer, a second metal layer, and an insulating layer. The first metal layer is on a first surface of the insulating substrate and a first side of the through hole. The insulating layer is overlaid on a second surface of the insulating substrate and surrounds a second side of the through hole. The second metal is on the insulating layer and the second side of the through hole. The die is in the through hole and includes a first electrode and a second electrode. The first electrode is electrically connected to the first metal layer, and the second electrode is electrically connected to the second metal layer.
    Type: Application
    Filed: February 18, 2011
    Publication date: August 25, 2011
    Applicant: INPAQ TECHNOLOGY CO., LTD.
    Inventors: LIANG CHIEH WU, CHENG YI WANG
  • Patent number: 8003438
    Abstract: A circuit module includes an electronic component, a ceramic multilayer substrate and a resin wiring substrate. The ceramic multilayer substrate is provided with a wiring layer disposed on top thereof and a cavity in which the electronic component is mounted, wherein a space between the electronic component and the cavity is filled with a thermosetting resin and a surface of the filled cavity is planarized. The resin wiring substrate has an insulating adhesive layer disposed at one side thereof and provided with at least one opening filled with a conductive resin. The ceramic multilayer substrate and the resin wiring substrate are bonded by the insulating adhesive layer, and the wiring layer on the ceramic multilayer substrate is electrically connected with the conductive resin.
    Type: Grant
    Filed: October 5, 2007
    Date of Patent: August 23, 2011
    Assignee: Panasonic Corporation
    Inventors: Kenji Morimoto, Shigetoshi Segawa
  • Patent number: 8003446
    Abstract: A single step packaging process that both melts a solder and also cures an adhesive about a microelectronic circuit. The process finds technical advantages by simplifying packaging of a die that may be coupled to a planar flexible lead, which leads to a lower production cost and quicker manufacturing time. The planar flexible lead may be adapted to bend and flex during mechanical stress and during extreme temperature cycling, and allow direct mounting of the device to a member by easily welding or soldering. The invention may comprise a flexible solar cell diode that can be closely positioned on solar panels at an extremely low cost.
    Type: Grant
    Filed: October 27, 2009
    Date of Patent: August 23, 2011
    Assignee: Microsemi Corporation
    Inventor: Tracy Autry
  • Patent number: 7998797
    Abstract: A method of assembling a semiconductor device includes providing a chip attached to an elastic carrier, and supporting the elastic carrier with a stiffener. The method additionally includes removing the stiffener from the elastic carrier after attaching the elastic carrier to a board.
    Type: Grant
    Filed: December 9, 2008
    Date of Patent: August 16, 2011
    Assignee: Infineon Technologies AG
    Inventors: Thomas Killer, Erich Syri, Gerold Gruendler, Juergen Hoegerl, Volker Strutz, Hermann Josef Lutz
  • Patent number: 7998795
    Abstract: A method for manufacturing a semiconductor device includes mounting a first chip over a first area of a chip mounting section of a lead frame and mounting a second chip over a second area of the chip mounting section, wherein the second area is adjacent to the first area via the slit. The chip mounting section is disposed on a flat heating jig. First pads of the first chip are connected with second pads of the second chip via first wires, respectively, and the first pads are connected with leads of the lead frame via second wires, respectively. the first chip, the second chip, the first wires and the second wires are sealed with a resin such that a part of each of the leads is exposed from the resin, and each of the leads is then separated from the lead frame.
    Type: Grant
    Filed: June 17, 2010
    Date of Patent: August 16, 2011
    Assignee: Renesas Electronics Corporation
    Inventors: Fujio Ito, Hiromichi Suzuki, Akihiko Kameoka, Noriaki Sakamoto
  • Patent number: 7998781
    Abstract: A method of manufacturing a semiconductor device includes: forming a first resin layer on a wafer having a light receiving portion; patterning the first resin layer into a predetermined shape and forming a first resin film on the light receiving portion; dividing the wafer into light receiving elements; mounting the light receiving elements on an upper surface of a lead frame; a sealing step of forming a sealing resin layer around the first resin film; and removing the first resin film such that a portion of the light receiving element is exposed to the outside, and in the sealing step, the upper surface of the first resin film is flush with the upper surface of the sealing resin layer, or the upper surface of the first resin film is higher than the upper surface of the sealing resin layer.
    Type: Grant
    Filed: August 13, 2009
    Date of Patent: August 16, 2011
    Assignee: Renesas Electronics Corporation
    Inventors: Kenji Uchida, Koki Hirasawa
  • Patent number: 7998774
    Abstract: A package includes a substrate provided with a passing opening and a MEMS device. The MEMS device includes an active surface wherein a portion of the MEMS device is integrated sensitive to the chemical/physical variations of a fluid. The active surface of the MEMS device faces the substrate and is spaced therefrom, the sensitive portion being aligned to the passing opening. A protective package incorporates the MEMS device and the substrate, leaving at least the sensitive portion of the MEMS device exposed through the passing opening of the substrate.
    Type: Grant
    Filed: December 30, 2010
    Date of Patent: August 16, 2011
    Assignee: STMicroelectronics S.r.l.
    Inventors: Federico Giovanni Ziglioli, Fulvio Vittorio Fontana, Mark Shaw
  • Patent number: 7993983
    Abstract: A method of making a semiconductor chip assembly includes mechanically attaching a semiconductor chip to a routing line, then forming an encapsulant that covers the chip, then grinding the encapsulant without grinding the chip and then grinding the encapsulant and the chip such that the encapsulant and the chip are laterally aligned.
    Type: Grant
    Filed: October 26, 2006
    Date of Patent: August 9, 2011
    Assignee: Bridge Semiconductor Corporation
    Inventor: Charles W. C. Lin
  • Patent number: 7993979
    Abstract: A leadless package system includes: providing a chip carrier having indentations defining a pattern for a protrusion for external contact terminals; placing an external coating layer in the indentations in the chip carrier; layering a conductive layer on top of the external coating layer; depositing an internal coating layer on the conductive layer; patterning the internal coating layer and the conductive layer to define external contact terminals with a T-shape profile; connecting an integrated circuit die to the external contact terminals; encapsulating the integrated circuit die and external contact terminals; and separating the chip carrier from the external coating layer.
    Type: Grant
    Filed: December 26, 2007
    Date of Patent: August 9, 2011
    Assignee: Stats Chippac Ltd.
    Inventors: Byung Tai Do, Linda Pei Ee Chua, Heap Hoe Kuan
  • Patent number: 7994631
    Abstract: A substrate for an integrated circuit package is disclosed. The substrate comprises a core comprising a first dielectric layer having a first thickness; conductive traces formed on the first dielectric layer for routing signals within the integrated circuit package, wherein the conductive traces have a second thickness; and a substrate support structure comprising conductive traces formed on the first dielectric layer, where the conductive traces of the substrate support structure have a third thickness which is greater than the second thickness. A method of forming an integrated circuit package is also disclosed.
    Type: Grant
    Filed: May 4, 2009
    Date of Patent: August 9, 2011
    Assignee: Xilinx, Inc.
    Inventor: Leilei Zhang
  • Publication number: 20110186997
    Abstract: A single-layer board on chip package substrate and a method of manufacturing the same are disclosed. The single-layer board on chip package substrate in accordance with an embodiment of the present invention includes an insulator, which has a window perforated therethrough, a wiring pattern, a wire bonding pad and a solder ball pad, which are embedded in one surface of the insulator, and a solder resist layer, which is formed on the one surface of the insulator such that the solder resist layer covers the wiring pattern but at least portions of the wire bonding pad and the solder ball pad are exposed.
    Type: Application
    Filed: June 23, 2010
    Publication date: August 4, 2011
    Inventors: Mi-Sun HWANG, Myung-Sam Kang
  • Publication number: 20110186999
    Abstract: Hardness of bonding end portions of an external connection terminal to be bonded to circuit patterns of an insulating substrate which is not lower than 90 in Vickers hardness is disclosed. An ultrasonic welding tool is used. In the external connection terminal in which the bonding end portions are provided integrally with a bar, one of the bonding end portion located substantially in the lengthwise center of the bar is first bonded, and the other bonding end portions are bonded alternately in order toward either end. The hardness of the bonding end portions is increased so that strength of the ultrasonic welding portions is increased.
    Type: Application
    Filed: September 10, 2010
    Publication date: August 4, 2011
    Applicant: FUJI ELECTRIC SYSTEMS CO., LTD.
    Inventors: Fumihiko Momose, Kazumasa Kido, Yoshitaka Nishimura, Fumio Shigeta
  • Publication number: 20110180921
    Abstract: A method of manufacturing a ball grid array, BGA, integrated circuit package, comprising forming a double sided printed circuit board, PCB, with blind vias interconnecting electrically the circuits on the opposed surfaces of the PCB, with at least one through-hole to allow fluid or gas to pass through the PCB, and an integrated circuit connected to the printed circuit on one side of the PCB; soldering a lid onto the said one side of the PCB to enclose the integrated circuit, whilst allowing thermally expanding gas or fluid to escape through the or each through-hole, whereby to form a package which is hermetically sealed except for the or each through-hole, and which has a cavity between the integrated circuit and the lid; applying a BGA to the side of the PCB opposed to the said one side, whereby to solder the balls of the BGA to respective portions of the printed circuit and to align one of the balls axially with each through-hole; and soldering the ball or balls into the through-hole, or into each respectiv
    Type: Application
    Filed: January 20, 2011
    Publication date: July 28, 2011
    Inventor: Emmanuel Loiselet
  • Publication number: 20110180810
    Abstract: A semiconductor arrangement includes a ceramic mount and at least one semiconductor component fixed-to the ceramic mount. The ceramic mount includes a first section, and the first section is electrically conductive.
    Type: Application
    Filed: July 13, 2009
    Publication date: July 28, 2011
    Applicant: Robert Bosch GmbH
    Inventor: Andreas Krauss
  • Patent number: 7985629
    Abstract: A resin sealing method of a semiconductor device, is provided with: providing a semiconductor device on which a dummy dump is formed; providing a support body including an adhesive layer provided on a surface of the support body; forming a recess in the adhesive layer; inserting the dummy bump of the semiconductor device into the recess of the adhesive layer; adhering the semiconductor device to the adhesive layer with the semiconductor device positioned on the support body; setting the supporting body having the semiconductor device in a resin sealing mold; supplying a resin into a cavity of the resin sealing mold; sealing the semiconductor device with the resin on the support body while using the dummy bump to inhibit displacement of the semiconductor device caused by a flow of the resin supplied into the cavity of the resin sealing mold; and removing the support body, the adhesive layer, and the dummy bump from the semiconductor device sealed with the resin.
    Type: Grant
    Filed: December 22, 2009
    Date of Patent: July 26, 2011
    Assignee: Shinko Electric Industries Co., Ltd.
    Inventor: Teruaki Chino
  • Patent number: 7985619
    Abstract: A manufacturing method for a semiconductor device embedded substrate, includes: a first step of preparing a semiconductor device having a first insulating layer; a second step of preparing a support body, and arranging the semiconductor device on one surface of the support body; a third step of forming a second insulating layer on the one surface of the support body; a fourth step of removing the support body; a fifth step of forming a first wiring pattern on a surface of each of the first insulating layer and the second insulating layer; a sixth step of forming a via-hole from which the first wiring pattern is exposed on the second insulating layer; and a seventh step of forming a second wiring pattern electrically connected on a surface of the second insulating layer.
    Type: Grant
    Filed: October 29, 2009
    Date of Patent: July 26, 2011
    Assignee: Shinko Electric Industries Co., Ltd.
    Inventors: Toshio Kobayashi, Tadashi Arai, Takaharu Yamano
  • Patent number: 7985628
    Abstract: An integrated circuit package system includes: mounting a device structure over a package carrier; connecting an internal interconnect between the device structure and the package carrier; forming an interconnect lock over the internal interconnect over the device structure with interconnect lock exposing the device structure; and forming a package encapsulation adjacent to the interconnect lock and over the package carrier.
    Type: Grant
    Filed: December 12, 2007
    Date of Patent: July 26, 2011
    Assignee: Stats Chippac Ltd.
    Inventors: Heap Hoe Kuan, Seng Guan Chow, Linda Pei Ee Chua, Dioscoro A. Merilo
  • Publication number: 20110175211
    Abstract: A method is disclosed that includes providing a semiconductor substrate having one or more device levels including a number of devices, and forming a number of wiring levels on a top surface of the one or more device levels, wherein one or more of the number of wiring levels includes one or more alpha particle blocking shields situated between at least one of the number of devices and a predetermined first location where a terminal pad will be formed in one of the wiring levels, the one or more alpha particle blocking shields placed at a second location, having one or more widths, and occupying a predetermined number of the wiring levels, sufficient to prevent a predetermined percentage of alpha particles of a selected energy or less expected to be emitted from an alpha particle emitting metallization to be formed adjacent and connected to the terminal pad from reaching the one device.
    Type: Application
    Filed: January 19, 2010
    Publication date: July 21, 2011
    Applicant: International Business Machines Corporation
    Inventors: Cyril Cabral, JR., Michael S. Gordon, David F. Heidel, Conal Eugene Murray, Kenneth Parker Rodbell, Henry Hong Ki Tang
  • Patent number: 7981730
    Abstract: An integrated conformal electromagnetic interference (EMI) and/or electromagnetic radiation shield is formed on a plurality of encapsulated modules by attaching a plurality of modules (30-33) to a process carrier (1) using a double side adhesive tape (2), and then sequentially depositing an insulating layer (15) and a conductive shielding layer (16) before encapsulating the modules with a molding compound (17). After removing the adhesive tape (2) to expose a surface of the encapsulated modules, a multi-layer circuit substrate (100) is formed over the exposed surface, where the circuit substrate includes shielding via structures (101-112) that are aligned with and electrically connected to the conductive shielding layer (16), thereby encircling and shielding the circuit module(s).
    Type: Grant
    Filed: July 9, 2008
    Date of Patent: July 19, 2011
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Jinbang Tang, Darrel R. Frear, Scott M. Hayes, Douglas G. Mitchell
  • Patent number: 7981724
    Abstract: A manufacturing method for a semiconductor device embedded substrate, includes: a first step of preparing a semiconductor device having a first insulating layer; a second step of arranging the semiconductor device on one surface of a support body; a third step of forming a second insulating layer on the one surface of the support body; a fourth step of removing the support body; a fifth step of forming a third insulating layer on a surface of each of the semiconductor device and the second insulating layer; a sixth step of mounting a wiring substrate on a surface of each of the semiconductor device and the second insulating layer; a seventh step of forming a via-hole in the second insulating layer and the third insulating layer; and an eighth step of forming a second wiring pattern on a surface of each of the first insulating layer and the second insulating layer.
    Type: Grant
    Filed: October 29, 2009
    Date of Patent: July 19, 2011
    Assignee: Shinko Electric Industries Co., Ltd.
    Inventors: Toshio Kobayashi, Tadashi Arai, Takaharu Yamano
  • Patent number: 7981703
    Abstract: The present invention provides an electronic assembly 400 and a method for its manufacture 800, 900, 1000 1200, 1400, 1500, 1600, 1700. The assembly 400 uses no solder. Components 406, or component packages 402, 802, 804, 806 with I/O leads 412 are placed 800 onto a planar substrate 808. The assembly is encapsulated 900 with electrically insulating material 908 with vias 420, 1002 formed or drilled 1000 through the substrate 808 to the components' leads 412. Then the assembly is plated 1200 and the encapsulation and drilling process 1500 repeated to build up desired layers 422, 1502, 1702. Assemblies may be mated 1800. Within the mated assemblies, items may be inserted including pins 2202a, 2202b, and 2202c, mezzanine interconnection devices 2204, heat spreaders 2402, and combination heat spreaders and heat sinks 2602. Edge card connectors 2802 may be attached to the mated assemblies.
    Type: Grant
    Filed: August 14, 2008
    Date of Patent: July 19, 2011
    Assignee: Occam Portfolio LLC
    Inventor: Joseph Charles Fjelstad
  • Patent number: 7977163
    Abstract: A method of forming an embedded electronic component package includes coupling a substrate to a first dielectric layer, strip, or panel, and forming first electrically conductive vias and traces in the first dielectric layer. A cavity is then formed in the first dielectric layer and an electronic component is attached in the cavity. A second dielectric layer, strip, or panel, is then applied to the first dielectric layer, thereby encasing the electronic component in dielectric. Second via apertures are then formed through the second dielectric layer to expose selected electronic component bond pads and/or selected first electrically conductive vias and traces. The second via apertures are then filled with an electrically conductive material to form second electrically conductive vias electrically coupled to selected bond pads and selected first electrically conductive vias and traces.
    Type: Grant
    Filed: July 2, 2009
    Date of Patent: July 12, 2011
    Assignee: Amkor Technology, Inc.
    Inventors: Ronald P. Huemoeller, Sukianto Rusli, David Jon Hiner
  • Patent number: 7977162
    Abstract: A semiconductor device includes a semiconductor chip, and a multicomponent alloy layer formed on a face of the semiconductor chip, the multicomponent alloy layer being in a solid-liquid coexisting state in a specific temperature range, and including a surface having concavity and convexity caused by solidification segregation.
    Type: Grant
    Filed: July 9, 2008
    Date of Patent: July 12, 2011
    Assignee: Seiko Epson Corporation
    Inventor: Naoki Komukai
  • Patent number: 7977166
    Abstract: A semiconductor device and a fabrication method for the semiconductor device which can remove the sacrifice layer deposited on the semiconductor device surface in a short time and whose manufacturing yield can be improved are provided. The semiconductor device and the fabrication method for the semiconductor device includes a field effect transistor 4 including a gate electrode 1, a drain electrode 2, and a source electrode 3 formed on a semiconductor substrate; and a hollow protective film 5 for covering the gate electrode 1, the drain electrode 2, and the source electrode 3, and being provided on the semiconductor substrate 4A.
    Type: Grant
    Filed: March 10, 2010
    Date of Patent: July 12, 2011
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Takuji Yamamura
  • Publication number: 20110163456
    Abstract: An electronic device substrate includes a resin layer, a semiconductor layer disposed in a first region on the resin layer, a plurality of insulating films disposed in the first region on the resin layer, and connection terminals disposed in a second region on the resin layer, the connection terminals being used for connection to an external component to be connected. The connection terminals in plan view do not overlap with any insulating films composed of an inorganic material among the plurality of insulating films.
    Type: Application
    Filed: December 21, 2010
    Publication date: July 7, 2011
    Applicant: Seiko Epson Corporation
    Inventors: Mitsutoshi Miyasaka, Taimei Kodaira
  • Publication number: 20110165736
    Abstract: A structure of an integrated circuit module includes a wiring board, a plurality of integrated circuits and at least one terminating resistance circuit. The wiring board has a mounting region on at least one surface thereof. The plurality of integrated circuits are mounted in the mounting region of the wiring board and spaced from one another in a first direction. The at least one terminating resistance circuit is arranged between at least two adjacent integrated circuits, and coupled to an output of a last of the plurality of integrated circuits.
    Type: Application
    Filed: March 4, 2011
    Publication date: July 7, 2011
    Inventors: Sung-Joo Park, Ki-Hyun Ko, Young Yun, Soo-Kyung Kim
  • Patent number: 7972906
    Abstract: A clip structure and semiconductor die package. The clip structure includes a first portion and a second portion, with a connecting structure located between the first and second portion. The clip structure is substantially planar. The semiconductor die package includes a semiconductor die located between a leadframe structure and a clip structure. Slots are formed within the molding material covering portions of the semiconductor die package. The slots are located between a first portion and the second portion of the clip structure, and the slot overlap with the semiconductor die.
    Type: Grant
    Filed: March 7, 2008
    Date of Patent: July 5, 2011
    Assignee: Fairchild Semiconductor Corporation
    Inventors: Erwin Victor R. Cruz, Maria Cristina B. Estacio
  • Publication number: 20110159644
    Abstract: Wire connection failure in semiconductor device is prevented. A semiconductor device has a package substrate having, at the periphery of the main surface thereof, a plurality of bonding leads disposed in a row, a semiconductor chip mounted inside of the row of the bonding leads on the main surface of the package substrate, wires for connecting pads of the semiconductor chip and the bonding leads of the substrate, a sealing body for resin sealing the semiconductor chip and the plurality of wires, and a plurality of solder bumps disposed on the back surface of the package substrate. The top of the loop of each of the wires is disposed outside the wire connecting portion so that the wire length wire can be increased in the connection between the bonding leads and the pads of the semiconductor chip. As a result, the wires have a stable loop shape and a wire connection failure can be prevented.
    Type: Application
    Filed: January 6, 2011
    Publication date: June 30, 2011
    Inventor: Yoshihiko SHIMANUKI
  • Publication number: 20110156045
    Abstract: A crystal manufacturing apparatus capable of manufacturing a crystal in a desired position on a substrate is provided. A spring has one end fixed to a mount and the other end coupled to a magnetic body. The magnetic body has one end coupled to the spring and the other end coupled to a piston. A coil is wound around the magnetic body and electrically connected between a power supply circuit and a ground node (GND). The piston has a linear member inserted in a cylinder. The cylinder has a hollow columnar shape and a small hole at a bottom surface. The cylinder holds a silicon melt. A substrate is supported by an XY stage to be opposed to the small hole of the cylinder. The power supply circuit passes pulse shaped current through the coil to move the piston in an up-down direction (DR1). As a result, a droplet is discharged toward the substrate from the small hole at an initial speed of 1.02 m/s.
    Type: Application
    Filed: August 28, 2009
    Publication date: June 30, 2011
    Applicant: HIROSHIMA UNIVERSITY
    Inventors: Seiichiro Higashi, Naohiro Koba
  • Patent number: 7968377
    Abstract: An integrated circuit package system is provided. A protruding pad is formed on a leadframe. A die is attached to the leadframe. The die is electrically connected to the leadframe. At least portions of the leadframe, the protruding pad, and the die are encapsulated in an encapsulant.
    Type: Grant
    Filed: September 22, 2005
    Date of Patent: June 28, 2011
    Assignee: Stats Chippac Ltd.
    Inventors: Seng Guan Chow, Ming Ying, Il Kwon Shim, Roger Emigh
  • Patent number: 7968369
    Abstract: Microelectronic devices, associated assemblies, and associated methods are disclosed herein. For example, certain aspects of the invention are directed toward a microelectronic device that includes a microfeature workpiece having a side and an aperture in the side. The device can further include a workpiece contact having a surface. At least a portion of the surface of the workpiece contact can be accessible through the aperture and through a passageway extending between the aperture and the surface. Other aspects of the invention are directed toward a microelectronic support device that includes a support member having a side carrying a support contact that can be connectable to a workpiece contact of a microfeature workpiece. The device can further include recessed support contact means carried by the support member. The recessed support contact means can be connectable to a second workpiece contact of the microfeature workpiece.
    Type: Grant
    Filed: December 28, 2006
    Date of Patent: June 28, 2011
    Assignee: Micron Technology, Inc.
    Inventors: Teck Kheng Lee, David Yih Ming Chai, Hong Wan Ng
  • Patent number: 7968999
    Abstract: A method of grounding a heat spreader/stiffener to a flip chip package comprising the steps of attaching an adhesive film to a substrate and attaching a stiffener to the adhesive film. The adhesive film may have a number of first holes corresponding with a number of grounding pads on the substrate. The grounding pads may be configured to provide electrical grounding. The stiffener may have a number of second holes corresponding with the number of first holes of the adhesive film and number the grounding pads of the substrate. The grounding pads are generally exposed through the first and the second holes.
    Type: Grant
    Filed: February 28, 2008
    Date of Patent: June 28, 2011
    Assignee: LSI Corporation
    Inventors: Zeki Z. Celik, Zafer S. Kutlu, Vishal Shah