Semiconductor Islands Formed Upon Insulating Substrate Or Layer (e.g., Mesa Formation, Etc.) Patents (Class 438/164)
  • Patent number: 8241997
    Abstract: There is provided a method of removing trap levels and defects, which are caused by stress, from a single crystal silicon thin film formed by an SOI technique. First, a single crystal silicon film is formed by using a typical bonding SOI technique such as Smart-Cut or ELTRAN. Next, the single crystal silicon thin film is patterned to form an island-like silicon layer, and then, a thermal oxidation treatment is carried out in an oxidizing atmosphere containing a halogen element, so that an island-like silicon layer in which the trap levels and the defects are removed is obtained.
    Type: Grant
    Filed: July 10, 2008
    Date of Patent: August 14, 2012
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Shunpei Yamazaki
  • Patent number: 8236634
    Abstract: Thin semiconductor regions and thick semiconductor regions are formed oven an insulator layer. Thick semiconductor regions include at least one semiconductor fin. A gate conductor layer is patterned to form disposable planar gate electrodes over ETSOI regions and disposable side gate electrodes on sidewalls of semiconductor fins. End portions of the semiconductor fins are vertically recessed to provide thinned fin portions adjacent to an unthinned fin center portion. After appropriate masking by dielectric layers, selective epitaxy is performed on planar source and drain regions of ETSOI field effect transistors (FETs) to form raised source and drain regions. Further, fin source and drain regions are grown on the thinned fin portions. Source and drain regions, fins, and the disposable gate electrodes are planarized. The disposable gate electrodes are replaced with metal gate electrodes. FinFETs and ETSOI FETs are provided on the same semiconductor substrate.
    Type: Grant
    Filed: March 17, 2011
    Date of Patent: August 7, 2012
    Assignee: International Business Machines Corporation
    Inventors: Narasimhulu Kanike, Kangguo Cheng, Ramachandra Divakaruni, Carl J. Radens
  • Patent number: 8236633
    Abstract: The present invention provides a method for manufacturing a semiconductor device, by which a transistor including an active layer, a gate insulating film in contact with the active layer, and a gate electrode overlapping the active layer with the gate insulating film therebetween is provided; an impurity is added to a part of a first region overlapped with the gate electrode with the gate insulating film therebetween in the active layer and a second region but the first region in the active layer by adding the impurity to the active layer from one oblique direction; and the second region is situated in the one direction relative to the first region.
    Type: Grant
    Filed: March 31, 2008
    Date of Patent: August 7, 2012
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Keiichi Sekiguchi, Junichi Koezuka, Yasuyuki Arai, Shunpei Yamazaki
  • Patent number: 8232150
    Abstract: A semiconductor structure is described. The structure includes a semiconductor substrate having a conductive gate abutting a gate insulator for controlling conduction of a channel region; and a source region and a drain region associated with the conductive gate, where the source region includes a first material and the drain region includes a second material, and where the conductive gate is self-aligned to the first material and the second material. In one embodiment, the first material includes Si and the second material includes SiGe. A method of forming a semiconductor structure is also described.
    Type: Grant
    Filed: January 9, 2009
    Date of Patent: July 31, 2012
    Assignee: International Business Machines Corporation
    Inventors: Haining S. Yang, Kangguo Cheng, Robert Wong
  • Patent number: 8227304
    Abstract: Disclosed is a method of forming a semiconductor-on-insulator (SOI) structure on a bulk semiconductor starting wafer. Parallel semiconductor bodies are formed at the top surface of the wafer. An insulator layer is deposited and recessed. Exposed upper portions of the semiconductor bodies are used as seed material for growing epitaxial layers of semiconductor material laterally over the insulator layer, thereby creating a semiconductor layer. This semiconductor layer can be used to form one or more SOI devices (e.g., a single-fin or multi-fin MUGFET or multiple series-connected single-fin or multi-fin MUGFETs). However, placement of SOI device components in and/or on portions of the semiconductor layer should be predetermined to avoid locations which might impact device performance (e.g., placement of any FET gate on a semiconductor fin formed from the semiconductor layer can be predetermined to avoid interfaces between joined epitaxial semiconductor material sections).
    Type: Grant
    Filed: February 23, 2010
    Date of Patent: July 24, 2012
    Assignee: International Business Machines Corporation
    Inventors: Subramanian S. Iyer, Edward J. Nowak
  • Patent number: 8216914
    Abstract: An object is to provide a method for manufacturing an SOI substrate including a semiconductor film with high planarity and high crystallinity. After a single crystal semiconductor film is formed over an insulating film by a separation step, a natural oxide film existing on a surface of the semiconductor film is removed and the semiconductor film is irradiated with first laser light and second laser light under an inert gas atmosphere or a reduced-pressure atmosphere. The number of shots of the first laser light that is emitted to an arbitrary point in the semiconductor film is greater than or equal to 7, preferably greater than or equal to 10 and less than or equal to 100. The number of shots of the second laser light that is emitted to an arbitrary point in the semiconductor film is greater than 0 and less than or equal to 2.
    Type: Grant
    Filed: August 31, 2010
    Date of Patent: July 10, 2012
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Masaki Koyama, Kosei Nei, Toru Hasegawa, Junpei Momo, Eiji Higa
  • Patent number: 8211786
    Abstract: A semiconductor structure and a method for fabricating the semiconductor structure include a hybrid orientation substrate having a first active region having a first crystallographic orientation that is vertically separated from a second active region having a second crystallographic orientation different than the first crystallographic orientation. A first field effect device having a first gate electrode is located and formed within and upon the first active region and a second field effect device having a second gate electrode is located and formed within and upon the second active region. Upper surfaces of the first gate electrode and the second gate electrode are coplanar. The structure and method allow for avoidance of epitaxial defects generally encountered when using hybrid orientation technology substrates that include coplanar active regions.
    Type: Grant
    Filed: February 28, 2008
    Date of Patent: July 3, 2012
    Assignee: International Business Machines Corporation
    Inventor: Kangguo Cheng
  • Patent number: 8207027
    Abstract: A semiconductor structure and its method of fabrication include multiple finFETs with different vertical dimensions for the semiconductor fins. An implant species is implanted in a bottom portion of selected semiconductor fins on which reduced vertical dimension is desired. The bottom portion of the selected semiconductor fins with implant species is etched selective to the semiconductor material without the implanted species, i.e., the semiconductor material in the top portion of the semiconductor fin and other semiconductor fins without the implanted species. FinFETs with the full vertical dimension fins and a high on-current and finFETs with reduced vertical dimension fins with a low on-current thus results on the same semiconductor substrate. By adjusting the depth of the implant species, the vertical dimension of the semiconductor fins may be adjusted in selected finFETs.
    Type: Grant
    Filed: October 22, 2009
    Date of Patent: June 26, 2012
    Assignee: International Business Machines Corporation
    Inventors: Huilong Zhu, Yue Tan
  • Patent number: 8198148
    Abstract: Provided is a method for manufacturing a semiconductor device. The method includes: providing a first substrate where an active layer is formed on a buried insulation layer; forming a gate insulation layer on the active layer; forming a gate electrode on the gate insulation layer; forming a source/drain region on the active layer at both sides of the gate electrode; exposing the buried insulation layer around a thin film transistor (TFT) including the gate electrode and the source/drain region; forming an under cut at the bottom of the TFT by partially removing the buried insulation layer; and transferring the TFT on a second substrate.
    Type: Grant
    Filed: April 26, 2010
    Date of Patent: June 12, 2012
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Jae Bon Koo, Seung Youl Kang, In-Kyu You
  • Patent number: 8198149
    Abstract: A method for fabricating an active device array substrate is provided. A first patterned semiconductor layer, a gate insulator, a first patterned conductive layer and a first dielectric layer is sequentially formed on a substrate. First contact holes exposing the first patterned semiconductor layer are formed in the first dielectric layer and the gate insulator. A second patterned conductive layer and a second patterned semiconductor layer disposed thereon are simultaneously formed on the first dielectric layer. The second conductive layer includes contact conductors and a bottom electrode. The second patterned semiconductor layer includes an active layer. A second dielectric layer having second contact holes is formed on the first dielectric layer, wherein a portion of the second contact holes exposes the active layer. A third patterned conductive layer electrically connected to the active layer through a portion of the second contact holes is formed on the second dielectric layer.
    Type: Grant
    Filed: January 13, 2012
    Date of Patent: June 12, 2012
    Assignee: Au Optronics Corporation
    Inventors: Ming-Wei Sun, Chen-Yueh Li, Yu-Cheng Chen, Chia-Tien Peng
  • Patent number: 8187928
    Abstract: A method of forming an integrated circuit includes forming a gate structure over a substrate. A plasma doping (PLAD) process is performed to at least a portion of the substrate that is adjacent to the gate structure. The doped portion of the substrate is annealed in an ambient with an oxygen-containing chemical.
    Type: Grant
    Filed: September 21, 2010
    Date of Patent: May 29, 2012
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: De-Wei Yu, Chun Hsiung Tsai, Yu-Lien Huang, Chien-Tai Chan, Wen-Sheh Huang
  • Patent number: 8183135
    Abstract: A TFT (Thin Film Transistor) is provided in which a hydrogen feeding layer is able to be formed in a position where diffusing distance of hydrogen can be made short without causing an increase in photolithography processes. In the TFT, the hydrogen feeding layer to diffuse hydrogen into a dangling bond existing at an interface between a polycrystalline silicon thin film and a gate insulating film is formed in a position between the gate insulating film and a gate electrode. According to this configuration, diffusing distance of hydrogen at a period of time during hydrogenation can be made short and the hydrogenation process can be sufficiently performed without taking time in heat treatment.
    Type: Grant
    Filed: March 5, 2009
    Date of Patent: May 22, 2012
    Assignee: NEC Corporation
    Inventor: Hiroaki Tanaka
  • Patent number: 8178438
    Abstract: Silicide films with high quality are formed with treatment of laser light irradiation, so that miniaturization and higher performance is achieved in a field-effect transistor that is formed over an insulating substrate and has little variation in electric characteristics. An island-shaped semiconductor film including a pair of impurity regions and a channel formation region is formed over an insulating substrate, a first metal film is formed on the pair of impurity regions, and a second metal film that functions as a reflective film is formed over a gate electrode located over the channel formation region with a gate insulating film interposed therebetween. The first metal film is irradiated with laser light and a region where the second metal film is formed reflects the laser light, so that the island-shaped semiconductor film and the first metal film selectively react with each other in the pair of impurity regions.
    Type: Grant
    Filed: November 8, 2010
    Date of Patent: May 15, 2012
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Tomoaki Moriwaka
  • Publication number: 20120115288
    Abstract: A method for fabricating an active device array substrate is provided. A first patterned semiconductor layer, a gate insulator, a first patterned conductive layer and a first dielectric layer is sequentially formed on a substrate. First contact holes exposing the first patterned semiconductor layer are formed in the first dielectric layer and the gate insulator. A second patterned conductive layer and a second patterned semiconductor layer disposed thereon are simultaneously formed on the first dielectric layer. The second conductive layer includes contact conductors and a bottom electrode. The second patterned semiconductor layer includes an active layer. A second dielectric layer having second contact holes is formed on the first dielectric layer, wherein a portion of the second contact holes exposes the active layer. A third patterned conductive layer electrically connected to the active layer through a portion of the second contact holes is formed on the second dielectric layer.
    Type: Application
    Filed: January 13, 2012
    Publication date: May 10, 2012
    Applicant: AU OPTRONICS CORPORATION
    Inventors: Ming-Wei Sun, Chen-Yueh Li, Yu-Cheng Chen, Chia-Tien Peng
  • Patent number: 8173478
    Abstract: A metal wiring suitable for a substrate of large size is provided. The present invention is characterized in that at least one layer of conductive film is formed on an insulating surface, a resist pattern is formed on the conductive film, and the conductive film having the resist pattern is etched to form a metal wiring while controlling its taper angle ? in accordance with the bias power density, the ICP power density, the temperature of lower electrode, the pressure, the total flow rate of etching gas, or the ratio of oxygen or chlorine in etching gas. The thus formed metal wiring has less fluctuation in width or length and can satisfactorily deal with an increase in size of substrate.
    Type: Grant
    Filed: January 22, 2009
    Date of Patent: May 8, 2012
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Koji Ono, Hideomi Suzawa
  • Patent number: 8169027
    Abstract: A multi-gate transistor and a method of forming a multi-gate transistor, the multi-gate transistor including a fin having an upper portion and a lower portion. The upper portion having a first band gap and the lower portion having a second band gap with the first band gap and the second band gap designed to inhibit current flow from the upper portion to the lower portion. The multi-gate transistor further including a gate structure having sidewalls electrically coupled with said upper portion and said lower portion and a substrate positioned below the fin.
    Type: Grant
    Filed: April 9, 2010
    Date of Patent: May 1, 2012
    Assignee: Intel Corporation
    Inventors: Brian S. Doyle, Been-Yih Jin, Jack T. Kavalieros, Suman Datta
  • Patent number: 8158471
    Abstract: A method of forming capacitorless DRAM over localized silicon-on-insulator comprises the following steps: A silicon substrate is provided, and an array of silicon studs is defined within the silicon substrate. An insulator layer is defined atop at least a portion of the silicon substrate, and between the silicon studs. A silicon-over-insulator layer is defined surrounding the silicon studs atop the insulator layer, and a capacitorless DRAM is formed within and above the silicon-over-insulator layer.
    Type: Grant
    Filed: October 5, 2010
    Date of Patent: April 17, 2012
    Assignee: Micron Technology, Inc.
    Inventors: Suraj Mathew, Jigish D Trivedi
  • Patent number: 8158463
    Abstract: A process for manufacturing a MOS device includes forming a semiconductor layer having a first type of conductivity; forming an insulated gate structure having an electrode region (25), above the semiconductor layer (23); forming body regions having a second type of conductivity, within the semiconductor layer, laterally and partially underneath the insulated gate structure; forming source regions having the first type of conductivity, within the body regions; and forming a first enrichment region, in a surface portion of the semiconductor layer underneath the insulated gate structure. The first enrichment region has the first type of conductivity and is set at a distance from the body regions. In order to form the first enrichment region, a first enrichment window is defined within the insulated gate structure, and first dopant species of the first type of conductivity are introduced through the first enrichment window and in a way self-aligned thereto.
    Type: Grant
    Filed: April 19, 2006
    Date of Patent: April 17, 2012
    Assignee: STMicroelectronics S.r.l.
    Inventor: Giuseppe Curro′
  • Patent number: 8159018
    Abstract: A finFET-based non-volatile memory device on a semiconductor substrate includes source and drain regions, a fin body, a charge trapping stack and a gate. The fin body extends between the source and the drain region as a connection. The charge trapping stack covers a portion of the fin body and the gate covers the charge trapping stack at the location of the fin body. The fin body has a corner-free shape for at least ¾ of the circumference of the fin body which lacks distinct crystal faces and transition zones in between the crystal faces.
    Type: Grant
    Filed: April 19, 2007
    Date of Patent: April 17, 2012
    Assignee: NXP B.V.
    Inventors: Nader Akil, Prabhat Agarwal, Robertus T. F. Van Schaijk
  • Patent number: 8158466
    Abstract: An array substrate including a substrate having a pixel region, a gate line and a gate electrode on the substrate, the gate electrode being connected to the gate line, a gate insulating layer on the gate line and the gate electrode, an oxide semiconductor layer on the gate insulating layer, an auxiliary pattern on the oxide semiconductor layer, and source and drain electrodes on the auxiliary pattern, the source and drain electrodes being disposed over the auxiliary pattern and spaced apart from each other to expose a portion of the auxiliary pattern. Further, the exposed portion of the auxiliary pattern exposes a channel region and including a metal oxide over the channel region.
    Type: Grant
    Filed: December 4, 2009
    Date of Patent: April 17, 2012
    Assignee: LG Display Co., Ltd.
    Inventors: Yong-Yub Kim, Chang-Il Ryoo
  • Patent number: 8154059
    Abstract: An object of the present invention is to prevent the deterioration of a TFT (thin film transistor). The deterioration of the TFT by a BT test is prevented by forming a silicon oxide nitride film between the semiconductor layer of the TFT and a substrate, wherein the silicon oxide nitride film ranges from 0.3 to 1.6 in a ratio of the concentration of N to the concentration of Si.
    Type: Grant
    Filed: October 22, 2010
    Date of Patent: April 10, 2012
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Masahiko Hayakawa, Mitsunori Sakama, Satoshi Toriumi
  • Patent number: 8148243
    Abstract: The following discloses and describes a zero capacitor RAM as well as a method for manufacturing the same. The zero capacitor RAM includes an SOI substrate. This SOI substrate is composed of a stacked structure of a silicon substrate, an embedded insulation film and a silicon layer. This layer is patterned into line types to constitute active patterns. Moreover, a first insulation layer forms between the active patterns and gates form on the active patterns as well as the first insulation layer to extend perpendicularly to the active patterns. In addition, a source forms in the active pattern on one side of each gate, a drain forms in the active pattern on the other side of each gate which is achieved by filling a metal layer. Continuing, a contact plug forms between the gates on the source and an interlayer dielectric forms on the contact plug in addition to the gates Finally, a bit line forms on the interlayer dielectric to extend perpendicularly to the gates and come into contact with the drain.
    Type: Grant
    Filed: December 20, 2010
    Date of Patent: April 3, 2012
    Assignee: Hynix Semiconductor Inc.
    Inventor: Eun Sung Lee
  • Patent number: 8148737
    Abstract: Disclosed are a light emitting device, a light emitting device package and a lighting system. The light emitting device of the embodiment includes a light emitting structure including a first conductive semiconductor layer, an active layer over the first conductive semiconductor layer, and a second conductive semiconductor layer over the active layer; a dielectric layer over a first region of the first conductive semiconductor layer; a second electrode over the dielectric layer; and a first electrode over a second region of the first conductive semiconductor layer.
    Type: Grant
    Filed: October 21, 2010
    Date of Patent: April 3, 2012
    Assignee: LG Innotek Co., Ltd.
    Inventor: Sung Min Hwang
  • Patent number: 8148225
    Abstract: A fully-depleted (FD) Silicon-on-Insulator (SOI) MOSFET access transistor comprising a gate electrode of a conductivity type which is opposite the conductivity type of the source/drain regions and a method of fabrication are disclosed.
    Type: Grant
    Filed: March 10, 2009
    Date of Patent: April 3, 2012
    Assignee: Micron Technology, Inc.
    Inventors: Hongmei Wang, John K. Zahurak
  • Patent number: 8143117
    Abstract: A method for fabricating an active device array substrate is provided. A first patterned semiconductor layer, a gate insulator, a first patterned conductive layer and a first dielectric layer is sequentially formed on a substrate. First contact holes exposing the first patterned semiconductor layer are formed in the first dielectric layer and the gate insulator. A second patterned conductive layer and a second patterned semiconductor layer disposed thereon are simultaneously formed on the first dielectric layer. The second conductive layer includes contact conductors and a bottom electrode. The second patterned semiconductor layer includes an active layer. A second dielectric layer having second contact holes is formed on the first dielectric layer, wherein a portion of the second contact holes exposes the active layer. A third patterned conductive layer electrically connected to the active layer through a portion of the second contact holes is formed on the second dielectric layer.
    Type: Grant
    Filed: August 12, 2009
    Date of Patent: March 27, 2012
    Assignee: Au Optronics Corporation
    Inventors: Ming-Wei Sun, Chen-Yueh Li, Yu-Cheng Chen, Chia-Tien Peng
  • Patent number: 8143118
    Abstract: A semiconductor device having a highly responsive thin film transistor (TFT) with low subthreshold swing and suppressed decrease in the on-state current and a manufacturing method thereof are demonstrated. The TFT of the present invention is characterized by its semiconductor layer where the thickness of the source region or the drain region is larger than that of the channel formation region. Manufacture of the TFT is readily achieved by the formation of an amorphous semiconductor layer on a projection portion and a depression portion, which is followed by subjecting the melting process of the semiconductor layer, resulting in the formation of a crystalline semiconductor layer having different thicknesses. Selective addition of impurity to the thick portion of the semiconductor layer provides a semiconductor layer in which the channel formation region is thinner than the source or drain region.
    Type: Grant
    Filed: March 7, 2008
    Date of Patent: March 27, 2012
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Hideto Ohnuma, Atsuo Isobe, Hiromichi Godo
  • Patent number: 8138031
    Abstract: A method of manufacturing a semiconductor device includes forming a plurality of Fins including a semiconductor material on an insulation layer; forming gate insulation films on sidewalls of the Fins; forming a gate electrode which extends in a direction of arrangement of the Fins and which is electrically insulated from the Fins, the gate electrode is common in the Fins on the gate insulation film; implanting an impurity into portions of the Fins by using the gate electrode as a mask to form a source-drain diffusion layer, the portions of the Fins extending on both sides of the gate electrodes; and depositing a conductive material on both sides of the Fins to connect the Fins to each other.
    Type: Grant
    Filed: September 17, 2009
    Date of Patent: March 20, 2012
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Atsushi Yagishita
  • Patent number: 8133774
    Abstract: At least one conductive via structure is formed from an interconnect-level metal line through a middle-of-line (MOL) dielectric layer, a shallow trench isolation structure in a top semiconductor layer, and a buried insulator layer to a bottom semiconductor layer. The shallow trench isolation structure laterally abuts at least two field effect transistors that function as a radio frequency (RF) switch. The at least one conductive via structure and the at interconnect-level metal line may provide a low resistance electrical path from the induced charge layer in a bottom semiconductor layer to electrical ground, discharging the electrical charge in the induced charge layer. The discharge of the charge in the induced charge layer thus reduces capacitive coupling between the semiconductor devices and the bottom semiconductor layer, and thus secondary coupling between components electrically disconnected by the RF switch is reduced.
    Type: Grant
    Filed: March 26, 2009
    Date of Patent: March 13, 2012
    Assignee: International Business Machines Corporation
    Inventors: Alan B. Botula, Alvin J. Joseph, Edward J. Nowak, Yun Shi, James A. Slinkman
  • Publication number: 20120056264
    Abstract: A method and semiconductor structure includes an insulator layer on a substrate, a plurality of parallel fins above the insulator layer, relative to a bottom of the structure. Each of the fins comprises a central semiconductor portion and conductive end portions. At least one conductive strap may be positioned within the insulator layer below the fins, relative to the bottom of the structure. The conductive strap can be perpendicular to the fins and contact the fins. The conductive strap further includes recessed portions disposed within the insulator layer, below the plurality of fins, relative to the bottom of the structure, and between each of the plurality of fins, and projected portions disposed above the insulator layer, collinear with each of the plurality of fins, relative to the bottom of the structure. The conductive strap is disposed in at least one of a source and a drain region of the semiconductor structure.
    Type: Application
    Filed: September 7, 2010
    Publication date: March 8, 2012
    Applicant: International Business Machines Corporation
    Inventors: Brent A. Anderson, Andres Bryant, Edward J. Nowak, Jed H. Rankin
  • Patent number: 8129232
    Abstract: A semiconductor device having a CMOS structure, wherein, in manufacturing a CMOS circuit, an impurity element which imparts p-type conductivity to the active layer of the p-channel type semiconductor device is added before forming the gate insulating film. Then, by applying thermal oxidation treatment to the active layer, the impurity element is subjected to redistribution, and the concentration of the impurity element in the principal surface of the active layer is minimized. The precise control of threshold voltage is enabled by the impurity element that is present in a trace quantity.
    Type: Grant
    Filed: December 21, 2009
    Date of Patent: March 6, 2012
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Hisashi Ohtani, Takeshi Fukunaga
  • Publication number: 20120049284
    Abstract: In one exemplary embodiment, a semiconductor structure includes: a semiconductor-on-insulator substrate with a top semiconductor layer overlying an insulation layer and the insulation layer overlies a bottom substrate layer; at least one first device at least partially overlying and disposed upon a first portion of the top semiconductor layer, where the first portion has a first thickness, a first width and a first depth; and at least one second device at least partially overlying and disposed upon a second portion of the top semiconductor layer, where the second portion has a second thickness, a second width and a second depth, where at least one of the following holds: the first thickness is greater than the second thickness, the first width is greater than the second width and the first depth is greater than the second depth.
    Type: Application
    Filed: August 24, 2010
    Publication date: March 1, 2012
    Applicant: International Business Machines Corporation
    Inventors: Bruce B. Doris, Kangguo Cheng, Ali Khakifirooz, Pranita Kulkarni, Ghavam G. Shahidi
  • Patent number: 8114721
    Abstract: A method of forming a FinFET device is provided. In one embodiment, a fin is formed on a substrate. A gate structure is formed over the fin, the gate structure having a dielectric layer and a conformal first polysilicon layer formed above the dielectric layer. An etch stop layer is formed above the first polysilicon layer and thereafter a second polysilicon layer is formed above the etch stop layer. The second polysilicon layer and the etch stop layer are removed. A metal layer is formed above the first polysilicon layer. The first polysilicon layer is reacted with the metal layer to silicide the first polysilicon layer. Any un-reacted metal layer is thereafter removed and source and drain regions are formed on opposite sides of the fin.
    Type: Grant
    Filed: December 15, 2009
    Date of Patent: February 14, 2012
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Shun Wu Lin, Peng-Soon Lim, Matt Yeh, Ouyang Hui
  • Patent number: 8114723
    Abstract: A structure, memory devices using the structure, and methods of fabricating the structure. The structure includes: an array of nano-fins, each nano-fin comprising an elongated block of semiconductor material extending axially along a first direction, the nano-fins arranged in groups of at least two nano-fins each, wherein ends of nano-fins of each adjacent group of nano-fins are staggered with respect to each other on both a first and a second side of the array; wherein nano-fins of each group of nano-fins are electrically connected to a common contact that is specific to each group of nano-fins such that the common contacts comprise a first common contact on the first side of the array and a second common contact on the second side of the array; and wherein each group of nano-fins has at least two gates that electrically control the conductance of nano-fins of the each group of nano-fins.
    Type: Grant
    Filed: June 7, 2010
    Date of Patent: February 14, 2012
    Assignee: International Business Machines Corporation
    Inventors: Kailash Gopalakrishnan, Rohit Sudhir Shenoy
  • Publication number: 20120032732
    Abstract: A method for making an integrated circuit includes at least a tri-gate FinFET and a dual-gate FinFET. The method includes providing a semiconductor on insulator (SOI) substrate. The method also includes implanting impurities into the substrate for adjusting a threshold voltage. The method provides a nitride film overlying a surface region of the substrate and selectively etches the silicon nitride film to form a nitride cap region. The method etches the silicon layer to form a first and a second silicon fin regions. The nitride cap region is maintained on a portion of a surface region of the first silicon fin region. The method includes forming a gate dielectric, depositing a polysilicon film, and planarizing the polysilicon film by chemical mechanical polishing (CMP) using the nitride cap region as a polish stop. The method etches the polysilicon film to form gate electrodes. The method forms elevated source and drain regions.
    Type: Application
    Filed: January 6, 2011
    Publication date: February 9, 2012
    Applicant: Semiconductor Manufacturing International (Shanghai) Corporation
    Inventors: DeYuan Xiao, Guo Qing Chen, Roger Lee
  • Publication number: 20120034744
    Abstract: A highly responsive semiconductor device in which the subthreshold swing (S value) is small and reduction in on-current is suppressed is manufactured. A semiconductor layer in which a thickness of a source region or a drain region is larger than that of a channel formation region is formed. A semiconductor layer having a concavo-convex shape which is included in the semiconductor device is formed by the steps of forming a first semiconductor layer over a substrate; forming a first insulating layer and a conductive layer over the first semiconductor layer; forming a second insulating layer over a side surface of the conductive layer; forming a second semiconductor layer over the first insulating layer, the conductive layer and the second insulating layer; etching the second semiconductor layer using a resist formed partially as a mask; and performing heat treatment to the first semiconductor layer and the second semiconductor layer.
    Type: Application
    Filed: October 20, 2011
    Publication date: February 9, 2012
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventor: Hideto Ohnuma
  • Patent number: 8110455
    Abstract: A method of manufacturing a semiconductor device (1200), the method comprising forming a sacrificial pattern having a recess on a substrate (402), filling the recess and covering the substrate and the sacrificial pattern with a semiconductor structure, forming an annular trench in the semiconductor structure to expose a portion of the sacrificial pattern and to separate material (904) of the semiconductor structure enclosed by the annular trench from material (906) of the semiconductor structure surrounding the annular trench, removing the exposed sacrificial pattern to expose material of the semiconductor structure filling the recess, and converting the exposed material of the semiconductor structure filling the recess into electrically insulting material (1202).
    Type: Grant
    Filed: January 26, 2009
    Date of Patent: February 7, 2012
    Assignee: NXP B.V.
    Inventor: Pierre Goarin
  • Patent number: 8106383
    Abstract: A graphene field effect transistor includes a gate stack, the gate stack including a seed layer, a gate oxide formed over the seed layer, and a gate metal formed over the gate oxide; an insulating layer; and a graphene sheet displaced between the seed layer and the insulating layer.
    Type: Grant
    Filed: November 13, 2009
    Date of Patent: January 31, 2012
    Assignee: International Business Machines Corporation
    Inventors: Keith A. Jenkins, Yu-Ming Lin, Alberto Valdes-Garcia
  • Patent number: 8101473
    Abstract: A process is provided for fabricating rounded three-dimensional germanium active channels for transistors and sensors. For forming sensors, the process comprises providing a crystalline silicon substrate; depositing an oxide mask on the crystalline silicon substrate; patterning the oxide mask with trenches to expose linear regions of the silicon substrate; epitaxially grow germanium selectively in the trenches, seeded from the silicon wafer; optionally etching the SiO2 mask partially, so that the cross section resembles a trapezoid on a stem; and annealing at an elevated temperature. The annealing process forms the rounded channel. For forming transistors, the process further comprises depositing and patterning a gate oxide and gate electrode onto this structure to form the gate stack of a MOSFET device; and after patterning the gate, implanting dopants into the source and drain located on the parts of the germanium cylinder on either side of the gate line.
    Type: Grant
    Filed: July 10, 2009
    Date of Patent: January 24, 2012
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Hans Cho, Theodore I Kamins, Nathaniel Quitoriano
  • Patent number: 8101945
    Abstract: A disclosed laminated structure includes a wettability variable layer containing a wettability variable material whose surface energy changes when energy is applied thereto and including at least a high surface energy area having high surface energy and a low surface energy area having low surface energy; and a conductive layer disposed on the high surface energy area. The conductive layer includes a first high surface energy area, a second high surface energy area smaller in width than the first high surface energy area, and a third high surface energy area smaller in width than the second high surface energy area. The first high surface energy area and the second high surface energy area are connected by the third high surface energy area.
    Type: Grant
    Filed: September 17, 2008
    Date of Patent: January 24, 2012
    Assignee: Ricoh Company, Ltd.
    Inventors: Atsushi Onodera, Hidenori Tomono
  • Patent number: 8101512
    Abstract: In a mesa isolation configuration for forming a transistor on a semiconductor island, an additional planarization step is performed to enhance the uniformity of the gate patterning process. In some illustrative embodiments, the gate electrode material may be planarized, for instance, on the basis of CMP, to compensate for the highly non-uniform surface topography, when the gate electrode material is formed above the non-filled isolation trenches. Consequently, significant advantages of the mesa isolation strategy may be combined with a high degree of scalability due to the enhancement of the critical gate patterning process.
    Type: Grant
    Filed: July 5, 2007
    Date of Patent: January 24, 2012
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Martin Gerhardt, Martin Trentzsch, Markus Forsberg, Manfred Horstmann
  • Patent number: 8101472
    Abstract: A method for manufacturing a TFT substrate in which a channel length can be stably formed while the number of masks is reduced. The method includes processing a gate of the n-type TFT, a gate of the p-type TFT, and an upper capacitor electrode by using a half-tone mask instead of some of normal masks to reduce the number of masks, and changing impurity concentrations of semiconductor films located in regions which become a channel of the n-type TFT, a source and a drain of the n-type TFT, a channel of the p-type TFT, a source and a drain of the p-type TFT, and an lower capacitor electrode, by using a pattern of the half-tone mask and a normal mask.
    Type: Grant
    Filed: October 15, 2008
    Date of Patent: January 24, 2012
    Assignees: Hitachi Displays, Ltd., Panasonic Liquid Crystal Display Co., Ltd.
    Inventors: Takeshi Sato, Yoshiaki Toyota
  • Patent number: 8089126
    Abstract: Methods and structures for improving substrate loss and linearity in SOI substrates. The methods include forming damaged crystal structure regions under the buried oxide layer of SOI substrates and the structures included damaged crystal structure regions under the buried oxide layer of the SOI substrate.
    Type: Grant
    Filed: July 22, 2009
    Date of Patent: January 3, 2012
    Assignee: International Business Machines Corporation
    Inventors: Alan Bernard Botula, David S. Collins, Alvin Jose Joseph, Howard Smith Landis, James Albert Slinkman, Anthony K. Stamper
  • Publication number: 20110316061
    Abstract: Semiconductor structures and methods to control bottom corner threshold in a silicon-on-insulator (SOI) device. A method includes doping a corner region of a semiconductor-on-insulator (SOI) island. The doping includes tailoring a localized doping of the corner region to reduce capacitive coupling of the SOI island with an adjacent structure.
    Type: Application
    Filed: June 24, 2010
    Publication date: December 29, 2011
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Joseph ERVIN, Jeffrey B. JOHNSON, Kevin MCSTAY, Paul C. PARRIES, Chengwen PEI, Geng WANG, Yanli ZHANG
  • Patent number: 8084305
    Abstract: A semiconductor device comprises a semiconductor mesa overlying a dielectric layer, a gate stack formed overlying the semiconductor mesa, and an isolation spacer formed surrounding the semiconductor mesa and filling any undercut region at edges of the semiconductor mesa.
    Type: Grant
    Filed: February 25, 2008
    Date of Patent: December 27, 2011
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chih-Hsin Ko, Wen-Chin Lee, Yee-Chia Yeo, Chung-Hu Ke
  • Patent number: 8084310
    Abstract: Embodiments of the present invention pertain to methods of forming patterned features on a substrate having a reduced pitch in two dimensions as compared to what is possible using standard photolithography processing techniques using a single high-resolution photomask. A spacer layer is formed over a two-dimensional square grid of cores with a thickness chosen to leave a dimple at the center of four cores on the corners of a square. The spacer layer is etched back to reveal the substrate at the centers of the square. Removing the core material results in double the pattern density of the lithographically defined grid of cores. The regions of exposed substrate may be filled again with core material and the process repeated to quadruple the pattern density.
    Type: Grant
    Filed: October 21, 2009
    Date of Patent: December 27, 2011
    Assignee: Applied Materials, Inc.
    Inventors: Bencherki Mebarki, Li Yan Miao, Christopher Dennis Bencher, Jen Shu
  • Patent number: 8080485
    Abstract: A method of forming a semiconductor structure comprises providing a substrate and forming an insulator layer on the substrate. A first film is formed on the insulator layer. Thus, the first film can correspond to a device region of the semiconductor structure. A second film, comprising a second material that is different from the first material, is also formed on the insulator layer adjacent to the first film. The second material can comprise an isolation material (e.g., an oxide and/or nitride material) and can, for example comprise the same dielectric material as the insulator layer (e.g., silicon dioxide). The second film can correspond to an isolation region (e.g., a shallow trench isolation region) of the semiconductor structure. The second film is specifically formed with a first section having a first thickness and a second section having a second thickness that is different from the first thickness.
    Type: Grant
    Filed: March 8, 2010
    Date of Patent: December 20, 2011
    Assignee: International Business Machines Corporation
    Inventors: Brent A. Anderson, Edward J. Nowak
  • Patent number: 8071447
    Abstract: A semiconductor device manufacturing method includes removing an insulating film on a semiconductor substrate by etching and subsequently oxidizing a surface of the substrate by using a liquid oxidation agent without exposing this surface to an atmosphere, thereby forming a first insulating film containing an oxide of a constituent element of the substrate on the surface of the substrate; forming a second insulating film containing an aluminum oxide on the first insulating film; forming a third insulating film containing a rare earth oxide on the second insulating film; forming a high-k insulating film on the third insulating film; introducing nitrogen into the high-k insulating film to thereby make it a fourth insulating film; and conducting heat treatment to change the first through third insulating films into an insulating film made of a mixture containing aluminum, a rare earth element, the constituent element of the substrate, and oxygen.
    Type: Grant
    Filed: February 11, 2010
    Date of Patent: December 6, 2011
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Seiji Inumiya, Tomonori Aoyama
  • Patent number: 8062939
    Abstract: A semiconductor storage element includes: a semiconductor layer constituted of a line pattern with a predetermined width formed on a substrate; a quantum dot forming an electric charge storage layer formed on the semiconductor layer through a first insulating film serving as a tunnel insulating film; an impurity diffusion layer formed in a surface layer of the semiconductor layer so as to sandwich the quantum dot therebetween; and a control electrode formed on the quantum dot through a second insulating film.
    Type: Grant
    Filed: February 18, 2011
    Date of Patent: November 22, 2011
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Kenji Kawabata
  • Publication number: 20110272762
    Abstract: A node dielectric and a conductive trench fill region filling a deep trench are recessed to a depth that is substantially coplanar with a top surface of a semiconductor-on-insulator (SOI) layer. A shallow trench isolation portion is formed on one side of an upper portion of the deep trench, while the other side of the upper portion of the deep trench provides an exposed surface of a semiconductor material of the conductive fill region. A selective epitaxy process is performed to deposit a raised source region and a raised strap region. The raised source region is formed directly on a planar source region within the SOI layer, and the raised strap region is formed directly on the conductive fill region. The raised strap region contacts the raised source region to provide an electrically conductive path between the planar source region and the conductive fill region.
    Type: Application
    Filed: May 10, 2010
    Publication date: November 10, 2011
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Roger A. Booth, JR., Kangguo Cheng, Joseph Ervin, Ali Khakifirooz, Chengwen Pei, Ravi M. Todi, Geng Wang
  • Publication number: 20110272696
    Abstract: A thin film transistor panel includes a substrate, a light blocking layer on the substrate, a first protective film on the light blocking layer, a first electrode and a second electrode on the first protective film, an oxide semiconductor layer on a portion of the first protective film exposed between the first electrode and the second electrode, an insulating layer, a third electrode overlapping with the oxide semiconductor layer and on the insulating layer, and a fourth electrode on the insulating layer. The light blocking layer includes first sidewalls, and the first protective film includes second sidewalls. The first and the second sidewalls are disposed along substantially the same line.
    Type: Application
    Filed: April 22, 2011
    Publication date: November 10, 2011
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Hye-Young RYU, Jin-Won LEE, Woo-Geun LEE, Hee-Jun BYEON, Xun ZHU