Semiconductor Islands Formed Upon Insulating Substrate Or Layer (e.g., Mesa Formation, Etc.) Patents (Class 438/164)
  • Patent number: 8389995
    Abstract: A method for producing a solid-state semiconducting structure, includes steps in which: (i) a monocrystalline substrate is provided; (ii) a monocrystalline oxide layer is formed, by epitaxial growth, on the substrate; (iii) a bonding layer is formed by steps in which: (a) the impurities are removed from the surface of the monocrystalline oxide layer; (b) a semiconducting bonding layer is deposited by slow epitaxial growth; and (iv) a monocrystalline semiconducting layer is formed, by epitaxial growth, on the bonding layer so formed. The solid-state semiconducting heterostructures so obtained are also described.
    Type: Grant
    Filed: September 17, 2008
    Date of Patent: March 5, 2013
    Assignee: Centre National de la Recherche Scientifique (C.N.R.S.)
    Inventors: Guillaume Saint-Girons, Ludovic Largeau, Gilles Patriarche, Philippe Regreny, Guy Hollinger
  • Patent number: 8384142
    Abstract: Methods for fabricating a non-planar transistor. Fin field effect transistors (finFETs) are often built around a fin (e.g., a tall, thin semiconductive member). During manufacturing, a fin may encounter various mechanical stresses, e.g., inertial forces during movement of the substrate and fluid forces during cleaning steps. If the forces on the fin are too large, the fin may fracture and possibly render a transistor inoperative. Supporting one side of a fin before forming the second side of a fin creates stability in the fin structure, thereby counteracting many of the mechanical stresses incurred during manufacturing.
    Type: Grant
    Filed: July 28, 2011
    Date of Patent: February 26, 2013
    Assignee: Micron Technology, Inc.
    Inventor: Werner Juengling
  • Publication number: 20130037798
    Abstract: A thin-film transistor with a fluorinated channel and fluorinated source and drain regions and methods of fabrication are provided. The thin-film transistor includes: a substrate; a semiconductor active layer of fluorine-doped metal-oxide formed on the substrate; fluorine-doped source and drain regions disposed adjacent to the semiconductor active layer; a gate electrode disposed over the semiconductor active layer, configured to induce a continuous conduction channel between the source and drain regions; and a gate dielectric material separating the gate electrode and the channel.
    Type: Application
    Filed: August 10, 2012
    Publication date: February 14, 2013
    Applicant: THE HONG KONG UNIVERSITY OF SCIENCE AND TECHNOLOGY
    Inventors: Man WONG, Hoi Sing KWOK, Zhi YE
  • Patent number: 8363995
    Abstract: A set of planar, two-dimensional optical devices is able to be created in a sub-micron surface layer of an SOI structure, or within a sub-micron thick combination of an SOI surface layer and an overlying polysilicon layer. Conventional masking/etching techniques may be used to form a variety of passive and optical devices in this SOI platform. Various regions of the devices may be doped to form the active device structures. Additionally, the polysilicon layer may be separately patterned to provide a region of effective mode index change for a propagating optical signal.
    Type: Grant
    Filed: March 8, 2011
    Date of Patent: January 29, 2013
    Inventors: Prakash Gothoskar, Margaret Ghiron, Robert Keith Montgomery, Vipulkumar Patel, Kalpendu Shastri, Soham Pathak, Katherine A. Yanushefski
  • Patent number: 8357570
    Abstract: A method for fabricating a pixel structure includes providing a substrate having a pixel area. A first metal layer, a gate insulator and a semiconductor layer are formed on the substrate and patterned by using a first half-tone mask or a gray-tone mask to form a transistor pattern, a lower capacitance pattern and a lower circuit pattern. Next, a dielectric layer and an electrode layer both covering the three patterns are sequentially formed and patterned to expose a part of the lower circuit pattern, a part of the lower capacitance pattern and a source/drain region of the transistor pattern. A second metal layer formed on the electrode layer and the electrode layer are patterned by using a second half-tone mask or the gray-tone mask to form an upper circuit pattern, a source/drain pattern and an upper capacitance pattern. A portion of the electrode layer constructs a pixel electrode.
    Type: Grant
    Filed: March 21, 2011
    Date of Patent: January 22, 2013
    Assignee: Au Optronics Corporation
    Inventor: Yu-Cheng Chen
  • Publication number: 20130009161
    Abstract: There is provided a method of manufacturing a semiconductor device including: forming a gate electrode on a substrate ; forming a gate insulating layer of which a recessed portion is formed in a region in which a channel formation region is to be formed, on the substrate and the gate electrode; forming the channel formation region including an organic semiconductor material within the recessed portion based on a coating method; and forming source/drain electrodes on portions of the channel formation region from on the gate insulating layer.
    Type: Application
    Filed: June 22, 2012
    Publication date: January 10, 2013
    Applicant: SONY CORPORATION
    Inventor: Kazuo Himori
  • Publication number: 20130011977
    Abstract: Floating body cell structures including an array of floating body cells disposed on a back gate and source regions and drain regions of the floating body cells spaced apart from the back gate. The floating body cells may each include a volume of semiconductive material having a channel region extending between pillars, which may be separated by a void, such as a U-shaped trench. The floating body cells of the array may be electrically coupled to another gate, which may be disposed on sidewalls of the volume of semiconductive material or within the void therein. Methods of forming the floating body cell devices are also disclosed.
    Type: Application
    Filed: September 11, 2012
    Publication date: January 10, 2013
    Applicant: MICRON TECHNOLOGY, INC.
    Inventors: Sanh D. Tang, John K. Zahurak, Werner Juengling
  • Publication number: 20130011978
    Abstract: Some embodiments include DRAM having transistor gates extending partially over SOI, and methods of forming such DRAM. Unit cells of the DRAM may be within active region pedestals, and in some embodiments the unit cells may comprise capacitors having storage nodes in direct contact with sidewalls of the active region pedestals. Some embodiments include 0C1T memory having transistor gates entirely over SOI, and methods of forming such 0C1T memory.
    Type: Application
    Filed: September 12, 2012
    Publication date: January 10, 2013
    Applicant: Micro Technology, Inc.
    Inventor: Kunal R. Parekh
  • Patent number: 8349719
    Abstract: A semiconductor device and a method for fabricating the same. A plurality of gate patterns are formed over a first-conductivity type silicon layer of a silicon-on-insulator semiconductor substrate including a buried insulation layer, so as to be separated from each other. A plurality of silicon bodies are formed under the gate patterns, by removing a portion of the first-conductivity type silicon layer exposed between the gate patterns. A plurality of polysilicon spacers are formed over a sidewall of the silicon bodies, and each contains a second-conductivity type dopant. A contact plug is electrically connected to at least one of the polysilicon spacers.
    Type: Grant
    Filed: May 3, 2010
    Date of Patent: January 8, 2013
    Assignee: SK Hynix Inc.
    Inventor: Tae Su Jang
  • Patent number: 8344453
    Abstract: A method of forming a localized SOI structure in a substrate (10) wherein a trench (18) is formed in the substrate, and a dielectric layer (20) is formed on the base of the trench (18). The trench is filled with semiconductor material (22) by means of epitaxial growth.
    Type: Grant
    Filed: October 14, 2008
    Date of Patent: January 1, 2013
    Assignee: NXP B.V.
    Inventor: Markus Gerhard Andreas Muller
  • Patent number: 8343788
    Abstract: A method of fabricating a light emitting device comprising: providing a substrate; forming an epitaxial stack on the substrate wherein the epitaxial stack comprising a first conductivity semiconductor layer, an active layer and a second conductivity semiconductor layer; forming a mesa on the epitaxial stack to expose partial of the first conductivity semiconductor layer; and etching the surface of the first conductivity semiconductor layer and forming a least one rough structure on the surface of the first conductivity semiconductor layer wherein the first conductivity semiconductor layer is sandwiched by the substrate and the active layer.
    Type: Grant
    Filed: April 19, 2011
    Date of Patent: January 1, 2013
    Assignee: Epistar Corporation
    Inventors: De-Shan Kuo, Ting-Chia Ko, Chun-Hsiang Tu
  • Patent number: 8338909
    Abstract: A method of forming an integrated circuit structure includes providing a semiconductor substrate; forming a first isolation region in the semiconductor substrate; after the step of forming the first isolation region, forming a metal-oxide-semiconductor (MOS) device at a surface of the semiconductor substrate, wherein the step of forming the MOS device comprises forming a source/drain region; and after the step of forming the MOS device, forming a second isolation region in the semiconductor substrate.
    Type: Grant
    Filed: October 22, 2010
    Date of Patent: December 25, 2012
    Assignee: Taiwan Semiconductor Manufactuirng Company, Ltd.
    Inventor: Ka-Hing Fung
  • Patent number: 8334177
    Abstract: Methods are provided for fabricating a semiconductor device. A method comprises forming a layer of a first semiconductor material overlying the bulk substrate and forming a layer of a second semiconductor material overlying the layer of the first semiconductor material. The method further comprises creating a fin pattern mask on the layer of the second semiconductor material and anisotropically etching the layer of the second semiconductor material and the layer of the first semiconductor material using the fin pattern mask as an etch mask. The anisotropic etching results in a fin formed from the second semiconductor material and an exposed region of first semiconductor material underlying the fin. The method further comprises forming an isolation layer in the exposed region of first semiconductor material underlying the fin.
    Type: Grant
    Filed: October 20, 2011
    Date of Patent: December 18, 2012
    Assignee: GLOBALFOUNDRIES, Inc.
    Inventors: Witold Maszara, Hemant Adhikari
  • Patent number: 8329521
    Abstract: A method includes providing a substrate having a first surface, forming an isolation structure disposed partly in the substrate and having an second surface higher than the first surface by a step height, removing a portion of the isolation structure to form a recess therein having a bottom surface spaced from the first surface by less than the step height, forming a gate structure, and forming a contact engaging the gate structure over the recess. A different aspect involves an apparatus that includes a substrate having a first surface, an isolation structure disposed partly in the substrate and having a second surface higher than the first surface by a step height, a recess extending downwardly from the second surface, the recess having a bottom surface spaced from the first surface by less than the step height, a gate structure, and a contact engaging the gate structure over the recess.
    Type: Grant
    Filed: July 2, 2010
    Date of Patent: December 11, 2012
    Assignee: Taiwan Semiconductor Manufacturing Company. Ltd.
    Inventors: Harry Hak-Lay Chuang, Bao-Ru Young, Sheng-Chen Chung, Kai-Shyang You, Jin-Aun Ng, Wei Cheng Wu, Ming Zhu
  • Patent number: 8324685
    Abstract: A fin-semiconductor region (13) is formed on a substrate (11). A first impurity which produces a donor level or an acceptor level in a semiconductor is introduced in an upper portion and side portions of the fin-semiconductor region (13), and oxygen or nitrogen is further introduced as a second impurity in the upper portion and side portions of the fin-semiconductor region (13).
    Type: Grant
    Filed: January 20, 2010
    Date of Patent: December 4, 2012
    Assignee: Panasonic Corporation
    Inventors: Tomohiro Okumura, Takayuki Kai, Yuichiro Sasaki
  • Patent number: 8324032
    Abstract: Formation of LDD structures and GOLD structures in a semiconductor device is conventionally performed in a self aligning manner with gate electrodes as masks, but there are many cases in which the gate electrodes have two layer structures, and film formation processes and etching processes become complex. Further, in order to perform formation of LDD structures and GOLD structures only by processes such as dry etching, the transistor structures all have the same structure, and it is difficult to form LDD structures, GOLD structures, and single drain structures separately for different circuits.
    Type: Grant
    Filed: June 3, 2011
    Date of Patent: December 4, 2012
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Hideto Ohnuma, Ichiro Uehara
  • Patent number: 8324036
    Abstract: A method for fabrication of features for an integrated circuit includes patterning a mandrel layer to include structures having at least one width on a surface of an integrated circuit device. Exposed sidewalls of the structures are reacted to integrally form a new compound in the sidewalls such that the new compound extends into the exposed sidewalls by a controlled amount to form pillars. One or more layers below the pillars are etched using the pillars as an etch mask to form features for an integrated circuit device.
    Type: Grant
    Filed: November 9, 2009
    Date of Patent: December 4, 2012
    Assignee: International Business Machines Corporation
    Inventors: Kangguo Cheng, Bruce B. Doris, Steven J. Holmes, Xuefeng Hua, Ying Zhang
  • Publication number: 20120302014
    Abstract: A method for fabricating a surrounding-gate silicon nanowire transistor with air sidewalls is provided. The method is compatible with the CMOS process; the introduced air sidewalls can reduce the parasitic capacitance effectively and increase the transient response characteristic of the device, thus being applicable to a high-performance logic circuit.
    Type: Application
    Filed: July 4, 2011
    Publication date: November 29, 2012
    Inventors: Ru Huang, Jing Zhuge, Jiewen Fan, Yujie Ai, Runsheng Wang, Xin Huang
  • Patent number: 8318553
    Abstract: Some embodiments relate to an apparatus that exhibits vertical diode activity to occur between a semiconductive body and an epitaxial film that is disposed over a doping region of the semiconductive body. Some embodiments include an apparatus that causes both vertical and lateral diode activity. Some embodiments include a gated vertical diode for a finned semiconductor apparatus. Process embodiments include the formation of vertical-diode apparatus.
    Type: Grant
    Filed: January 7, 2011
    Date of Patent: November 27, 2012
    Assignee: Infineon Technologies AG
    Inventors: Christian Russ, Christian Pacha, Snezana Jenei, Klaus Schruefer
  • Publication number: 20120292700
    Abstract: An extremely thin SOI MOSFET device on an SOI substrate is provided with a back gate layer on a Si substrate superimposed by a thin BOX layer; an extremely thin SOI layer (ETSOI) on top of the thin BOX layer; and an FET device on the ETSOI layer having a gate stack insulated by spacers. The thin BOX is formed under the ETSOI channel, and is provided with a thicker dielectric under source and drain to reduce the source/drain to back gate parasitic capacitance. The thicker dielectric portion is self-aligned with the gate. A void within the thicker dielectric portion is formed under the source/drain region. The back gate is determined by a region of semiconductor damaged by implantation, and the formation of an insulating layer by lateral etch and back filling with dielectric.
    Type: Application
    Filed: May 16, 2011
    Publication date: November 22, 2012
    Applicant: International Business Machines Corporation
    Inventors: Ali Khakifirooz, Kangguo Cheng, Bruce B. Doris
  • Patent number: 8314012
    Abstract: An SOI substrate having a single crystal semiconductor layer with high surface planarity is manufactured. A semiconductor substrate is doped with hydrogen, whereby a damaged region which contains large quantity of hydrogen is formed. After a single crystal semiconductor substrate and a supporting substrate are bonded together, the semiconductor substrate is heated, whereby the single crystal semiconductor substrate is separated in the damaged region. While a heated high-purity nitrogen gas is sprayed on a separation plane of the single crystal semiconductor layer separated from the single crystal semiconductor substrate, laser beam irradiation is performed. By irradiation with a laser beam, the single crystal semiconductor layer is melted, whereby planarity of the surface of the single crystal semiconductor layer is improved and re-single-crystallization is performed.
    Type: Grant
    Filed: September 15, 2010
    Date of Patent: November 20, 2012
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Shunpei Yamazaki
  • Patent number: 8309408
    Abstract: A method for fractionating particles includes flowing a fluid having particles therein along a first channel, applying acoustic radiation pressure to the fluid, focusing the particles within the fluid into a single file line, moving the particles in a flow rate, applying acoustic radiation pressure to the fluid for a second time, focusing the particles based on size and acoustic contrast, producing at least two fluid fractions of the particles, and collecting at least one of the fractions.
    Type: Grant
    Filed: September 26, 2008
    Date of Patent: November 13, 2012
    Assignee: Life Technologies Corporation
    Inventors: Michael D. Ward, Gregory Kaduchak
  • Patent number: 8304299
    Abstract: A thin film transistor array panel according to an exemplary embodiment of the present invention comprises a substrate, a gate line formed on the substrate, a gate insulating layer formed on the gate line, a semiconductor layer formed on the gate insulating layer, and a data line formed on the semiconductor layer, wherein the data line comprises a lower data layer, an upper data layer, a data oxide layer, and a buffer layer, wherein the upper data layer and the buffer layer comprise a same material.
    Type: Grant
    Filed: June 23, 2010
    Date of Patent: November 6, 2012
    Assignee: Samsung Display Co., Ltd.
    Inventors: Sung-Ryul Kim, Jean-Ho Song, Jae-Hyoung Youn, O-Sung Seo, Byeong-Beom Kim, Je-Hyeong Park, Jong-In Kim, Jae-Jin Song
  • Patent number: 8293594
    Abstract: An object is to improve the aperture ratio of a semiconductor device. The semiconductor device includes a driver circuit portion and a display portion (also referred to as a pixel portion) over the same substrate. The driver circuit includes a channel-etched thin film transistor for driver circuit and a driver circuit wiring formed using metal. Source and drain electrodes of the thin film transistor for the driver circuit are formed using a metal. A channel layer of the thin film transistor for the driver circuit is formed using an oxide semiconductor. The display portion includes a bottom-contact thin film transistor for a pixel and a display portion wiring formed using an oxide conductor. Source and drain electrode layers of the thin film transistor for the pixel are formed using an oxide conductor. A semiconductor layer of the thin film transistor for the pixel is formed using an oxide semiconductor.
    Type: Grant
    Filed: July 14, 2010
    Date of Patent: October 23, 2012
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Junichiro Sakata, Hiroyuki Miyake, Hideaki Kuwabara, Hideki Uochi
  • Patent number: 8294213
    Abstract: A semiconductor photodiode device includes a semiconductor substrate, a first buffer layer containing a material different from that of the semiconductor substrate in a portion thereof, a first semiconductor layer formed above the buffer layer and having a lattice constant different from that of the semiconductor substrate, a second buffer layer formed above the first semiconductor layer and containing an element identical with that of the first semiconductor layer in a portion thereof, and a second semiconductor layer formed above the buffer layer in which a portion of the first semiconductor layer is formed of a plurality of island shape portions each surrounded with an insulating film, and the second buffer layer allows adjacent islands of the first semiconductor layer to coalesce with each other and is in contact with the insulating film.
    Type: Grant
    Filed: July 17, 2010
    Date of Patent: October 23, 2012
    Assignee: Hitachi, Ltd.
    Inventors: Makoto Miura, Shinichi Saito, Youngkun Lee, Katsuya Oda
  • Patent number: 8293595
    Abstract: In an active matrix display device, electric characteristics of thin film transistors included in a circuit are important, and performance of the display device depends on the electric characteristics. Thus, by using an oxide semiconductor film including In, Ga, and Zn for an inverted staggered thin film transistor, variation in electric characteristics of the thin film transistor can be reduced. Three layers of a gate insulating film, an oxide semiconductor layer and a channel protective layer are successively formed by a sputtering method without being exposed to air. Further, in the oxide semiconductor layer, the thickness of a region overlapping with the channel protective film is larger than that of a region in contact with a conductive film.
    Type: Grant
    Filed: July 29, 2009
    Date of Patent: October 23, 2012
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Hidekazu Miyairi, Kengo Akimoto, Kojiro Shiraishi
  • Patent number: 8293626
    Abstract: It is an object to provide a homogeneous semiconductor film in which variation in the size of crystal grains is reduced. Alternatively, it is an object to provide a homogeneous semiconductor film and to achieve cost reduction. By introducing a glass substrate over which an amorphous semiconductor film is formed into a treatment atmosphere set at more than or equal to a temperature that is needed for crystallization, rapid heating due to heat conduction from the treatment atmosphere is performed so that the amorphous semiconductor film is crystallized. More specifically, for example, after the temperature of the treatment atmosphere is increased in advance to a temperature that is needed for crystallization, the substrate over which the semiconductor film is formed is put into the treatment atmosphere.
    Type: Grant
    Filed: September 2, 2009
    Date of Patent: October 23, 2012
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Hideto Ohnuma, Naoki Okuno
  • Patent number: 8288821
    Abstract: A structure, and a method for forming the same. The structure includes a semiconductor substrate which includes a top substrate surface, a buried dielectric layer on the top substrate surface, N active semiconductor regions on the buried dielectric layer, N active devices on the N active semiconductor regions, a plurality of dummy regions on the buried dielectric layer, a protection layer on the N active devices and the N active semiconductor regions, but not on the plurality of dummy regions. The N active devices comprise first active regions which comprise a first material. The plurality of dummy regions comprise first dummy regions which comprise the first material. A first pattern density of the first active regions and the first dummy regions is uniform across the structure. A trench in the buried dielectric layer such that side walls of the trench are aligned with the plurality of dummy regions.
    Type: Grant
    Filed: August 26, 2009
    Date of Patent: October 16, 2012
    Assignee: International Business Machines Corporation
    Inventors: Alan Bernard Botula, David S. Collins, Alvin Jose Joseph, Howard Smith Landis, James Albert Slinkman
  • Patent number: 8288216
    Abstract: A thin film transistor (TFT) and a method of fabricating the same are disclosed. The TFT includes a substrate, a gate electrode disposed over the substrate, a gate insulating layer disposed over the gate electrode, a semiconductor layer disposed over the gate insulating layer and including a polycrystalline silicon (poly-Si) layer, an ohmic contact layer disposed over a predetermined region of the semiconductor layer, an insulating interlayer disposed over substantially an entire surface of the substrate including the ohmic contact layer, and source and drain electrodes electrically connected to the ohmic contact layer through contact holes formed in the interlayer insulating layer. A barrier layer is interposed between the semiconductor layer and the ohmic contact layer. Thus, when an off-current of a bottom-gate-type TFT is controlled, degradation of characteristics due to a leakage current may be prevented using a simple process.
    Type: Grant
    Filed: April 2, 2010
    Date of Patent: October 16, 2012
    Assignee: Samsung Mobile Display Co., Ltd.
    Inventors: Jin-Hee Kang, Chun-Gi You, Sun Park, Jong-Hyun Park, Yul-Kyu Lee
  • Patent number: 8288215
    Abstract: A single crystal semiconductor substrate including an embrittlement layer is attached to a base substrate with an insulating layer interposed therebetween, and the single crystal semiconductor layer is separated at the embrittlement layer by heat treatment; accordingly, a single crystal semiconductor layer is fixed over the base substrate. The single crystal semiconductor layer is irradiated with a laser beam so that the single crystal semiconductor layer is partially melted and then is re-single crystallized, whereby crystal defects are removed. In addition, an island-shaped single crystal semiconductor layer for forming an n-channel transistor is channel-doped using a photomask and then is etched back using the photomask so that the island-shaped single crystal semiconductor layer for forming an n-channel transistor is thinner than the island-shaped single crystal semiconductor layer for forming a p-channel transistor.
    Type: Grant
    Filed: March 23, 2011
    Date of Patent: October 16, 2012
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Hideto Ohnuma, Noritsugu Nomura
  • Patent number: 8283218
    Abstract: A production method of a semiconductor element having a channel includes forming a resist pattern film on a thin film formed on a substrate, and pattering the thin film by etching. The production method also includes forming a second resist pattern film by applying a fluid resist material inside a channel groove after channel etching or inside a resist groove formed above a channel region before channel etching. The production method may also include forming a gate electrode, a gate insulating film, a semiconductor film, and a conductive film on an insulating substrate. The method may include applying the fluid resist material inside the channel groove, thereby forming the second resist pattern film, and patterning the semiconductor film using at least the second resist pattern film.
    Type: Grant
    Filed: November 1, 2010
    Date of Patent: October 9, 2012
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Yuichi Saito, Takeshi Hara
  • Patent number: 8283215
    Abstract: A method for fabricating a light-emitting integrated device, comprises overlying three layers, wherein each of the three layers emits light at a different wavelength, and wherein the overlying comprises one of: performing an atomic species implantation, performing a laser lift-off, performing an etch-back, or chemical-mechanical polishing (CMP).
    Type: Grant
    Filed: October 13, 2010
    Date of Patent: October 9, 2012
    Assignee: MonolithIC 3D Inc.
    Inventors: Zvi Or-Bach, Deepak C. Sekar
  • Patent number: 8273637
    Abstract: Suppression of generation of a stripe pattern (unevenness) when an SOI substrate is manufactured by a glass substrate and a single crystal semiconductor substrate bonded to each other. A single crystal semiconductor substrate is irradiated with ions so that a fragile region is formed in the single crystal semiconductor substrate; a depression or a projection is formed in a region of a surface of an insulating layer provided on the single crystal semiconductor substrate, the region corresponding to the periphery of the single crystal semiconductor substrate; the single crystal semiconductor substrate is bonded to a base substrate; thermal treatment is performed thereon to separate the single crystal semiconductor substrate at the fragile region, so that a single crystal semiconductor layer is formed over the base substrate; and the single crystal semiconductor layer in the region corresponding to the periphery is removed.
    Type: Grant
    Filed: May 12, 2011
    Date of Patent: September 25, 2012
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Kenichiro Makino
  • Patent number: 8273613
    Abstract: There is provided a method by which lightly doped drain (LDD) regions can be formed easily and at good yields in source/drain regions in thin film transistors possessing gate electrodes covered with an oxide covering. A lightly doped drain (LDD) region is formed by introducing an impurity into an island-shaped silicon film in a self-aligning manner, with a gate electrode serving as a mask. First, low-concentration impurity regions are formed in the island-shaped silicon film by using rotation-tilt ion implantation to effect ion doping from an oblique direction relative to the substrate. Low-concentration impurity regions are also formed below the gate electrode at this time. After that, an impurity at a high concentration is introduced normally to the substrate, so forming high-concentration impurity regions. In the above process, a low-concentration impurity region remains below the gate electrode and constitutes a lightly doped drain region.
    Type: Grant
    Filed: November 19, 2009
    Date of Patent: September 25, 2012
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Hongyong Zhang, Yasuhiko Takemura, Toshimitsu Konuma, Hideto Ohnuma, Naoaki Yamaguchi, Hideomi Suzawa, Hideki Uochi
  • Patent number: 8273615
    Abstract: A thin film transistor includes a substrate; a semiconductor layer disposed on the substrate, the semiconductor layer having a source region, a drain region, and a channel region between the source region and the drain region; a gate insulating layer disposed on the semiconductor layer and on the substrate; and a gate electrode disposed on the insulating layer over the channel region, wherein the semiconductor layer includes tapered edge portions with a taper angle defined between the tapered edge portions and a surface of the substrate is less than about 30 degrees.
    Type: Grant
    Filed: December 11, 2008
    Date of Patent: September 25, 2012
    Assignee: LG Display Co., Ltd.
    Inventors: Jae-Bum Park, Hyoung-Suk Jin
  • Patent number: 8263446
    Abstract: Asymmetric FET devices, and a method for fabricating such asymmetric devices on a fin structure is disclosed. The fabrication method includes disposing over the fin a high-k dielectric layer followed by a threshold-modifying layer, performing an ion bombardment at a tilted angle which removes the threshold-modifying layer over one of the fin's side-surfaces. The completed FET devices will be asymmetric due to the threshold-modifying layer being present only in one of two devices on the side of the fin. In an alternate embodiment further asymmetries are introduced, again using tilted ion implantation, resulting in differing gate-conductor materials for the two FinFET devices on each side of the fin.
    Type: Grant
    Filed: September 13, 2010
    Date of Patent: September 11, 2012
    Assignee: International Business Machines Corporation
    Inventors: Kangguo Cheng, Bruce B. Doris, Ying Zhang
  • Patent number: 8263448
    Abstract: A thin film transistor comprises a substrate; a semiconductor layer disposed on the substrate, the semiconductor layer having a source region, a drain region, and a channel region between the source region and the drain region; a gate insulating layer disposed on the semiconductor layer and on the substrate; a gate electrode disposed on the insulating layer over the channel region; an passivation layer disposed on the gate electrode and the gate insulating layer; a source electrode disposed in contact with upper, lower and side surfaces of the source region via a first contact hole through passivation layer, the gate insulating layer and the semiconductor layer; and a drain electrode disposed in contact with upper, lower and side surfaces of the drain region via a second contact hole through the passivation layer, the gate insulating layer and the semiconductor layer.
    Type: Grant
    Filed: February 8, 2011
    Date of Patent: September 11, 2012
    Assignee: LG Display Co., Ltd.
    Inventor: Jae-Bum Park
  • Patent number: 8263442
    Abstract: A thin film transistor substrate of horizontal electric field type liquid crystal display device includes: a gate line and a common line arranged in parallel on a substrate; a data line crossing the gate line and the common line to define a pixel area; a thin film transistor having a gate connected to the gate line and a source electrode connected to the data line; a common electrode extending from the common line into the pixel area; a protective film for covering a plurality of signal lines and electrodes and the thin film transistor; a pixel hole in the protective film having an elongated shape that parallels the common electrode; and a pixel electrode connected to a side surface of a drain electrode of the thin film transistor within the pixel hole.
    Type: Grant
    Filed: November 4, 2011
    Date of Patent: September 11, 2012
    Assignee: LG Display Co., Ltd.
    Inventors: Youn Gyoung Chang, Heung Lyul Cho
  • Patent number: 8260151
    Abstract: An integrated circuit die has a transistor circuitry section for implementing information handling operations. Optical circuitry is within the single semiconductor die. The optical circuitry includes a laser transmitter and is operably coupled to the transistor circuitry section. The transistor circuitry section originates information. The optical circuitry transmits the information in a laser beam through a wave guide to the edge of the integrated circuit die.
    Type: Grant
    Filed: April 18, 2008
    Date of Patent: September 4, 2012
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Perry H. Pelley, Dennis C. Hartman
  • Patent number: 8258024
    Abstract: The display device having a thin film transistor formed on a substrate including a display portion is provided. The thin film transistor including: a gate electrode; a gate insulating film formed so as to cover the gate electrode; a semiconductor laminated film formed on top the gate insulating film so as to extend over the gate electrode, the semiconductor laminated film being formed by laminating at least a polycrystalline semiconductor film and an amorphous semiconductor film, a first electrode and a second electrode disposed on top of the semiconductor laminated film so as to be opposed to each other across a region superposing the gate electrode. In the display device, the semiconductor laminated film is formed immediately below a wiring extending from the first electrode and immediately below a wiring extending from the second electrode.
    Type: Grant
    Filed: October 27, 2009
    Date of Patent: September 4, 2012
    Assignees: Hitachi Displays, Ltd., Panasonic Liquid Crystal Display Co., Ltd.
    Inventors: Mieko Matsumura, Mutsuko Hatano, Yoshiaki Toyota, Takuo Kaitoh
  • Patent number: 8252639
    Abstract: The present invention provides a thin film transistor array panel comprising: an insulating substrate; a gate line formed on the insulating substrate and having a gate electrode; a gate insulating layer formed on the gate line; a semiconductor formed on the gate insulating layer and overlapping the gate electrode; diffusion barriers formed on the semiconductor and containing nitrogen; a data line crossing the gate line and having a source electrode partially contacting the diffusion barriers; a drain electrode partially contacting the diffusion barriers and facing the source electrode on the gate electrode; and a pixel electrode electrically connected to the drain electrode.
    Type: Grant
    Filed: November 22, 2010
    Date of Patent: August 28, 2012
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Je-Hun Lee, Beom-Seok Cho, Chang-Oh Jeong, Joo-Han Kim
  • Patent number: 8252646
    Abstract: Methods are provided for simultaneously processing transistors in two different regions of an integrated circuit. Planar transistors are provided in a logic region while recessed access devices (RADs) are provided in an array region for a memory device. During gate stack patterning in the periphery, word lines are recessed within the trenches for the array RADs. Side wall spacer formation in the periphery simultaneously provides an insulating cap layer burying the word lines within the trenches of the array.
    Type: Grant
    Filed: April 11, 2011
    Date of Patent: August 28, 2012
    Assignee: Micron Technology, Inc.
    Inventors: Thomas Arthur Figura, Gordon A. Haller
  • Patent number: 8247276
    Abstract: In a thin film transistor, an increase in off current or negative shift of the threshold voltage is prevented. In the thin film transistor, a buffer layer is provided between an oxide semiconductor layer and each of a source electrode layer and a drain electrode layer. The buffer layer includes a metal oxide layer which is an insulator or a semiconductor over a middle portion of the oxide semiconductor layer. The metal oxide layer functions as a protective layer for suppressing incorporation of impurities into the oxide semiconductor layer. Therefore, in the thin film transistor, an increase in off current or negative shift of the threshold voltage can be prevented.
    Type: Grant
    Filed: February 3, 2010
    Date of Patent: August 21, 2012
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Toshikazu Kondo, Hideyuki Kishida
  • Patent number: 8241997
    Abstract: There is provided a method of removing trap levels and defects, which are caused by stress, from a single crystal silicon thin film formed by an SOI technique. First, a single crystal silicon film is formed by using a typical bonding SOI technique such as Smart-Cut or ELTRAN. Next, the single crystal silicon thin film is patterned to form an island-like silicon layer, and then, a thermal oxidation treatment is carried out in an oxidizing atmosphere containing a halogen element, so that an island-like silicon layer in which the trap levels and the defects are removed is obtained.
    Type: Grant
    Filed: July 10, 2008
    Date of Patent: August 14, 2012
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Shunpei Yamazaki
  • Patent number: 8236633
    Abstract: The present invention provides a method for manufacturing a semiconductor device, by which a transistor including an active layer, a gate insulating film in contact with the active layer, and a gate electrode overlapping the active layer with the gate insulating film therebetween is provided; an impurity is added to a part of a first region overlapped with the gate electrode with the gate insulating film therebetween in the active layer and a second region but the first region in the active layer by adding the impurity to the active layer from one oblique direction; and the second region is situated in the one direction relative to the first region.
    Type: Grant
    Filed: March 31, 2008
    Date of Patent: August 7, 2012
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Keiichi Sekiguchi, Junichi Koezuka, Yasuyuki Arai, Shunpei Yamazaki
  • Patent number: 8236634
    Abstract: Thin semiconductor regions and thick semiconductor regions are formed oven an insulator layer. Thick semiconductor regions include at least one semiconductor fin. A gate conductor layer is patterned to form disposable planar gate electrodes over ETSOI regions and disposable side gate electrodes on sidewalls of semiconductor fins. End portions of the semiconductor fins are vertically recessed to provide thinned fin portions adjacent to an unthinned fin center portion. After appropriate masking by dielectric layers, selective epitaxy is performed on planar source and drain regions of ETSOI field effect transistors (FETs) to form raised source and drain regions. Further, fin source and drain regions are grown on the thinned fin portions. Source and drain regions, fins, and the disposable gate electrodes are planarized. The disposable gate electrodes are replaced with metal gate electrodes. FinFETs and ETSOI FETs are provided on the same semiconductor substrate.
    Type: Grant
    Filed: March 17, 2011
    Date of Patent: August 7, 2012
    Assignee: International Business Machines Corporation
    Inventors: Narasimhulu Kanike, Kangguo Cheng, Ramachandra Divakaruni, Carl J. Radens
  • Patent number: 8232150
    Abstract: A semiconductor structure is described. The structure includes a semiconductor substrate having a conductive gate abutting a gate insulator for controlling conduction of a channel region; and a source region and a drain region associated with the conductive gate, where the source region includes a first material and the drain region includes a second material, and where the conductive gate is self-aligned to the first material and the second material. In one embodiment, the first material includes Si and the second material includes SiGe. A method of forming a semiconductor structure is also described.
    Type: Grant
    Filed: January 9, 2009
    Date of Patent: July 31, 2012
    Assignee: International Business Machines Corporation
    Inventors: Haining S. Yang, Kangguo Cheng, Robert Wong
  • Patent number: 8227304
    Abstract: Disclosed is a method of forming a semiconductor-on-insulator (SOI) structure on a bulk semiconductor starting wafer. Parallel semiconductor bodies are formed at the top surface of the wafer. An insulator layer is deposited and recessed. Exposed upper portions of the semiconductor bodies are used as seed material for growing epitaxial layers of semiconductor material laterally over the insulator layer, thereby creating a semiconductor layer. This semiconductor layer can be used to form one or more SOI devices (e.g., a single-fin or multi-fin MUGFET or multiple series-connected single-fin or multi-fin MUGFETs). However, placement of SOI device components in and/or on portions of the semiconductor layer should be predetermined to avoid locations which might impact device performance (e.g., placement of any FET gate on a semiconductor fin formed from the semiconductor layer can be predetermined to avoid interfaces between joined epitaxial semiconductor material sections).
    Type: Grant
    Filed: February 23, 2010
    Date of Patent: July 24, 2012
    Assignee: International Business Machines Corporation
    Inventors: Subramanian S. Iyer, Edward J. Nowak
  • Patent number: 8216914
    Abstract: An object is to provide a method for manufacturing an SOI substrate including a semiconductor film with high planarity and high crystallinity. After a single crystal semiconductor film is formed over an insulating film by a separation step, a natural oxide film existing on a surface of the semiconductor film is removed and the semiconductor film is irradiated with first laser light and second laser light under an inert gas atmosphere or a reduced-pressure atmosphere. The number of shots of the first laser light that is emitted to an arbitrary point in the semiconductor film is greater than or equal to 7, preferably greater than or equal to 10 and less than or equal to 100. The number of shots of the second laser light that is emitted to an arbitrary point in the semiconductor film is greater than 0 and less than or equal to 2.
    Type: Grant
    Filed: August 31, 2010
    Date of Patent: July 10, 2012
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Masaki Koyama, Kosei Nei, Toru Hasegawa, Junpei Momo, Eiji Higa
  • Patent number: 8211786
    Abstract: A semiconductor structure and a method for fabricating the semiconductor structure include a hybrid orientation substrate having a first active region having a first crystallographic orientation that is vertically separated from a second active region having a second crystallographic orientation different than the first crystallographic orientation. A first field effect device having a first gate electrode is located and formed within and upon the first active region and a second field effect device having a second gate electrode is located and formed within and upon the second active region. Upper surfaces of the first gate electrode and the second gate electrode are coplanar. The structure and method allow for avoidance of epitaxial defects generally encountered when using hybrid orientation technology substrates that include coplanar active regions.
    Type: Grant
    Filed: February 28, 2008
    Date of Patent: July 3, 2012
    Assignee: International Business Machines Corporation
    Inventor: Kangguo Cheng