Having Schottky Gate (e.g., Mesfet, Hemt, Etc.) Patents (Class 438/167)
-
Patent number: 8872235Abstract: An embodiment of a transistor device includes a compound semiconductor material on a semiconductor carrier and a source region and a drain region spaced apart from each other in the compound semiconductor material with a channel region interposed between the source and drain regions. A Schottky diode is integrated with the semiconductor carrier, and contacts extend from the source and drain regions through the compound semiconductor material. The contacts are in electrical contact with the Schottky diode so that the Schottky diode is connected in parallel between the source and drain regions. In another embodiment, the integrated Schottky diode is formed by a region of doped amorphous silicon or doped polycrystalline silicon disposed in a trench structure on the drain side of the device.Type: GrantFiled: February 23, 2012Date of Patent: October 28, 2014Assignee: Infineon Technologies Austria AGInventors: Gerhard Prechtl, Clemens Ostermaier, Oliver Häberlen
-
Patent number: 8866193Abstract: According to one disclosed embodiment, a monolithic vertically integrated composite device comprises a double sided semiconductor substrate having first and second sides, a group IV semiconductor layer formed over the first side and comprising at least one group IV semiconductor device, and a group III-V semiconductor body formed over the second side and comprising at least one group III-V semiconductor device electrically coupled to the at least one group IV semiconductor device. The composite device may further comprise a substrate via and/or a through-wafer via providing electric coupling. In one embodiment, the group IV semiconductor layer may comprise an epitaxial silicon layer, and the at least one group IV semiconductor device may be a combined FET and Schottky diode (FETKY) fabricated on the epitaxial silicon layer. In one embodiment, the at least one group semiconductor device may be a III-nitride high electron mobility transistor (HEMT).Type: GrantFiled: October 9, 2013Date of Patent: October 21, 2014Assignee: International Rectifier CorporationInventor: Michael A. Briere
-
Patent number: 8860087Abstract: The present invention relates to a nitride semiconductor device and a manufacturing method thereof. According to one aspect of the present invention, a nitride semiconductor device including: a nitride semiconductor layer having a 2DEG channel; a source electrode in ohmic contact with the nitride semiconductor layer; a drain electrode in ohmic contact with the nitride semiconductor layer; a plurality of p-type nitride semiconductor segments formed on the nitride semiconductor layer and each formed lengthways from a first sidewall thereof, which is spaced apart from the source electrode, to a drain side; and a gate electrode formed to be close to the source electrode and in contact with the nitride semiconductor layer between the plurality of p-type semiconductor segments and portions of the p-type semiconductor segments extending in the direction of a source-side sidewall of the gate electrode aligned with the first sidewalls of the p-type nitride semiconductor segments is provided.Type: GrantFiled: April 9, 2012Date of Patent: October 14, 2014Assignee: Samsung Electro-Mechanics Co., Ltd.Inventors: Young Hwan Park, Woo Chul Jeon, Ki Yeol Park, Seok Yoon Hong
-
Patent number: 8859354Abstract: A method is provided for fabricating a transistor. The method includes providing a semiconductor substrate, and forming a quantum well layer on the semiconductor substrate. The method also includes forming a potential energy barrier layer on the semiconductor substrate, and forming an isolation structure to isolate different transistor regions. Further, the method includes patterning the transistor region to form trenches by removing portions of the quantum well layer and the potential energy barrier layer corresponding to a source region and a drain region, and filling trenches with a semiconductor material to form a source and a drain. Further, the method also includes forming a gate structure on a portion of the quantum well layer and the potential energy barrier layer corresponding to a gate region.Type: GrantFiled: March 15, 2013Date of Patent: October 14, 2014Assignee: Semiconductor Manufacturing International CorpInventor: Deyuan Xiao
-
Publication number: 20140295628Abstract: A MOS P-N junction Schottky diode device includes a substrate having a first conductivity type, a field oxide structure defining a trench structure, a gate structure formed in the trench structure and a doped region having a second conductivity type adjacent to the gate structure in the substrate. An ohmic contact and a Schottky contact are formed at different sides of the gate structure. The method for manufacturing such diode device includes several ion-implanting steps to form several doped sub-regions with different implantation depths to constitute the doped regions. The formed MOS P-N junction Schottky diode device has low forward voltage drop, low reverse leakage current, fast reverse recovery time and high reverse voltage tolerance.Type: ApplicationFiled: June 19, 2014Publication date: October 2, 2014Inventor: Hung-Hsin Kuo
-
Patent number: 8841709Abstract: A disclosed semiconductor device includes a semiconductor deposition layer formed over an insulation structure and above a substrate. The device includes a gate formed over a contact region between first and second implant regions in the semiconductor deposition layer. The first and second implant regions both have a first conductivity type, and the gate has a second conductivity type. The device may further include a second gate formed beneath the semiconductor deposition layer.Type: GrantFiled: April 18, 2012Date of Patent: September 23, 2014Assignee: Macronix International Co., Ltd.Inventors: Wing Chor Chan, Chih Min Hu, Jeng Gong
-
Patent number: 8816408Abstract: A compound semiconductor device includes a compound semiconductor laminated structure; a source electrode, a drain electrode, and a gate electrode formed over the compound semiconductor laminated structure; a first protective film formed over the compound semiconductor laminated structure between the source electrode and the gate electrode and including silicon; and a second protective film formed over the compound semiconductor laminated structure between the drain electrode and the gate electrode and including more silicon than the first protective film.Type: GrantFiled: March 10, 2010Date of Patent: August 26, 2014Assignee: Fujitsu LimitedInventors: Kozo Makiyama, Toshihide Kikkawa
-
Patent number: 8815666Abstract: Provided is a power device. The power device may include a two-dimensional electron gas (2-DEG) layer in a portion corresponding to a gate electrode pattern since a second nitride layer is further formed on a lower portion of the gate electrode pattern after a first nitride layer is formed and thus, may be capable of performing a normally-OFF operation. Accordingly, the power device may adjust generation of the 2-DEG layer based on a voltage of a gate, and may reduce power consumption. The power device may regrow only the portion corresponding to the gate electrode pattern or may etch a portion excluding the portion corresponding to the gate electrode pattern and thus, a recess process may be omissible, a reproducibility of the power device may be secured, and a manufacturing process may be simplified.Type: GrantFiled: September 25, 2013Date of Patent: August 26, 2014Assignee: Samsung Electronics Co., Ltd.Inventor: Jae Hoon Lee
-
Patent number: 8809136Abstract: A semiconductor device having a source electrode and a drain electrode formed over a semiconductor substrate, a gate electrode formed over the semiconductor substrate and disposed between the source electrode and the drain electrode, a protection film made of an insulating material and formed between the source electrode and the gate electrode and between the drain electrode and the gate electrode, and a gate side opening formed at least in one of a portion of the protection film-between the source electrode and the gate electrode and a portion of the protection film between the drain electrode and the gate electrode and disposed away from all of the gate electrode, the source electrode and the drain electrode.Type: GrantFiled: September 2, 2011Date of Patent: August 19, 2014Assignee: Fujitsu LimitedInventor: Toshihiro Ohki
-
Patent number: 8796738Abstract: There are disclosed herein various implementations of a semiconductor structure and method. The semiconductor structure comprises a substrate, a transition body over the substrate, and a group III-V intermediate body having a bottom surface over the transition body. The semiconductor structure also includes a group III-V device layer over a top surface of the group III-V intermediate body. The group III-V intermediate body has a continuously reduced impurity concentration wherein a higher impurity concentration at the bottom surface is continuously reduced to a lower impurity concentration at the top surface.Type: GrantFiled: September 5, 2012Date of Patent: August 5, 2014Assignee: International Rectifier CorporationInventor: Michael A. Briere
-
Patent number: 8791504Abstract: A circuit structure includes a substrate, a nucleation layer of undoped aluminum nitride, a graded buffer layer comprising aluminum, gallium, nitrogen, one of silicon and oxygen, and a p-type conductivity dopant, a ungraded buffer layer comprising gallium, nitrogen, one of silicon and oxygen, and a p-type conductivity dopant without aluminum, and a bulk layer of undoped gallium nitride over the ungraded buffer layer. The various dopants in the graded buffer layer and the ungraded buffer layer increases resistivity and results in layers having an intrinsically balanced conductivity.Type: GrantFiled: October 20, 2011Date of Patent: July 29, 2014Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Chi-Ming Chen, Po-Chun Liu, Hung-Ta Lin, Chin-Cheng Chang, Chung-Yi Yu, Chia-Shiung Tsai, Ho-Yung David Hwang
-
Patent number: 8778747Abstract: Embodiments include but are not limited to apparatuses and systems including a buffer layer, a group III-V layer over the buffer layer, a source contact and a drain contact on the group III-V layer, and a regrown Schottky layer over the group III-V layer, and between the source and drain contacts. The embodiments further include methods for making the apparatuses and systems. Other embodiments may be described and claimed.Type: GrantFiled: May 25, 2011Date of Patent: July 15, 2014Assignee: TriQuint Semiconductor, Inc.Inventor: Edward A. Beam, III
-
Patent number: 8765554Abstract: A gate electrode is formed so as to embed an electrode material in a recess for an electrode, which has been formed in a structure of stacked compound semiconductors, through a gate insulation film, and also a field plate electrode that comes in Schottky contact with the structure of the stacked compound semiconductors is formed by embedding an electrode material in a recess for an electrode, which has been formed in the structure of the stacked compound semiconductors so that the field plate electrode directly comes in contact with the structure of the stacked compound semiconductors at least on the bottom face of the recess for the electrode.Type: GrantFiled: December 14, 2011Date of Patent: July 1, 2014Assignee: Fujitsu LimitedInventors: Tadahiro Imada, Toshihide Kikkawa
-
Patent number: 8759169Abstract: The invention relates to a method for producing silicon semiconductor wafers and components having layer structures of III-V layers for integrating III-V semiconductor components. The method employs SOI silicon semiconductor wafers having varying substrate orientations, and the III-V semiconductor layers are produced in trenches (28, 43, 70) produced by etching within certain regions (38, 39), which are electrically insulated from each other, of the active semiconductor layer (24, 42) by means of a cover layer or cover layers (29) using MOCVD methods.Type: GrantFiled: November 2, 2010Date of Patent: June 24, 2014Assignee: X—FAB Semiconductor Foundries AGInventors: Gabriel Kittler, Ralf Lerner
-
Patent number: 8748244Abstract: The present invention relates to fabrication of enhancement mode and depletion mode High Electron Mobility Field Effect Transistors on the same die separated by as little as 10 nm. The fabrication method uses selective decomposition and selective regrowth of the Barrier layer and the Cap layer to engineer the bandgap of a region on a die to form an enhancement mode region. In these regions zero or more devices may be fabricated.Type: GrantFiled: April 26, 2012Date of Patent: June 10, 2014Assignee: HRL Laboratories, LLCInventors: Andrea Corrion, Miroslav Micovic, Keisuke Shinohara, Peter J Willadsen, Shawn D Burnham, Hooman Kazemi, Paul B Hashimoto
-
Patent number: 8748268Abstract: Method for fabricating MOSFET integrated with Schottky diode (MOSFET/SKY) is disclosed. Gate trench is formed in an epitaxial layer overlaying semiconductor substrate, gate material is deposited therein. Body, source, dielectric regions are successively formed upon epitaxial layer and the gate trench. Top contact trench (TCT) is etched with vertical side walls defining Schottky diode cross-sectional width SDCW through dielectric and source region defining source-contact depth (SCD); and partially into body region by total body-contact depth (TBCD). A heavily-doped embedded body implant region (EBIR) of body-contact depth (BCD)<TBCD is created into side walls of TCT and beneath SCD. An embedded Shannon implant region (ESIR) is created into sub-contact trench zone (SCTZ) beneath TCT floor. A metal layer is formed in contact with ESIR, body and source region. The metal layer also fills TCT and covers dielectric region thus completing the MOSFET/SKY with only one-time etching of its TCT.Type: GrantFiled: December 20, 2012Date of Patent: June 10, 2014Assignee: Alpha to Omega Semiconductor, Inc.Inventors: Ji Pan, Daniel Ng, Sung-Shan Tai, Anup Bhalla
-
Patent number: 8748303Abstract: A method for fabricating a semiconductor device includes forming ohmic electrodes on a source region and a drain region of a nitride semiconductor layer, forming a low-resistance layer between an uppermost surface of the nitride semiconductor layer and the ohmic electrodes by annealing the nitride semiconductor layer, removing the ohmic electrodes from at least one of the source region and the drain region after forming the low-resistance layer, and forming at least one of a source electrode and a drain electrode on the low-resistance layer, the at least one of a source electrode and a drain electrode having an edge, a distance between the edge and a gate electrode is longer than a distance between an edge of the low-resistance layer and the gate electrode.Type: GrantFiled: July 20, 2011Date of Patent: June 10, 2014Assignee: Sumitomo Electric Industries, Ltd.Inventor: Shinya Mizuno
-
Patent number: 8748269Abstract: Quantum-well-based semiconductor devices and methods of forming quantum-well-based semiconductor devices are described. A method includes providing a hetero-structure disposed above a substrate and including a quantum-well channel region. The method also includes forming a source and drain material region above the quantum-well channel region. The method also includes forming a trench in the source and drain material region to provide a source region separated from a drain region. The method also includes forming a gate dielectric layer in the trench, between the source and drain regions; and forming a gate electrode in the trench, above the gate dielectric layer.Type: GrantFiled: August 16, 2013Date of Patent: June 10, 2014Assignee: Intel CorporationInventors: Gilbert Dewey, Marko Radosavljevic, Ravi Pillarisetty, Robert S. Chau, Matthew V. Metz
-
Publication number: 20140154847Abstract: A new method of electrophoretic nanotube deposition is proposed wherein individual nanotubes are placed on metal electrodes which have their length significantly exceeding their width, while the nanotube length is chosen to be close to that of the metal electrode. Due to electrostatic attraction of individual nanotube to the elongated electrode, every nanotube approaching the electrode is deposited along the electrode, since such an orientation is energetically favorable. This method offers opportunity to produce oriented arrays of individual nanotubes, which opens up a new technique for fabrication and mass production of nanotube-based devices and circuits. Several such devices are considered. These are MESFET- and MOSFET-like transistors and CMOS-like voltage inverter.Type: ApplicationFiled: December 3, 2012Publication date: June 5, 2014Applicant: Nano-Electronic and Photonic Devices and Circuits, LLCInventor: Alexander Kastalsky
-
Patent number: 8741705Abstract: A method of fabricating Group III-V semiconductor metal oxide semiconductor (MOS) and III-V MOS devices are described.Type: GrantFiled: June 28, 2013Date of Patent: June 3, 2014Assignee: Avago Technologies General IP (Singapore) Pte. Ltd.Inventors: Thomas Dungan, Phil Nikkel
-
Patent number: 8741701Abstract: A method of forming a semiconductor device includes forming a mandrel on top of a substrate; forming a first spacer adjacent to the mandrel on top of the substrate; forming a cut mask over the first spacer and the mandrel, such that the first spacer is partially exposed by the cut mask; partially removing the partially exposed first spacer; and etching the substrate to form a fin structure corresponding to the partially removed first spacer in the substrate.Type: GrantFiled: August 14, 2012Date of Patent: June 3, 2014Assignee: International Business Machines CorporationInventors: Kangguo Cheng, Bruce B. Doris, Ali Khakifirooz, Chun-Chen Yeh
-
Patent number: 8735940Abstract: There are provided a semiconductor device and a method for manufacturing the same.Type: GrantFiled: December 10, 2010Date of Patent: May 27, 2014Assignee: Samsung Electro-Mechanics Co., Ltd.Inventors: Woo Chul Jeon, Ki Yeol Park, Young Hwan Park, Jung Hee Lee
-
Patent number: 8728884Abstract: A method of fabricating a normally “off” GaN heterostructure field effect transistor having a source and a drain including depositing a passivation layer patterned to cover a channel region between a source and a drain, forming a first opening in the passivation layer, the first opening for defining a gate area in the channel region and the first opening having a first length dimension along a direction of current flow between the source and the drain, and implanting ions in an implant area within the gate area, wherein the implant area has a second length dimension along the direction of current flow shorter than the first length dimension.Type: GrantFiled: July 28, 2009Date of Patent: May 20, 2014Assignee: HRL Laboratories, LLCInventors: Tahir Hussain, Miroslav Micovic, Wah S. Wong, Shawn D. Burnham
-
Patent number: 8722474Abstract: Disclosed are a semiconductor device including a stepped gate electrode and a method of fabricating the semiconductor device. The semiconductor device according to an exemplary embodiment of the present disclosure includes: a semiconductor substrate having a structure including a plurality of epitaxial layers and including an under-cut region formed in a part of a Schottky layer in an upper most part thereof; a cap layer, a first nitride layer and a second nitride layer sequentially formed on the semiconductor substrate to form a stepped gate insulating layer pattern; and a stepped gate electrode formed by depositing a heat-resistant metal through the gate insulating layer pattern, wherein the under-cut region includes an air-cavity formed between the gate electrode and the Schottky layer.Type: GrantFiled: August 23, 2012Date of Patent: May 13, 2014Assignee: Electronics and Telecommunications Research InstituteInventors: Hyung Sup Yoon, Byoung-Gue Min, Jong Min Lee, Seong-Il Kim, Dong Min Kang, Ho Kyun Ahn, Jong-Won Lim, Jae Kyoung Mun, Eun Soo Nam
-
Patent number: 8709886Abstract: An HEMT includes, on an SiC substrate, a compound semiconductor layer, a silicon nitride (SiN) protective film having an opening and covering the compound semiconductor layer, and a gate electrode formed on the compound semiconductor layer so as to plug the opening. In the protective film, a projecting portion projecting from a side surface of the opening is formed at a lower layer portion 6a.Type: GrantFiled: July 23, 2012Date of Patent: April 29, 2014Assignee: Fujitsu LimitedInventors: Kozo Makiyama, Naoya Okamoto, Toshihiro Ohki, Yuichi Minoura, Shirou Ozaki, Toyoo Miyajima
-
Patent number: 8710551Abstract: The present invention discloses a high electron mobility transistor (HEMT) and a manufacturing method thereof. The HEMT includes a semiconductor layer, a barrier layer on the semiconductor layer, a piezoelectric layer on the barrier layer, a gate on the piezoelectric layer, and a source and a drain at two sides of the gate respectively, wherein each bandgap of the semiconductor layer, the barrier layer, and the piezoelectric layer partially but not entirely overlaps the other two bandgaps. The gate is formed for receiving a gate voltage. A two dimensional electron gas (2DEG) is formed in a portion of a junction between the semiconductor layer and the barrier layer but not below at least a portion of the piezoelectric layer, wherein the 2DEG is electrically connected to the source and the drain.Type: GrantFiled: August 29, 2012Date of Patent: April 29, 2014Assignee: Richtek Technology Corporation, R.O.C.Inventors: Chih-Fang Huang, Chien-Wei Chiu, Ting-Fu Chang, Tsung-Yu Yang, Tsung-Yi Huang
-
Patent number: 8698162Abstract: Gallium nitride (GaN) based semiconductor devices and methods of manufacturing the same. The GaN-based semiconductor device may include a heat dissipation substrate (that is, a thermal conductive substrate); a GaN-based multi-layer arranged on the heat dissipation substrate and having N-face polarity; and a heterostructure field effect transistor (HFET) or a Schottky electrode arranged on the GaN-based multi-layer. The HFET device may include a gate having a double recess structure. While such a GaN-based semiconductor device is being manufactured, a wafer bonding process and a laser lift-off process may be used.Type: GrantFiled: September 1, 2011Date of Patent: April 15, 2014Assignee: Samsung Electronics Co., Ltd.Inventors: Jae-hoon Lee, Ki-se Kim
-
Patent number: 8697505Abstract: A semiconductor structure is disclosed. The semiconductor structure includes a first layer. A second layer is disposed on the first layer and different from the first layer in composition. An interface is between the first layer and the second layer. A third layer is disposed on the second layer. A gate is disposed on the third layer. A source feature and a drain feature are disposed on opposite sides of the gate. Each of the source feature and the drain feature includes a corresponding metal feature at least partially embedded in the second and the third layer. A corresponding intermetallic compound underlies each metal feature. Each intermetallic compound contacts a carrier channel located at the interface.Type: GrantFiled: September 15, 2011Date of Patent: April 15, 2014Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Po-Chih Chen, Jiun-Lei Jerry Yu, Fu-Wei Yao, Chun-Wei Hsu, Fu-Chih Yang, Chun Lin Tsai
-
Patent number: 8698201Abstract: A method for fabricating a gate structure for a field effect transistor having a buffer layer on a substrate, a channel layer and a barrier layer over the channel layer includes forming a gate of a first dielectric, forming first sidewalls of a second dielectric on either side and adjacent to the gate, selectively etching into the buffer layer to form a mesa for the field effect transistor, depositing a dielectric layer over the mesa, planarizing the dielectric layer over the mesa to form a planarized surface such that a top of the gate, tops of the first sidewalls, and a top of the dielectric layer over the mesa are on the same planarized surface, depositing metal on the planzarized surface, annealing to form the gate into a metal silicided gate, and etching to remove excess non-silicided metal.Type: GrantFiled: August 15, 2013Date of Patent: April 15, 2014Assignee: HRL Laboratories, LLCInventors: Dean C. Regan, Keisuke Shinohara, Andrea Corrion, Ivan Milosavljevic, Miroslav Micovic, Peter J. Willadsen, Colleen M. Butler, Hector L. Bracamontes, Bruce T. Holden, David T. Chang
-
Publication number: 20140091315Abstract: A semiconductor device includes an electron transit layer formed on a substrate; an electron supply layer formed on the electron transit layer; a doping layer formed on the electron supply layer, the doping layer being formed with a nitride semiconductor in which an impurity element to become p-type and C are doped; a p-type layer formed on the doping layer, the p-type layer being formed with a nitride semiconductor in which the impurity element to become p-type is doped; a gate electrode formed on the p-type layer; and a source electrode and a drain electrode formed on the doping layer or the electron supply layer. The p-type layer is formed in an area immediately below the gate electrode, and a density of the C doped in the doping layer is greater than or equal to 1×1017 cm?3 and less than or equal to 1×1019 cm?3.Type: ApplicationFiled: July 16, 2013Publication date: April 3, 2014Inventor: Atsushi YAMADA
-
Publication number: 20140091308Abstract: Embodiments include high electron mobility transistors (HEMT). In embodiments, a gate electrode is spaced apart by different distances from a source and drain semiconductor region to provide high breakdown voltage and low on-state resistance. In embodiments, self-alignment techniques are applied to form a dielectric liner in trenches and over an intervening mandrel to independently define a gate length, gate-source length, and gate-drain length with a single masking operation. In embodiments, III-N HEMTs include fluorine doped semiconductor barrier layers for threshold voltage tuning and/or enhancement mode operation.Type: ApplicationFiled: September 28, 2012Publication date: April 3, 2014Inventors: Sansaptak DASGUPTA, Han Wui THEN, Marko RADOSAVLJEVIC, Niloy MUKHERJEE, Niti GOEL, Sanaz KABEHIE, Seung Hoon SUNG, Ravi PILLARISETTY, Robert S. CHAU
-
Patent number: 8680614Abstract: A split trench-gate MOSFET device and method for forming this device is disclosed. The device has a trench gate structure, comprising a shield electrode and two gate electrodes, wherein a substantial portion of shield electrode region is lower than the gate electrode region, and wherein a portion of the shield electrode region extends to the top surface between the two gate electrodes. The device further comprises a source metal layer, contacting to an initial layer, a well region, the shield electrode and a source region at the top surface, wherein the contact between the source metal layer and the initial layer forms a Schottky diode.Type: GrantFiled: June 12, 2012Date of Patent: March 25, 2014Assignee: Monolithic Power Systems, Inc.Inventors: Tiesheng Li, Rongyao Ma, Lei Zhang
-
Patent number: 8674372Abstract: A high electron mobility transistor includes a source, gate and drain, a first III-V semiconductor region having a two-dimensional electron gas (2DEG) which provides a first conductive channel controllable by the gate between the source and drain, and a second III-V semiconductor region below the first III-V semiconductor region and having a second conductive channel connected to the source or drain and not controllable by the gate. The first and second III-V semiconductor regions are spaced apart from one another by a region of the high electron mobility transistor having a different band gap than the first and second III-V semiconductor regions.Type: GrantFiled: August 19, 2011Date of Patent: March 18, 2014Assignee: Infineon Technologies Austria AGInventors: Gilberto Curatola, Oliver Häberlen
-
Patent number: 8658482Abstract: The compound semiconductor device comprises an i-GaN buffer layer 12 formed on an SiC substrate 10; an n-AlGaN electron supplying layer 16 formed on the i-GaN buffer layer 12; an n-GaN cap layer 18 formed on the n-AlGaN electron supplying layer 16; a source electrode 20 and a drain electrode 22 formed on the n-GaN cap layer 18; a gate electrode 26 formed on the n-GaN cap layer 18 between the source electrode 20 and the drain electrode 22; a first protection layer 24 formed on the n-GaN cap layer 18 between the source electrode 20 and the drain electrode 22; and a second protection layer 30 buried in an opening 28 formed in the first protection layer 24 between the gate electrode 26 and the drain electrode 22 down to the n-GaN cap layer 18 and formed of an insulation film different from the first protection layer.Type: GrantFiled: December 22, 2010Date of Patent: February 25, 2014Assignee: Fujitsu LimitedInventor: Toshihide Kikkawa
-
Patent number: 8653559Abstract: A field effect transistor (FET) includes source and drain electrodes, a channel layer, a barrier layer over the channel layer, a passivation layer covering the barrier layer for passivating the barrier layer, a gate electrode extending through the barrier layer and the passivation layer, and a gate dielectric surrounding a portion of the gate electrode that extends through the barrier layer and the passivation layer, wherein the passivation layer is a first material and the gate dielectric is a second material, and the first material is different than the second material.Type: GrantFiled: June 29, 2011Date of Patent: February 18, 2014Assignee: HRL Laboratories, LLCInventors: Andrea Corrion, Karim S. Boutros, Mary Y. Chen, Samuel J. Kim, Rongming Chu, Shawn D. Burnham
-
Patent number: 8653558Abstract: In some embodiments, a metal insulator semiconductor heterostructure field effect transistor (MISHFET) is disclosed that has a source, a drain, an insulation layer, a gate dielectric, and a gate. The source and drain are on opposing sides of a channel region of a channel layer. The channel region is an upper portion of the channel layer. The channel layer comprises gallium nitride. The insulation layer is over the channel layer and has a first portion and a second portion. The first portion is nearer the drain than the source and has a first thickness. The second portion is nearer the source than drain and has the first thickness. The insulation layer has an opening through the insulation layer. The opening is between the first portion and the second portion.Type: GrantFiled: October 14, 2011Date of Patent: February 18, 2014Assignee: Freescale Semiconductor, Inc.Inventors: Bruce M. Green, Jenn Hwa Huang, Weixiao Huang
-
Patent number: 8648354Abstract: Electronic field effect devices, and methods of manufacture of these electronic field effect devices are disclosed. In particular, there is disclosed an electronic field effect device which has improved electrical properties due to the formation of a highly mobile two-dimensional charge-carrier gas in a simple structure formed from diamond in combination with polar materials.Type: GrantFiled: December 20, 2012Date of Patent: February 11, 2014Assignee: Diamond Microwave Devices LimitedInventors: Christopher John Howard Wort, Geoffrey Alan Scarsbrook, Ian Friel, Richard Stuart Balmer
-
Patent number: 8647936Abstract: A method of fabricating a semiconductor device that includes forming a replacement gate structure on a portion of a semiconductor substrate, wherein source regions and drain regions are formed in opposing sides of the replacement gate structure. A dielectric is formed on the semiconductor substrate having an upper surface that is coplanar with an upper surface of the replacement gate structure. The replacement gate structure is removed to provide an opening to an exposed portion of the semiconductor substrate. A functional gate conductor is epitaxially grown within the opening in direct contact with the exposed portion of the semiconductor substrate. The method is applicable to planar metal oxide semiconductor field effect transistors (MOSFETs) and fin field effect transistors (finFETs).Type: GrantFiled: February 21, 2013Date of Patent: February 11, 2014Assignee: International Business Machines CorporationInventors: Tak H. Ning, Kangguo Cheng, Ali Khakifirooz, Pranita Kerber
-
Patent number: 8643062Abstract: A III-N device is described with a III-N layer, an electrode thereon, a passivation layer adjacent the III-N layer and electrode, a thick insulating layer adjacent the passivation layer and electrode, a high thermal conductivity carrier capable of transferring substantial heat away from the III-N device, and a bonding layer between the thick insulating layer and the carrier. The bonding layer attaches the thick insulating layer to the carrier. The thick insulating layer can have a precisely controlled thickness and be thermally conductive.Type: GrantFiled: February 2, 2011Date of Patent: February 4, 2014Assignee: Transphorm Inc.Inventors: Primit Parikh, Yuvaraj Dora, Yifeng Wu, Umesh Mishra, Nicholas Fichtenbaum, Rakesh K. Lal
-
Patent number: 8643085Abstract: A high-voltage-resistant semiconductor component (1) has vertically conductive semiconductor areas (17) and a trench structure (5). These vertically conductive semiconductor areas are formed from semiconductor body areas (10) of a first conductivity type and are surrounded by a trench structure (5) on the upper face (6) of the semiconductor component. For this purpose the trench structure has a base (7) and a wall area (8) and is filled with a material (9) with a relatively high dielectric constant (?r). The base area (7) of the trench structure (5) is provided with a heavily doped semiconductor material (11) of the same conductivity type as the lightly doped semiconductor body areas (17), and/or having a metallically conductive material (12).Type: GrantFiled: September 23, 2005Date of Patent: February 4, 2014Assignee: Infineon Technologies AGInventor: Frank Pfirsch
-
Patent number: 8637360Abstract: Exemplary embodiments provide structures and methods for power devices with integrated clamp structures. The integration of clamp structures can protect the power device, e.g., from electrical overstress (EOS). In one embodiment, active devices can be formed over a substrate, while a clamp structure can be integrated outside the active regions of the power device, for example, under the active regions and/or inside the substrate. Integrating clamp structure outside active regions of power devices can maximize the active area for a given die size and improve robustness of the clamped device since the current will spread in the substrate by this integration.Type: GrantFiled: November 19, 2010Date of Patent: January 28, 2014Assignee: Intersil Americas Inc.Inventor: Francois Hebert
-
Patent number: 8618577Abstract: An n-type GaN layer (3), a GaN layer (7) formed over the n-type GaN layer (3), an n-type AlGaN layer (9) formed over the GaN layer (7), a gate electrode (15) and a source electrode (13) formed over the n-type AlGaN layer (9), a drain electrode (14) formed below the n-type GaN layer (3), and a p-type GaN layer (4) formed between the GaN layer (7) and the drain electrode (14) are provided.Type: GrantFiled: April 21, 2011Date of Patent: December 31, 2013Assignee: Fujitsu LimitedInventor: Tadahiro Imada
-
Patent number: 8614460Abstract: A semiconductor device and a fabrication method of the semiconductor device, the semiconductor device including: a substrate; a nitride based compound semiconductor layer placed on the substrate and doped with a first transition metal atom; an aluminum gallium nitride layer (AlxGa1-xN) (where 0.1<=x<=1) placed on the nitride based compound semiconductor layer; a nitride based compound semiconductor layer placed on the aluminum gallium nitride layer (AlxGa1-xN) (where 0.1<=x<=1) and doped with a second transition metal atom; an aluminum gallium nitride layer (AlyGa1-yN) (where 0.1<=y<=1) placed on the nitride based compound semiconductor layer doped with the second transition metal atom; and a gate electrode, a source electrode, and a drain electrode which are placed on the aluminum gallium nitride layer (AlyGa1-yN) (where 0.1<=y<=1).Type: GrantFiled: January 30, 2012Date of Patent: December 24, 2013Assignee: Kabushiki Kaisha ToshibaInventor: Keiichi Matsushita
-
Publication number: 20130320350Abstract: A transistor device includes a compound semiconductor body having a first surface and a two-dimensional charge carrier gas disposed below the first surface in the compound semiconductor body. The transistor device further includes a source in contact with the two-dimensional charge carrier gas and a drain spaced apart from the source and in contact with the two-dimensional charge carrier gas. A first passivation layer is in contact with the first surface of the compound semiconductor body, and a second passivation layer is disposed on the first passivation layer. The second passivation layer has a different etch rate selectivity than the first passivation layer. A gate extends through the second passivation layer into the first passivation layer.Type: ApplicationFiled: June 4, 2012Publication date: December 5, 2013Applicant: INFINEON TECHNOLOGIES AUSTRIA AGInventors: Oliver Häberlen, Gilberto Curatola
-
Patent number: 8592298Abstract: A method for fabricating edge termination structures in gallium nitride (GaN) materials includes providing a n-type GaN substrate having a first surface and a second surface, forming an n-type GaN epitaxial layer coupled to the first surface of the n-type GaN substrate, and forming a growth mask coupled to the n-type GaN epitaxial layer. The method further includes patterning the growth mask to expose at least a portion of the n-type GaN epitaxial layer, and forming at least one p-type GaN epitaxial structure coupled to the at least a portion of the n-type GaN epitaxial layer. The at least one p-type GaN epitaxial structure comprises at least one portion of an edge termination structure. The method additionally includes forming a first metal structure electrically coupled to the second surface of the n-type GaN substrate.Type: GrantFiled: December 22, 2011Date of Patent: November 26, 2013Assignee: Avogy, Inc.Inventors: Linda Romano, David P. Bour, Andrew Edwards, Hui Nie, Isik C. Kizilyalli, Richard J. Brown, Thomas R. Prunty
-
Patent number: 8569123Abstract: An object is to provide a method for manufacturing a silicon carbide semiconductor device in which a time required for removing a sacrificial oxide film can be shortened and damage to a surface of the silicon carbide layer can be reduced. The method for manufacturing a silicon carbide semiconductor device includes: (a) performing ion implantation to a silicon carbide layer; (b) performing activation annealing to the ion-implanted silicon carbide layer 2; (c) removing a surface layer of the silicon carbide layer 2, to which the activation annealing has been performed, by dry etching; (d) forming a sacrificial oxide film on a surface layer of the silicon carbide layer, to which the dry etching has been performed, by performing sacrificial oxidation thereto; and (e) removing the sacrificial oxide film by wet etching.Type: GrantFiled: September 1, 2009Date of Patent: October 29, 2013Assignee: Mitsubishi Electric CorporationInventors: Yoshinori Matsuno, Kenichi Ohtsuka, Naoki Yutani, Kenichi Kuroda, Hiroshi Watanabe, Shozo Shikama
-
Patent number: 8569769Abstract: An Enhancement-mode (E-mode) high electron mobility transistor (HEMT) includes a channel layer with a 2-Dimensional Electron Gas (2DEG), a barrier layer inducing the 2DEG in the channel layer, source and drain electrodes on the barrier layer, a depletion layer on the barrier layer between the source and drain electrodes, and a gate electrode on the depletion layer. The barrier layer is recessed below the gate electrode and the depletion layer covers a surface of the recess and extends onto the barrier layer around the recess.Type: GrantFiled: July 11, 2011Date of Patent: October 29, 2013Assignee: Samsung Electronics Co., Ltd.Inventors: In-jun Hwang, Ki-ha Hong, Jong-seob Kim, Jae-Kwang Shin, Jae-joon Oh, Jong-bong Ha, Hyuk-soon Choi
-
Publication number: 20130270615Abstract: A method of making a transistor, comprising: providing a semiconductor substrate; forming a gate stack over the semiconductor substrate; forming an insulating layer over the semiconductor substrate; forming a depleting layer over the insulating layer; etching the depleting layer and the insulating layer; forming a metal layer over the semiconductor substrate; performing thermal annealing; and removing the metal layer. As advantages of the present invention, an upper outside part of each of the sidewalls include a material that can react with the metal layer, so that metal on two sides of the sidewalls is absorbed during the annealing process, preventing the metal from diffusing toward the semiconductor layer, and ensuring that the formed Schottky junctions can be ultra-thin and uniform, and have controllable and suppressed lateral growth.Type: ApplicationFiled: September 28, 2011Publication date: October 17, 2013Applicant: FUDAN UNIVERSITYInventors: Dongping Wu, Jun Luo, Yinghua Piao, Zhiwei Zhu, Shili Zhang, Wei Zhang
-
Patent number: 8558281Abstract: A method for fabricating a gate structure for a field effect transistor having a buffer layer on a substrate, a channel layer and a barrier layer over the channel layer includes forming a gate including silicon, forming first sidewalls of a first material on either side and adjacent to the gate, selectively etching into the buffer layer to form a mesa for the field effect transistor, depositing a material layer over the mesa, planarizing the material layer over the mesa to form a planarized surface such that a top of the gate, tops of the first sidewalls, and a top of the material layer over the mesa are on the same planarized surface, depositing metal on the planzarized surface, annealing to form the gate into a metal silicided gate, and etching to remove excess non-silicided metal.Type: GrantFiled: December 2, 2011Date of Patent: October 15, 2013Assignee: HRL Laboratories, LLCInventors: Dean C. Regan, Keisuke Shinohara, Andrea Corrion, Ivan Milosavljevic, Miroslav Micovic, Peter J. Willadsen, Colleen M. Butler, Hector L. Bracamontes, Bruce T. Holden, David T. Chang
-
Patent number: 8557644Abstract: According to one disclosed embodiment, a monolithic vertically integrated composite device comprises a double sided semiconductor substrate having first and second sides, a group IV semiconductor layer formed over the first side and comprising at least one group IV semiconductor device, and a group III-V semiconductor body formed over the second side and comprising at least one group III-V semiconductor device electrically coupled to the at least one group IV semiconductor device. The composite device may further comprise a substrate via and/or a through-wafer via providing electric coupling. In one embodiment, the group IV semiconductor layer may comprise an epitaxial silicon layer, and the at least one group IV semiconductor device may be a combined FET and Schottky diode (FETKY) fabricated on the epitaxial silicon layer. In one embodiment, the at least one group III-V semiconductor device may be a III-nitride high electron mobility transistor (HEMT).Type: GrantFiled: February 15, 2011Date of Patent: October 15, 2013Assignee: International Rectifier CorporationInventor: Michael A. Briere