Vertical Channel Patents (Class 438/212)
  • Patent number: 6818948
    Abstract: A split gate flash memory device and method of fabricating the same. A cell of the split gate flash memory device in accordance with the invention is disposed in a cell trench within a substrate to achieve higher integration of memory cells.
    Type: Grant
    Filed: July 16, 2003
    Date of Patent: November 16, 2004
    Assignee: Nanya Technology Corporation
    Inventor: Chi-Hui Lin
  • Publication number: 20040207008
    Abstract: A semiconductor component includes a semiconductor layer (110) having a trench (326). The trench has first and second sides. A portion (713) of the semiconductor layer has a conductivity type and a charge density. The semiconductor component also includes a control electrode (540, 1240) in the trench. The semiconductor component further includes a channel region (120) in the semiconductor layer and adjacent to the trench. The semiconductor component still further includes a region (755) in the semiconductor layer. The region has a conductivity type different from that of the portion of the semiconductor layer. The region also has a charge density balancing the charge density of the portion of the semiconductor layer.
    Type: Application
    Filed: May 10, 2004
    Publication date: October 21, 2004
    Inventors: Peyman Hadizad, Jina Shumate, Ali Salih
  • Patent number: 6806174
    Abstract: Semiconductor devices and methods for fabrication the same are disclosed. An illustrated method of fabricating a semiconductor device comprises: forming a trench on a substrate; forming a gate electrode by depositing and planarizing an oxide layer and polysilicon on the substrate including the trench; forming a gate oxide layer and a polysilicon layer on the substrate; forming source/drain regions by a photo process; and forming a contact plug on at least one of the source/drain regions. By controlling the overlap between the gate and the source/drain regions using a source/drain mask, current control becomes easy and a device sensitive to current control is easily fabricated. Sufficient spaces between the gate and the contact(s) due to the buried type gate make the fabrication processes easy.
    Type: Grant
    Filed: January 15, 2004
    Date of Patent: October 19, 2004
    Assignee: ANAM Semiconductor, Inc.
    Inventor: Ik Soo Do
  • Patent number: 6803281
    Abstract: In a method of fabricating a semiconductor device having a MISFET of trench gate structure, a trench is formed from a major surface of a semiconductor layer of first conductivity type which serves as a drain region, in a depth direction of the semiconductor layer, a gate insulating film including a thermal oxide film and a deposited film is formed over the internal surface of the trench, and after a gate electrode has been formed in the trench, impurities are introduced into the semiconductor substrate of first conductivity type to form a semiconductor region of second conductivity type which serves as a channel forming region, and impurities are introduced into the semiconductor region of second conductivity type to form the semiconductor region of first conductivity type which serves as a source region.
    Type: Grant
    Filed: February 25, 2004
    Date of Patent: October 12, 2004
    Assignees: Renesas Technology Corp., Hitachi ULSI Systems Co., Ltd.
    Inventors: Sumito Numazawa, Yoshito Nakazawa, Masayoshi Kobayashi, Satoshi Kudo, Yasuo Imai, Sakae Kubo, Takashi Shigematsu, Akihiro Ohnishi, Kozo Uesawa, Kentaro Oishi
  • Publication number: 20040188755
    Abstract: A semiconductor device and its manufacturing method in which the trade-off relationship between channel resistance and JFET resistance is improved. The same mask is used to form a source region and a base region by ion implantation. In a vertical MOSFET including SiC, a source region and a base region are formed by ion implantation using the same tapered mask to give the base region a tapered shape. The taper angle of the tapered mask is set to 30° to 60° when the material of the tapered mask has the same range as SiC in ion implantation, and to 20° to 45° when the material of the tapered mask is SiO2.
    Type: Application
    Filed: March 18, 2004
    Publication date: September 30, 2004
    Applicant: Mitsubishi Denki Kabushiki Kaisha
    Inventors: Yoichiro Tarui, Ken-ichi Ohtsuka, Masayuki Imaizumi, Hiroshi Sugimoto, Tetsuya Takami
  • Publication number: 20040183129
    Abstract: Power MOSFETs and fabrication processes for power MOSFETs use a continuous conductive gate structure within trenches to avoid problems arising from device topology caused when a gate bus extends above a substrate surface. The gate bus trench and/or gate structures in the device trenches can contain a metal/silicide to reduce resistance, where polysilicon layers surround the metal/silicide to prevent metal atoms from penetrating the gate oxide in the device trenches. CMP process can remove excess polysilicon and metal and planarize the conductive gate structure and/or overlying insulating layers. The processes are compatible with processes forming self-aligned or conventional contacts in the active device region.
    Type: Application
    Filed: January 29, 2004
    Publication date: September 23, 2004
    Inventors: Richard K. Williams, Michael E. Cornell, Wai Tien Chan
  • Patent number: 6787848
    Abstract: A power MOSFET comprising a drain layer of a first conductivity type, a drift layer of the first conductivity type provided on the drain layer, a base layer of a first or a second conductivity type provided on the drift layer, a source region of the first conductivity type provided on the base layer, a gate insulating film formed on an inner wall surface of a trench penetrating the base layer and reaching at the drift layer, and a gate electrode provided on the gate insulating film inside the trench, wherein the gate insulating film is formed such that a portion thereof adjacent to the drift layer is thicker than a portion thereof adjacent to the base layer, and the drift layer has an impurity concentration gradient higher in the vicinity of the drain layer and lower in the vicinity of the source region along a depth direction of trench.
    Type: Grant
    Filed: July 1, 2002
    Date of Patent: September 7, 2004
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Syotaro Ono, Yusuke Kawaguchi
  • Patent number: 6787439
    Abstract: A method of manufacturing a semiconductor device may include forming a fin structure on an insulator. The fin structure may include side surfaces and a top surface. The method may also include depositing a gate material over the fin structure and planarizing the deposited gate material. An antireflective coating may be deposited on the planarized gate material, and a gate structure may be formed out of the planarized gate material using the antireflective coating.
    Type: Grant
    Filed: November 8, 2002
    Date of Patent: September 7, 2004
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Shibly S. Ahmed, Cyrus E. Tabery, Haihong Wang, Bin Yu
  • Publication number: 20040171219
    Abstract: High density static memory cells and arrays containing gated lateral bipolar transistors which can be latched in a bistable on state. Each transistor memory cell includes two gates which are pulse biased during the write operation to latch the cell. Also provided is a CMOS fabrication process to create the cells and arrays.
    Type: Application
    Filed: March 9, 2004
    Publication date: September 2, 2004
    Inventors: Wendell P. Noble, Leonard Forbes
  • Publication number: 20040164348
    Abstract: A method is provided for forming a power semiconductor device. The method begins by providing a substrate of a first conductivity type and then forming a voltage sustaining region on the substrate. The voltage sustaining region is formed by depositing an epitaxial layer of a first conductivity type on the substrate and forming at least one trench in the epitaxial layer. At least one doped column having a dopant of a second conductivity type is located in the epitaxial layer, adjacent a sidewall of the trench. The trench is etched using an etchant gas that also serves as a dopant source for the formation of the doped column. For example, if a p-type dopant such as boron is desired, BCl3 may be used as the etchant gas. Alternatively, if an n-type dopant such as phosphorus is required, PH3 may be used as the etchant gas. The dopant present in the gas is incorporated into the silicon defining the surfaces of the trench. This dopant is subsequently diffused to form the doped column surrounding the trench.
    Type: Application
    Filed: February 23, 2004
    Publication date: August 26, 2004
    Inventors: Richard A. Blanchard, Fwu-Iuan Hshieh
  • Publication number: 20040164349
    Abstract: It is intended to provide a high withstand voltage field effect type semiconductor device that relaxes electric fields in a semiconductor substrate without thickening thickness of a drift region and achieves withstand-ability against high voltage without sacrificing ON-voltage, switch-OFF characteristics, and miniaturization. A field effective type semiconductor device comprises emitter regions 100, 104 and gate electrodes 106 and the like on a surface (upper surface in FIG. 2), a collector region 101 and the like on the other surface (lower surface in FIG. 2), wherein N− field dispersion regions 111 of low impurity concentration are arranged between P body regions 103 facing to gate electrodes 106 and an N drift region 102 below P body regions 103. Thereby, electric field between collector and emitter is relaxed and high withstand voltage field effect type semiconductor device is realized.
    Type: Application
    Filed: February 13, 2004
    Publication date: August 26, 2004
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Katsuhiko Nishiwaki, Tomoyoshi Kushida, Sachiko Kawaji
  • Patent number: 6777744
    Abstract: A method and structure for an improved, vertically configured inverter array is provided. The inverter includes a buried gate contact coupling the body regions of a complementary pair of transistors. An electrical contact couples the second source/drain regions of the complementary pair of transistors. The transistors are formed in vertical pillars of single crystalline semiconductor material.
    Type: Grant
    Filed: June 4, 2001
    Date of Patent: August 17, 2004
    Assignee: Micron Technology, Inc.
    Inventor: Wendell P. Noble
  • Patent number: 6777295
    Abstract: A method of fabricating trench power MOSFET is described. A first etching step is performed on a substrate to form a plurality of trenches and the substrate has a first doped region and a second doped region and serves as a drain region. A gate oxide layer and a polysilicon layer are then sequentially formed on the second doped region to create a gate region. Subsequent performance of a second etching step utilizes a mask layer to overlap the polysilicon layer. A portion of the second doped region is exposed and the exposed portion defines a base region. The polysilicon layer is etched to expose the gate oxide layer and the base region is simultaneously etched to remove a portion of the second doped region to expose the first doped region for forming an aligned source region. A contact region in the source region is finally formed to fabricate the trench power MOSFET.
    Type: Grant
    Filed: August 12, 2003
    Date of Patent: August 17, 2004
    Assignee: Advanced Power Electronics Corp.
    Inventors: Jau-Yan Lin, Keh-Yuh Yu
  • Publication number: 20040155258
    Abstract: ON resistance and leakage current of a vertical power MOSFET are to be diminished. In a vertical high breakdown voltage MOSFET with unit MOSFETs (cells) arranged longitudinally and transversely over a main surface of a semiconductor substrate, the cells are made quadrangular in shape, and in each of the cells, source regions whose inner end portions are exposed to the interior of a quadrangular source contact hole are arranged separately and correspondingly to each side of the quadrangle. Each source region is trapezoidal in shape, and a lower side of the trapezoid is positioned below a gate electrode (gate insulating film), while an upper side portion of the trapezoid is exposed to the interior of the source contact hole. The four source regions are separated from one another by diagonal regions of the quadrangle.
    Type: Application
    Filed: August 15, 2003
    Publication date: August 12, 2004
    Applicant: Renesas Technology Corp.
    Inventors: Katsuo Ishizaka, Tetsuo Iijima
  • Patent number: 6770534
    Abstract: The present invention relates to an ultra small size vertical MOSFET device having a vertical channel and a source/drain structure and a method for the manufacture thereof by using a silicon on insulator (SOI) substrate. To begin with, a first silicon conductive layer is formed by doping an impurity of a high concentration into a first single crystal silicon layer. Thereafter, a second single crystal silicon layer with the impurity of a low concentration and a second silicon conductive layer with the impurity of the high concentration are formed on the first silicon conductive layer. The second single crystal silicon layer and the second silicon conductive layer are vertically patterned into a predetermined configuration. Subsequently, a gate insulating layer is formed on entire surface.
    Type: Grant
    Filed: July 11, 2003
    Date of Patent: August 3, 2004
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Wonju Cho, Seong Jae Lee, Kyoung Wan Park
  • Patent number: 6762080
    Abstract: In a method of manufacturing a semiconductor element (6) having a cathode (3) and an anode (5), the starting material used is a relatively thick wafer (1) to which, as a first step, a barrier region (21) is added on the anode side. It is then treated on the cathode side, and the thickness of the wafer (1) is then reduced on the side opposite to the cathode (3), and an anode (5) is produced on this side in a further step. The result is a relatively thin semiconductor element which can be produced economically and without epitaxial layers.
    Type: Grant
    Filed: August 21, 2002
    Date of Patent: July 13, 2004
    Assignee: ABB Schweiz Holding AG
    Inventor: Stefan Linder
  • Patent number: 6762099
    Abstract: A two-stage method for making buried strap out-diffusions is disclosed. A substrate having a deep trench is provided. A first conductive layer is deposited at the bottom of the deep trench. A collar oxide is formed on sidewalls of the deep trench. A second conductive layer is deposited within the deep trench atop the first conductive layer. The collar oxide is then etched back to a predetermined depth. A third conductive layer is deposited directly on the second conductive layer. A trench top oxide (TTO) layer is formed on the third conductive layer. A spacer is formed on the sidewalls of the deep trench. A portion of the TTO layer is etched away to form a recess underneath the spacer, which exposing the substrate in the deep trench. Thereafter, a doping process is carried out to form a first diffusion region through the recess, followed by spacer stripping.
    Type: Grant
    Filed: July 1, 2003
    Date of Patent: July 13, 2004
    Assignee: Nanya Technology Corp.
    Inventors: Hsu Yu-Sheng, Ming-Cheng Chang, Yinan Chen
  • Publication number: 20040126955
    Abstract: A thin film transistor and its fabrication method. The transistor includes a buffer layer on a substrate, and a poly-crystalline semiconductor layer on the buffer layer. The poly-crystalline semiconductor layer includes a channel layer, offset regions along sides of the channel layer, sequential doping regions along sides of the offset regions, and source and drain regions. The doping concentration is sequentially changed in the sequential doping region. A sloped gate insulation layer is on the poly-crystalline semiconductor layer. A gate electrode having a main gate electrode and auxiliary gate electrodes is on the sloped insulation layer. An interlayer is over the gate electrode and source and drain electrodes are formed in contact with the source and drain regions and on the interlayer. The poly-crystalline semiconductor layer is formed by ion doping a poly-crystalline semiconductor layer through the gate insulation layer while using the gate electrode as a mask.
    Type: Application
    Filed: December 12, 2003
    Publication date: July 1, 2004
    Inventor: Han-Wook Hwang
  • Patent number: 6750104
    Abstract: A method is provided for forming a power semiconductor device. The method begins by providing a substrate of a first conductivity type and then forming a voltage sustaining region on the substrate. The voltage sustaining region is formed by depositing an epitaxial layer of a first conductivity type on the substrate and forming at least one trench in the epitaxial layer. At least one doped column having a dopant of a second conductivity type is located in the epitaxial layer, adjacent a sidewall of the trench. The trench is etched using an etchant gas that also serves as a dopant source for the formation of the doped column. For example, if a p-type dopant such as boron is desired, BCl3 may be used as the etchant gas. Alternatively, if an n-type dopant such as phosphorus is required, PH3 may be used as the etchant gas. The dopant present in the gas is incorporated into the silicon defining the surfaces of the trench. This dopant is subsequently diffused to form the doped column surrounding the trench.
    Type: Grant
    Filed: December 31, 2001
    Date of Patent: June 15, 2004
    Assignee: General Semiconductor, Inc.
    Inventors: Richard A. Blanchard, Fwu-Iuan Hshieh
  • Patent number: 6750095
    Abstract: A method of producing an integrated circuit having a vertical MOS transistor includes doping a substrate to form a layer adjacent to its surface and forming a lower doped layer serving as the transistor's first source/drain region. The transistor's channel region is formed by doping a central layer above the lower layer. A second source/drain region is formed by doping an upper layer above the central layer. The upper, central and lower layers form a layer sequence having opposed first and second faces. A connecting structure is formed on the first face to electrically connect the channel region and the substrate. The connecting structure laterally adjoins at least the central layer and the lower layer, and extends into the substrate. A gate dielectric and adjacent gate electrode are formed on the second face.
    Type: Grant
    Filed: May 29, 2001
    Date of Patent: June 15, 2004
    Assignee: Infineon Technologies AG
    Inventors: Emmerich Bertagnoll, Franz Hofmann, Bernd Goebel, Wolfgang Roesner
  • Patent number: 6740910
    Abstract: The gate region of a field effect transistor comprises at least one through hole wherein a nanoelement is provided which is electrically coupled to the source and the drain. The nanoelement may have the conductance thereof controlled by means of the gate, such that the nanoelement forms a channel region of the field effect transistor.
    Type: Grant
    Filed: January 28, 2003
    Date of Patent: May 25, 2004
    Assignee: Infineon Technologies AG
    Inventors: Wolfgang Roesner, Richard Johannes Luyken, Johannes Kretz
  • Publication number: 20040094799
    Abstract: A gate electrode <13> is provided to fill up a trench <300> while covering its opening. Assuming that WG represents the diameter (sectional width) of a head portion of the gate electrode <13> located upward beyond a P-type base layer <4> and an N+-type emitter diffusion layer <51>, WT represents the diameter (sectional width) of an inner wall of a linearly extending portion of the trench <300> and WC represents the distance between the boundary (the inner wall of the trench 300) between a gate oxide film <11> and the P-type base layer <4> and an end surface of the gate electrode <13> located upward beyond the trench <300> in a section of the trench <300>, relation of either WG≧1.3·WT or WC≧0.2 &mgr;m holds between these dimensions.
    Type: Application
    Filed: August 29, 2003
    Publication date: May 20, 2004
    Applicant: MITSUBISHI DENKI KABUSHIKI KAISHA
    Inventor: Katsumi Nakamura
  • Publication number: 20040097041
    Abstract: A field effect transistor has an inverse-T gate conductor having a thicker center portion and thinner wings. The wings may be of a different material different than the center portion. In addition, gate dielectric may be thicker along edges than in the center. Doping can also be different under the wings than along the center portion or beyond the gate. Regions under the wings may be doped differently than the gate conductor. With a substantially vertical implant, a region of the channel overlapped by an edge of the gate is implanted without implanting a center portion of the channel, and this region is blocked from receiving at least a portion of the received by thick portions of the gate electrode.
    Type: Application
    Filed: November 6, 2003
    Publication date: May 20, 2004
    Applicant: International Business Machines Corporation
    Inventors: Jack A. Mandelman, Carl J. Radens, William R. Tonti
  • Publication number: 20040092068
    Abstract: A CMOS process for double vertical channel thin film transistor (DVC TFT). This process fabricates a CMOS with a double vertical channel (DVC) structure and defines the channel without an additional mask. The DVC structure of the CMOS side steps the photolithography limitation because the deep-submicrometer-channel length is determined by the thickness of gate, thereby decreasing the channel length of the CMOS substantially.
    Type: Application
    Filed: October 31, 2003
    Publication date: May 13, 2004
    Applicant: HANNSTAR DISPLAY CORP.
    Inventor: In-Cha Hsieh
  • Publication number: 20040092067
    Abstract: A technique for forming a sub-0.05 &mgr;m channel length double-gated/double channel MOSFET structure having excellent short-channel characteristics as well as the double-gated/double channel MOSFET structure itself is provided herein. The inventive technique utilizes a damascene process for the fabrication of a MOSFET device with double-gate/double channel structure. The gates are present on opposite sides of a silicon film having a vertical thickness of about 80 nm or less which is present in the gate region. The silicon film serves as the vertical channel regions of the structure and connects diffusion regions that are abutting the gate region to each other. In the inventive device, the current is double that of a conventional planar MOSFET with the same physical width due to its dual channel feature.
    Type: Application
    Filed: June 30, 2003
    Publication date: May 13, 2004
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Hussein I. Hanafi, Jeffrey J. Brown, Wesley C. Natzle
  • Patent number: 6734056
    Abstract: A 6F2 memory cell structure and a method of fabricating the same. The memory cell structure includes a plurality of memory cells located in a Si-containing substrate which are arranged in rows and columns. Each memory cell includes a double-gated vertical MOSFET having exposed gate conductor regions and two gates formed on opposing sidewalls of the MOSFETs. The memory cell structure also includes a plurality of wordlines overlaying the double-gated vertical MOSFETs and in contact with the exposed gate conductor regions, and a plurality of bitlines that are orthogonal to the wordlines. Trench isolation regions are located adjacent to the rows of memory cells. The memory cell structure also includes a plurality of punch through stop regions located in the Si-containing substrate and self-aligned to the wordlines and bitlines. A portion of the punch through stop regions overlap each other under the bitlines and each region serves to electrically isolate adjacent buried-strap regions from each other.
    Type: Grant
    Filed: January 14, 2003
    Date of Patent: May 11, 2004
    Assignee: International Business Machines Corporation
    Inventors: Jack A. Mandelman, Dureseti Chidambarrao
  • Patent number: 6734058
    Abstract: A method for fabricating a semiconductor device comprising forming an insulating layer and a nitride layer sequentially on a semiconductor substrate; selectively removing the layers to form a first contact hole; forming a silicon layer in the first contact hole; forming a trench by selective removal of the silicon layer; forming a source region in the semiconductor substrate and a drain region on the trench; forming a gate oxide layer and gates sequentially at the side walls of the trench; forming a planarization layer on the resultant structure; forming a second contact hole that exposes the gate, the drain region, and the source region; and forming plugs in the exposed second contact hole.
    Type: Grant
    Filed: December 26, 2002
    Date of Patent: May 11, 2004
    Assignee: Dongbu Electronics Co., Ltd.
    Inventor: Cheol Soo Park
  • Publication number: 20040084720
    Abstract: A method of making an electronic device comprising the steps of: providing a plurality of wafers, each wafer comprising a bonding surface; etching one or more trenches into one or more bonding surfaces, the trenches substantially perpendicular to a preferred direction of diffusion along one or more of the bonding surfaces; rendering the bonding surfaces hydrophobic; and bonding the bonding surfaces together by direct wafer bonding. A semiconductor structure comprising a plurality of wafers, each wafer comprising a bonding surface, one or more bonding surfaces comprising one or more trenches substantially perpendicular to a preferred direction of diffusion along one or more of the bonding surfaces; and the bonding surfaces bonded together by a direct wafer bonding interface.
    Type: Application
    Filed: November 4, 2002
    Publication date: May 6, 2004
    Inventors: Robert H. Esser, Karl D. Hobart, Francis J. Kub
  • Publication number: 20040079989
    Abstract: The present invention-provides a tunnel-injection device which encompasses, a reception layer made of a first semiconductor, a barrier-forming layer made of a second semiconductor having a bandgap-narrower than the first semiconductor, being in metallurgical contact with the reception layer, a gate insulating film disposed on the barrier-forming layer. The gate electrode controls the width of the barrier generated at the heterojunction interface between the reception layer and the barrier-forming layer so as to change the tunneling probability of carriers through the barrier. The device further encompasses a carrier receiving region being contact with the reception layer and a carrier-supplying region being contact with the barrier-forming layer.
    Type: Application
    Filed: October 10, 2003
    Publication date: April 29, 2004
    Applicant: NISSAN MOTOR CO., LTD.
    Inventors: Saichirou Kaneko, Masakatsu Hoshi, Kraisorn Throngnumchai, Tetsuya Hayashi, Hideaki Tanaka, Teruyoshi Mihara
  • Patent number: 6720220
    Abstract: In a method of fabricating a semiconductor device having a MISFET of trench gate structure, a trench is formed from a major surface of a semiconductor layer of first conductivity type which serves as a drain region, in a depth direction of the semiconductor layer, a gate insulating film including a thermal oxide film and a deposited film is formed over the internal surface of the trench, and after a gate electrode has been formed in the trench, impurities are introduced into the semiconductor substrate of first conductivity type to form a semiconductor region of second conductivity type which serves as a channel forming region, and impurities are introduced into the semiconductor region of second conductivity type to form the semiconductor region of first conductivity type which serves as a source region.
    Type: Grant
    Filed: December 23, 2002
    Date of Patent: April 13, 2004
    Assignees: Renesas Technology Corp., Hitachi ULSI Systems Co., Ltd.
    Inventors: Sumito Numazawa, Yoshito Nakazawa, Masayoshi Kobayashi, Satoshi Kudo, Yasuo Imai, Sakae Kubo, Takashi Shigematsu, Akihiro Ohnishi, Kozo Uesawa, Kentaro Oishi
  • Publication number: 20040061178
    Abstract: A FinFET device employs strained silicon to enhance carrier mobility. In one method, a FinFET body is patterned from a layer of silicon germanium (SiGe) that overlies a dielectric layer. An epitaxial layer of silicon is then formed on the silicon germanium FinFET body. A strain is induced in the epitaxial silicon as a result of the different dimensionalities of intrinsic silicon and of the silicon germanium crystal lattice that serves as the template on which the epitaxial silicon is grown. Strained silicon has an increased carrier mobility compared to relaxed silicon, and as a result the epitaxial strained silicon provides increased carrier mobility in the FinFET. A higher driving current can therefore be realized in a FinFET employing a strained silicon channel layer.
    Type: Application
    Filed: December 31, 2002
    Publication date: April 1, 2004
    Applicant: Advanced Micro Devices Inc.
    Inventors: Ming-Ren Lin, Jung-Suk Goo, Haihong Wang, Qi Xiang
  • Publication number: 20040061170
    Abstract: A method for forming a high voltage insulated gate bipolar transistor (“IGBT”) includes providing a semiconductor substrate of first conductivity type. The semiconductor substrate includes a front-side surface, a backside surface, and a scribe region. The substrate further includes a plurality of active cells on the front-side surface. A drain region of second conductivity type is formed using a first impurity proximate the backside surface of the substrate. A continuous conductive region of second conductivity type is formed using a second impurity that has been provided into the substrate from the backside surface of the substrate. The continuous conductive region extends from the front-side surface to the backside surface. The second impurity has a higher mobility than the first impurity.
    Type: Application
    Filed: February 4, 2003
    Publication date: April 1, 2004
    Applicant: IXYS Corporation
    Inventor: Nathan Zommer
  • Patent number: 6709930
    Abstract: A trench MOSFET is formed by creating a trench in a semiconductor substrate, then forming a barrier layer over a portion of the side wall of the trench. A thick insulating layer is deposited in the bottom of the trench. The barrier layer is selected such that the thick insulating layer deposits in the bottom of the trench at a faster rate than the thick insulating layer deposits on the barrier layer. Embodiments of the present invention avoid stress and reliability problems associated with thermal growth of insulating layers, and avoid problems with control of the shape and thickness of the thick insulating layer encountered when a thick insulating layer is deposited, then etched to the proper shape and thickness.
    Type: Grant
    Filed: June 21, 2002
    Date of Patent: March 23, 2004
    Assignee: Siliconix Incorporated
    Inventors: Ben Chan, Kam Hong Lui, Christiana Yue, Ronald Wong, David Chang, Frederick P. Giles, Kyle Terrill, Mohamed N. Darwish, Deva Pattanayak, Robert Q. Xu, Kuo-in Chen
  • Patent number: 6699742
    Abstract: A SRAM memory cell including an access device formed on a storage device is described. The storage device has at least two stable states that may be used to store information. In operation, the access device is switched ON to allow a signal representing data to be coupled to the storage device. The storage device switches to a state representative of the signal and maintains this state after the access device is switched OFF. When the access device is switched ON, the state of the storage device may be sensed to read the data stored in the storage device. The memory cell may be formed to be unusually compact and has a reduced power supply requirements compared to conventional SRAM memory cells. As a result, a compact and robust SRAM having reduced standby power requirements is realized.
    Type: Grant
    Filed: October 30, 2002
    Date of Patent: March 2, 2004
    Assignee: Micron Technology, Inc.
    Inventor: Wendell P. Noble
  • Patent number: 6696328
    Abstract: A CMOS gate electrode formed using a selective growth method and a fabrication method thereof, wherein, in the CMOS gate electrode, a first gate pattern of polysilicon germanium (poly-SiGe) is formed on a PMOS region of a semiconductor substrate, and a second gate pattern of polysilicon is selectively grown from an underlying layer. Although the first gate pattern on the PMOS region is formed of poly-SiGe, the characteristics of the second gate pattern on the NMOS region do not deteriorate, thereby increasing the overall characteristics of a CMOS transistor.
    Type: Grant
    Filed: April 15, 2003
    Date of Patent: February 24, 2004
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Hwa-sung Rhee, Geum-jong Bae, Sang-su Kim, Jung-il Lee, Young-ki Ha, Ki-chul Kim
  • Patent number: 6693341
    Abstract: When an element isolation film is formed by the LOCOS technique, as an underlying buffer layer of an oxidation resisting film, a pad oxidation film and pad poly-Si film are used. When an element is formed, they are used as a gate oxide film and a part of a gate electrode to relax a level difference between the gate electrode and the wiring on the element isolation film. A first poly-Si film (pad poly-Si film) is etched to leave its certain thickness to relax the level difference more greatly. In such a process, in manufacturing a semiconductor integrated circuit using the LOCOS technique, the number of manufacturing steps can be reduced and the level difference between the gate electrode on the gate insulating film and the wiring on the element isolation film can be relaxed.
    Type: Grant
    Filed: November 7, 2002
    Date of Patent: February 17, 2004
    Assignee: Sanyo Electric Co., Ltd.
    Inventors: Nobuyuki Sekikawa, Wataru Andoh, Masaaki Anezaki, Masaaki Momen
  • Patent number: 6689660
    Abstract: A memory cell structure for a folded bit line memory array of a dynamic random access memory device includes buried bit and word lines, with the access transistors being formed as a vertical structure on the bit lines. Isolation trenches extend orthogonally to the bit lines between the access transistors of adjacent memory cells, and a pair of word lines are located in each of the isolation trenches. The word lines are oriented vertically widthwise in the trench and are adapted to gate alternate access transistors, so that both an active and a passing word line can be contained within each memory cell to provide a folded bit line architecture. The memory cell has a surface area that is approximately 4 F2, where F is a minimum feature size. Also disclosed are processes for fabricating the DRAM cell using bulk silicon or a silicon on insulator processing techniques.
    Type: Grant
    Filed: March 17, 2000
    Date of Patent: February 10, 2004
    Assignee: Micron Technology, Inc.
    Inventors: Wendell P. Noble, Leonard Forbes, Kie Y. Ahn
  • Patent number: 6687114
    Abstract: A memory cell having a transistor and a capacitor formed in a silicon substrate. The capacitor is formed with a lower electrically conductive plate etched in a projected surface area of the silicon substrate. The lower electrically conductive plate has at least one cross section in the shape of a vee, where the sides of the vee are disposed at an angle of about fifty-five degrees from a top surface of the silicon substrate. The surface area of the lower electrically conductive plate is about seventy-three percent larger than the projected surface area of the silicon substrate in which the lower electrically conductive plate is etched. A capacitor dielectric layer is formed of a first deposited dielectric layer, which is disposed adjacent the lower electrically conductive plate. A top electrically conductive plate is disposed adjacent the capacitor dielectric layer and opposite the lower electrically conductive plate.
    Type: Grant
    Filed: March 31, 2003
    Date of Patent: February 3, 2004
    Assignee: LSI Logic Corporation
    Inventors: Arvind Kamath, Ruggero Castagnetti
  • Patent number: 6683347
    Abstract: A semiconductor device having an alternating conductivity type layer improves the tradeoff between the on-resistance and the breakdown voltage and facilitates increasing the current capacity by reducing the on- resistance while maintaining a high breakdown voltage. The semiconductor device includes a semiconductive substrate region, through which a current flows in the ON-state of the device and that is depleted in the OFF-state. The semiconductive substrate region includes a plurality of vertical alignments of n-type buried regions 32 and a plurality of vertical alignments of p-type buried regions. The vertically aligned n-type buried regions and the vertically aligned p-type buried regions are alternately arranged horizontally. The n-type buried regions and p-type buried regions are formed by diffusing respective impurities into highly resistive n-type layers 32a laminated one by one epitaxially.
    Type: Grant
    Filed: July 7, 1999
    Date of Patent: January 27, 2004
    Assignee: Fuji Electric Co., Ltd.
    Inventor: Tatsuhiko Fujihira
  • Publication number: 20040007721
    Abstract: A folded bit line DRAM device is provided. The folded bit line DRAM device includes an array of memory cells. Each memory cell in the array of memory cells includes a pillar extending outwardly from a semiconductor substrate. Each pillar includes a single crystalline first contact layer and a single crystalline second contact layer separated by an oxide layer. A single crystalline vertical transistor is formed along alternating sides of the pillar within a row of pillars. The single crystalline vertical transistor includes an ultra thin single crystalline vertical first source/drain region coupled to the first contact layer, an ultra thin single crystalline vertical second source/drain region coupled to the second contact layer, and an ultra thin single crystalline vertical body region which opposes the oxide layer and couples the first and the second source/drain regions.
    Type: Application
    Filed: May 5, 2003
    Publication date: January 15, 2004
    Applicant: Micron Technology, Inc.
    Inventors: Leonard Forbes, Kie Y. Ahn
  • Publication number: 20040007737
    Abstract: The present invention relates to an ultra small size vertical MOSFET device having a vertical channel and a source/drain structure and a method for the manufacture thereof by using a silicon on insulator (SOI) substrate. To begin with, a first silicon conductive layer is formed by doping an impurity of a high concentration into a first single crystal silicon layer. Thereafter, a second single crystal silicon layer with the impurity of a low concentration and a second silicon conductive layer with the impurity of the high concentration are formed on the first silicon conductive layer. The second single crystal silicon layer and the second silicon conductive layer are vertically patterned into a predetermined configuration. Subsequently, a gate insulating layer is formed on entire surface.
    Type: Application
    Filed: July 11, 2003
    Publication date: January 15, 2004
    Applicant: ELECTRONICS AND TELECOMMUNICATIONS RESEARCH INSTITUTE
    Inventors: Wonju Cho, Seong Jae Lee, Kyoung Wan Park
  • Patent number: 6670230
    Abstract: A CMOS process for double vertical channel thin film transistor (DVC TFT). This process fabricates a CMOS with a double vertical channel (DVC) structure and defines the channel without an additional mask. The DVC structure of the CMOS side steps the photolithography limitation because the deep-submicrometer channel length is determined by the thickness of gate, thereby decreasing the channel length of the CMOS substantially.
    Type: Grant
    Filed: March 29, 2002
    Date of Patent: December 30, 2003
    Assignee: Hannstar Display Corp.
    Inventor: In-Cha Hsieh
  • Patent number: 6664143
    Abstract: Vertical field effect transistors are fabricated by depositing a vertical channel on a microelectronic substrate at a thickness along the microelectronic substrate that is independent of lithography, the vertical channel extending orthogonal to the microelectronic substrate. Source and drain regions are formed at respective opposite ends of the vertical channel, and an insulated gate is formed adjacent the vertical channel. More specifically, a first doping layer is formed on a microelectronic substrate, an intermediate layer is formed on the first doping layer opposite the substrate and a second doping layer is formed on the intermediate layer opposite the first doping layer. A trench is then formed in the first doping layer, the intermediate layer and the second doping layer, the trench including a trench sidewall. The trench sidewall is lined with a conformal amorphous silicon layer.
    Type: Grant
    Filed: November 6, 2001
    Date of Patent: December 16, 2003
    Assignee: North Carolina State University
    Inventor: Zhibo Zhang
  • Patent number: 6660590
    Abstract: The present invention discloses a vertical transistor wherein source/drain regions are formed by using a self-alignment method without using a latest photolithography, channels are formed via a selective epitaxial growth (hereinafter, referred to as ‘SEG’) method and gate oxide films are formed at the both ends of channels to be more efficient than devices having the same channel length, and a method of manufacturing thereof, the vertical transistor comprising: a source region formed on a semiconductor substrate; a drain region formed substantially above the source region; a vertical channel, one end of the channel being contact to the source region and the other end being contact to the drain region; and a gate electrode, formed on the substrate, surrounding the sides of the channel and the drain region, said gate electrode electrically isolated with the source region by a nitride pattern disposed therebetween, isolated with the drain region by a nitride spacer formed on the sidewalls of the drai
    Type: Grant
    Filed: December 27, 2002
    Date of Patent: December 9, 2003
    Assignee: Hynix Semiconductor Inc.
    Inventor: Kyung Dong Yoo
  • Patent number: 6653181
    Abstract: A process for fabricating a CMOS integrated circuit with vertical MOSFET devices is disclosed. In the process, at least three layers of material are formed sequentially on a semiconductor substrate. The three layers are arranged such that the second layer is interposed between the first and third layers. The second layer is sacrificial, that is, the layer is completely removed during subsequent processing. The thickness of the second layer defines the physical gate length of the vertical MOSFET devices. After the at least three layers of material are formed on the substrate, the resulting structure is selectively doped to form an n-type region and a p-type region in the structure. Windows or trenches are formed in the layers in both the n-type region and the p-type region. The windows terminate at the surface of the silicon substrate in which one of either a source or drain region is formed. The windows or trenches are then filled with a semiconductor material.
    Type: Grant
    Filed: August 2, 2002
    Date of Patent: November 25, 2003
    Assignee: Agere Systems Inc.
    Inventors: John Michael Hergenrother, Donald Paul Monroe
  • Publication number: 20030213993
    Abstract: A trench MOS-gated semiconductor device that includes field relief regions formed below its base region to improve its breakdown voltage, and method for its manufacturing.
    Type: Application
    Filed: May 13, 2003
    Publication date: November 20, 2003
    Inventors: Kyle Spring, Jianjun Cao, Timothy D. Henson
  • Patent number: 6642599
    Abstract: A high resistance n-type base layer is formed on a silicon substrate with an insulating layer made of a silicon oxide film therebetween. In the high resistance n-type base layer a p-ch MOS transistor is formed. The p-ch MOS transistor is electrically isolated from another element by trench isolation formed of a trench. A p+ source layer in the p-ch MOS transistor surrounds a periphery of a p+ drain layer and has, for example, an elliptical planar configuration. A semiconductor device thus formed has a high drive capacity and is suitable to high integration.
    Type: Grant
    Filed: August 13, 1996
    Date of Patent: November 4, 2003
    Assignee: Mitsubishi Denki Kabushiki Kaisha
    Inventors: Kiyoto Watabe, Tomohide Terashima
  • Patent number: 6639271
    Abstract: A method of fabricating a dual bit dielectric memory cell structure on a silicon substrate includes implanting buried bit lines within the substrate and fabricating a layered island on the surface of the substrate between the buried bit lines. The island has a perimeter defining a gate region, and comprises a tunnel dielectric layer on the surface of the silicon on insulator wafer, an isolation barrier dielectric layer on the surface of the tunnel dielectric layer, a top dielectric layer on the surface of the isolation barrier dielectric layer, and a polysilicon gate on the surface of the top dielectric layer. A portion of the isolation barrier dielectric layer is removed to form an undercut region within the gate region and a charge trapping material is deposited within the undercut region.
    Type: Grant
    Filed: December 20, 2001
    Date of Patent: October 28, 2003
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Wei Zheng, Mark W. Randolph, Nicholas H. Tripsas, Zoran Krivokapic, Jack F. Thomas, Mark T. Ramsbey
  • Patent number: 6639272
    Abstract: Charge balancing is achieved in a compensation component by creating compensation regions having different thickness. In this manner, the ripple of the electric field can be chosen to have approximately the same magnitude in all of the compensation regions.
    Type: Grant
    Filed: April 1, 2002
    Date of Patent: October 28, 2003
    Assignee: Infineon Technologies AG
    Inventors: Dirk Ahlers, Armin Willmeroth, Hans Weber
  • Patent number: 6638826
    Abstract: An MOS power device a substrate comprises an upper layer having an upper surface and an underlying drain region, a well region of a first conductance type disposed in the upper layer over the drain region, and a plurality of spaced apart buried gates, each of which comprises a trench that extends from the upper surface of the upper layer through the well region into the drain region. Each trench comprises an insulating material lining its surface, a conductive material filling its lower portion to a selected level substantially below the upper surface of the upper layer, and an insulating material substantially filling the remainder of the trench. A plurality of highly doped source regions of a second conductance type are disposed in the upper layer adjacent the upper portion of each trench, each source region extending from the upper surface to a depth in the upper layer selected to provide overlap between the source regions and the conductive material in the trenches.
    Type: Grant
    Filed: July 16, 2002
    Date of Patent: October 28, 2003
    Assignee: Fairchild Semiconductor Corporation
    Inventors: Jun Zeng, Gary M. Dolny, Christopher B. Kocon, Linda S. Brush