Vertical Channel Patents (Class 438/212)
  • Patent number: 8039893
    Abstract: There is provided a semiconductor device formed of a highly integrated high-speed CMOS inverter coupling circuit using SGTs provided on at least two stages. A semiconductor device according to the present invention is formed of a CMOS inverter coupling circuit in which n (n is two or above) CMOS inverters are coupled with each other, each of the n inverters has: a pMOS SGT; an nMOS SGT, an input terminal arranged so as to connect a gate of the pMOS SGT with a gate of the nMOS SGT; an output terminal arranged to connect a drain diffusion layer of the pMOS SGT with a drain diffusion layer of the nMOS SGT in an island-shaped semiconductor lower layer; a pMOS SGT power supply wiring line arranged on a source diffusion layer of the pMOS SGT; and an nMOS SGT power supply wiring line arranged on a source diffusion layer of the NMOS SGT, and an n?1th output terminal is connected with an nth input terminal.
    Type: Grant
    Filed: September 19, 2008
    Date of Patent: October 18, 2011
    Assignees: Unisantis Electronics (Japan) Ltd., Tohoku University
    Inventors: Fujio Masuoka, Hiroki Nakamura
  • Patent number: 8039326
    Abstract: Methods are provided for fabricating Bulk FinFET devices having deep trench isolation. One or more deep isolation trenches are formed in a bulk silicon wafer. Mandrel-forming material is deposited overlying the bulk silicon wafer and dielectric pad layer thereon and simultaneously into the trench(es) as filler material. Mandrels are formed, overetching thereof creating a recess at the trench upper end. A conformal sidewall spacer material from which sidewall spacers are fabricated is deposited overlying the mandrels and into the recess forming a spacer overlying the filler material in the trench(es). Mandrels are removed using the spacer as an etch stop. Fin structures are formed from the bulk silicon wafer using the sidewall spacers as an etch mask. The mandrel-forming material is amorphous and/or polycrystalline silicon.
    Type: Grant
    Filed: August 20, 2009
    Date of Patent: October 18, 2011
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Andreas Knorr, Frank Scott Johnson
  • Patent number: 8030153
    Abstract: A TMOS device (10) is formed using a semiconductor layer (16) of a first type. First and second regions (62,64) of the second type are formed in the semiconductor layer and are spaced apart. A third region (68) is formed in the semiconductor layer by implanting. The third region is between and contacts the first and second doped regions, is of the second conductivity type, and is less heavily doped than the first and second doped regions. A gate stack (67) is formed over a portion of the first doped region, a portion of the second doped region, and the third doped region. By implanting after forming the gate stack, fourth and fifth regions (98,100) of the first type are formed in interior portions of the first and second doped regions, respectively. The third region being of the same conductivity type as the first and second regions reduces Miller capacitance.
    Type: Grant
    Filed: October 31, 2007
    Date of Patent: October 4, 2011
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Peilin Wang, Edouard D. de Frésart, Ganming Qin, Hongwei Zhou
  • Patent number: 8021943
    Abstract: A semiconductor fabrication method comprises providing a structure which includes a semiconductor substrate having a plurality of subsurface layers, the substrate comprising a top surface and the subsurface layers comprising a top subsurface layer below the top surface of the substrate. A protective material is patterned on the top surface of the device and a material removal process is performed to simultaneously form a contact trench and an isolation trench, the material removal process removing at least a portion of the top surface and the top subsurface layer such that the contact trench and the isolation trench are formed within the subsurface layer. An insulator is then formed within the isolation trench and the contact trench is lined with the insulator. The contact trench is then filled with a conductive material such that the conductive material is deposited over the insulator.
    Type: Grant
    Filed: November 25, 2009
    Date of Patent: September 20, 2011
    Assignee: International Business Machines Corporation
    Inventors: Alan B. Botula, BethAnn Rainey, Daniel S. Vanslette
  • Patent number: 8017468
    Abstract: A method of manufacturing a semiconductor device in which the formation of buried wiring is facilitated includes: forming columnar patterns, which are arranged in a two-dimensional array, and bridge patterns, which connect the columnar patterns in a column direction, on a main surface of a silicon substrate; injecting an impurity in a surface portion of each of the columnar patterns and bridge patterns and in surface portions of the silicon substrate, thereby forming impurity injection layers; forming a side wall on sides of the columnar patterns and bridge patterns; removing the impurity injection layer, which has been formed in the silicon substrate, with the exception of the impurity injection layer covered by the bottom portions of the side walls; removing the side walls by etch-back; and thermally oxidizing the surface portion of the bridge patterns and then etching away the same. Buried wiring extending in the column direction of the columnar patterns is formed within the silicon substrate.
    Type: Grant
    Filed: January 7, 2009
    Date of Patent: September 13, 2011
    Assignee: Elpida Memory, Inc.
    Inventor: Hiroyuki Fujimoto
  • Patent number: 8004049
    Abstract: A device includes an array of cells, the source regions of the individual cells comprising a plurality of source region branches each extending towards a source region branch of an adjacent cell, the base regions of the individual cells comprising a corresponding plurality of base region branches merging together to form a single base region surrounding the source regions. The junctions between the merged base region and the drain region define rounded current conduction path areas for the on-state of the device between adjacent cells. Floating voltage regions of opposite conductivity type to the drain region are buried in the substrate beneath the merged base region. The features of the floating voltage regions define rings of the opposite conductivity type to the drain region that surround the current conduction paths of respective cells. The floating voltage regions include respective islands situated within the current conduction paths.
    Type: Grant
    Filed: August 31, 2004
    Date of Patent: August 23, 2011
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Jean-Michel Reynes, Stephane Alves, Ivana Deram, Blandino Lopes, Joel Margheritta, Frederico Morancho
  • Patent number: 8003457
    Abstract: A substrate is provided. A pillar protruding out of a surface of the substrate is already formed on the substrate, and a patterned layer is already formed on the pillar. The pillar includes a lower part, a channel region, and an upper part from bottom to top, and the lower part has a first doped region. A gate dielectric layer is formed on a sidewall at one side of the pillar. A surrounding gate is formed on the gate dielectric layer located on the channel region, and a base line electrically connected to the channel region is formed on a sidewall at the other side of the pillar. A second doped region is formed in the upper part of the pillar.
    Type: Grant
    Filed: March 8, 2011
    Date of Patent: August 23, 2011
    Assignee: Nanya Technology Corporation
    Inventor: Jung-Hua Chen
  • Patent number: 7998816
    Abstract: A method for fabricating a semiconductor device includes forming buried bit lines separated from each other by a trench in a substrate, forming a plurality of first pillar holes that expose a top surface of the substrate, forming first active pillars buried in the first pillar holes, forming a gate conductive layer over entire surface of a resultant structure including the first active pillars, forming a gate electrode by etching the gate conducting layer to cover the first active pillars, forming a plurality of second pillar holes that expose the first active pillars by partially etching the gate electrode, and forming second active pillars buried in the second pillar holes and connected to the first active pillars.
    Type: Grant
    Filed: June 30, 2009
    Date of Patent: August 16, 2011
    Assignee: Hynix Semiconductor Inc.
    Inventor: Young-Kyun Jung
  • Patent number: 7994008
    Abstract: A planar transistor device includes two independent gates (a first and second gates) along with a semiconductor channel lying between the gates. The semiconductor channel is formed of a first material. The channel includes opposed ends comprising dielectric zone with a channel region positioned between the gates. The dielectric zones comprises an oxide of the first material.
    Type: Grant
    Filed: January 26, 2007
    Date of Patent: August 9, 2011
    Assignee: STMicroelectronics (Crolles 2) SAS
    Inventors: Romain Wacquez, Philippe Coronel, Damien Lenoble, Robin Cerutti, Thomas Skotnicki
  • Patent number: 7993988
    Abstract: Methods for fabricating a non-planar transistor. Fin field effect transistors (finFETs) are often built around a fin (e.g., a tall, thin semiconductive member). During manufacturing, a fin may encounter various mechanical stresses, e.g., inertial forces during movement of the substrate and fluid forces during cleaning steps. If the forces on the fin are too large, the fin may fracture and possibly render a transistor inoperative. Supporting one side of a fin before forming the second side of a fin creates stability in the fin structure, thereby counteracting many of the mechanical stresses incurred during manufacturing.
    Type: Grant
    Filed: August 10, 2009
    Date of Patent: August 9, 2011
    Assignee: Micron Technology, Inc.
    Inventor: Werner Juengling
  • Publication number: 20110180867
    Abstract: The present invention is related to a depletion or enhancement mode metal transistor in which the channel regions of a transistor device comprises a thin film metal or metal composite layer formed over an insulating substrate.
    Type: Application
    Filed: November 22, 2010
    Publication date: July 28, 2011
    Inventor: Dean Z. Tsang
  • Patent number: 7972920
    Abstract: Vertical MISFETs are formed over drive MISFETs and transfer MISFETs. The vertical MISFETs comprise rectangular pillar laminated bodies each formed by laminating a lower semiconductor layer (drain), an intermediate semiconductor layer, and an upper semiconductor layer (source), and gate electrodes formed on corresponding side walls of the laminated bodies with gate insulating films interposed therebetween. In each vertical MISFET, the lower semiconductor layer constitutes a drain, the intermediate semiconductor layer constitutes a substrate (channel region), and the upper semiconductor layer constitutes a source. The lower semiconductor layer, the intermediate semiconductor layer and the upper semiconductor layer are each comprised of a silicon film. The lower semiconductor layer and the upper semiconductor layer are doped with a p type and constituted of a p type silicon film.
    Type: Grant
    Filed: February 4, 2010
    Date of Patent: July 5, 2011
    Assignees: Hitachi ULSI Systems Co., Ltd., Renesas Electronics Corp.
    Inventors: Hiraku Chakihara, Kousuke Okuyama, Masahiro Moniwa, Makoto Mizuno, Keiji Okamoto, Mitsuhiro Noguchi, Tadanori Yoshida, Yasuhiko Takahshi, Akio Nishida
  • Patent number: 7955922
    Abstract: A method for manufacturing a fin-type field effect transistor simply and securely by using a SOI (Silicon On Insulator) wafer, capable of suppressing an undercut formation, is disclosed. The method includes forming a fin-shaped protrusion by selectively dry-etching a single crystalline silicon layer until an underlying buried oxide layer is exposed; forming a sacrificial oxide film by oxidizing a surface of the protrusion including a damage inflicted thereon; and forming a fin having a clean surface by removing the sacrificial oxide film by etching, wherein an etching rate r1 of the sacrificial oxide film is higher than an etching rate r2 of the buried oxide layer during the etching.
    Type: Grant
    Filed: January 11, 2008
    Date of Patent: June 7, 2011
    Assignee: Tokyo Electron Limited
    Inventors: Hajime Nakabayashi, Takuya Sugawara, Takashi Kobayashi, Junichi Kitagawa, Yoshitsugu Tanaka
  • Patent number: 7948027
    Abstract: An embedded bit line structure, in which, a substrate includes an insulator layer having an original top surface and a semiconductor layer on the original top surface of the insulator layer, and a bit line is disposed within the lower portion of the trench along one side of an active area. The bit line includes a first portion and a second portion. The first portion is located within the insulator layer and below the original top surface of the insulator layer. The second portion is disposed on the first portion to electrically connect the semiconductor layer of the active area. An insulator liner is disposed on the first portion of the bit line and between the second portion of the bit line and the semiconductor layer of the substrate opposite the active area for isolation. An STI is disposed within the trench to surround the active area for isolation.
    Type: Grant
    Filed: December 10, 2009
    Date of Patent: May 24, 2011
    Assignee: Nanya Technology Corp.
    Inventors: Shing-Hwa Renn, Cheng-Chih Huang, Yung-Meng Huang
  • Patent number: 7944005
    Abstract: A semiconductor device includes a semiconductor substrate including an NMOS region and a PMOS region, active regions of the semiconductor substrate defined by a device isolation structure formed in the semiconductor substrate, the active regions including an NMOS active region defined in the NMOS region and a PMOS active region defined in the PMOS region, a gate insulating film disposed over the active regions, and a dual poly gate including an amorphous titanium layer formed over the gate insulating film in the NMOS region and the PMOS region. The dual poly gate includes a stacked structure having a lower gate electrode formed of an impurity doped polysilicon layer, a barrier layer including the amorphous titanium layer, and an upper gate electrode formed of a tungsten layer.
    Type: Grant
    Filed: June 29, 2007
    Date of Patent: May 17, 2011
    Assignee: Hynix Semiconductor Inc.
    Inventor: Yun Seok Chun
  • Patent number: 7943466
    Abstract: In one embodiment, a semiconductor device is formed having sub-surface charge compensation regions in proximity to channel regions of the device. The charge compensation trenches comprise at least two opposite conductivity type semiconductor layers. A channel connecting region electrically couples the channel region to one of the at least two opposite conductivity type semiconductor layers.
    Type: Grant
    Filed: January 22, 2010
    Date of Patent: May 17, 2011
    Assignee: Semiconductor Components Industries, LLC
    Inventors: Shanghui Larry Tu, Gordon M. Grivna
  • Patent number: 7943988
    Abstract: A semiconductor device includes a semiconductor layer of a first conductivity type and a first doping concentration. A first semiconductor region, used as drain, of the first conductivity type has a lower doping concentration than the semiconductor layer and is over the semiconductor layer. A gate dielectric is over the first semiconductor region. A gate electrode over the gate dielectric has a metal-containing center portion and first and second silicon portions on opposite sides of the center portion. A second semiconductor region, used as a channel, of the second conductivity type has a first portion under the first silicon portion and the gate dielectric. A third semiconductor region, used as a source, of the first conductivity type is laterally adjacent to the first portion of the second semiconductor region. The metal-containing center portion, replacing silicon, increases the source to drain breakdown voltage.
    Type: Grant
    Filed: September 5, 2008
    Date of Patent: May 17, 2011
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Daniel Pham, Bich-Yen Nguyen
  • Patent number: 7939882
    Abstract: A semiconductor device includes a main field effect transistor (FET) and one or more sense FETs. A transistor portion of the sense FET is surrounded by transistors of the main FET. An electrical isolation structure that surrounds the main FET is configured to electrically isolate source and body regions of the main FET from source and body regions of the sense FET. A sense FET source pad is located at an edge of the main FET and spaced apart from the transistor portion of the sense FET. The sense FET source pad is connected to the transistor portion of the sense FET by a sense FET probe metal. The isolation structure is configured such that the transistor portion of the sense FET and the sense FET source pad are located outside an active area of the main FET.
    Type: Grant
    Filed: August 27, 2010
    Date of Patent: May 10, 2011
    Assignee: Alpha and Omega Semiconductor Incorporated
    Inventors: Yi Su, Anup Bhalla
  • Patent number: 7936007
    Abstract: A field effect transistor includes a semiconductor region of a first conductivity type having an upper surface and a lower surface, the lower surface of the semiconductor region extending over and abutting a substrate. A well regions of a second conductivity type is disposed within the semiconductor region. The field effect transistor also includes source regions of the first conductivity type disposed in the well regions and a gate electrode extending over each well region and overlapping a corresponding one of the source regions. Each gate electrode is insulated from the underlying well region by a gate dielectric. At least one LDD region of the first conductivity type is disposed in the semiconductor region between every two adjacent well regions such that the at least one LDD region is in contact with the two adjacent well regions between which it is disposed.
    Type: Grant
    Filed: April 16, 2009
    Date of Patent: May 3, 2011
    Assignee: Fairchild Semiconductor Corporation
    Inventors: Bruce D. Marchant, Daniel M. Kinzer
  • Patent number: 7935598
    Abstract: A vertical channel transistor includes a plurality of active pillar patterns extending perpendicularly from the top surface of the substrate toward an upper part. A gate insulating layer is deposited on the side wall of the active pillar pattern and serves as an ion diffusion barrier between the pillar patterns and surrounding lower gate electrodes. The resultant pillar pattern structure is encapsulated with a metal. The resultant pillar pattern is surrounded on all sides by a specified height by a sacrificial layer of Spin-On Dielectric (SOD). The metal layer is etched-back to the height of the sacrificial layer, thus forming the lower gate electrodes. A spacer layer of an insulating mater is deposited surrounding the upper part of the pillar patterns and the sacrificial layer is removed exposing a part of the lower gate electrodes. The exposed gate electrode is etched to facilitate semiconductor integration.
    Type: Grant
    Filed: December 16, 2008
    Date of Patent: May 3, 2011
    Assignee: Hynix Semiconductor Inc.
    Inventor: Chun-Hee Lee
  • Patent number: 7932553
    Abstract: A semiconductor device includes an insulated gate transistor and a resistor. The insulated gate transistor includes a plurality of first cells for supplying electric current to a load and a second cell for detecting an electric current that flows in the first cells. A gate terminal of the plurality of first cells is coupled with a gate terminal of the second cell and a source terminal of the plurality of first cells is coupled with a source terminal of the second cell on a lower potential side. The resistor has a first terminal coupled with a drain terminal of the second cell and a second terminal coupled with a drain terminal of the first cells on a higher potential side. A gate voltage of the insulated gate transistor is feedback-controlled based on an electric potential of the resistor.
    Type: Grant
    Filed: November 18, 2008
    Date of Patent: April 26, 2011
    Assignee: Denso Corporation
    Inventors: Hitoshi Yamaguchi, Tsuyoshi Yamamoto
  • Publication number: 20110086476
    Abstract: The invention includes methods of forming field effect transistors. In one implementation, the invention encompasses a method of forming a field effect transistor on a substrate, where the field effect transistor comprises a pair of conductively doped source/drain regions, a channel region received intermediate the pair of source/drain regions, and a transistor gate received operably proximate the channel region. Such implementation includes conducting a dopant activation anneal of the pair of source/drain regions prior to depositing material from which a conductive portion of the transistor gate is made. Other aspects and implementations are contemplated.
    Type: Application
    Filed: December 15, 2010
    Publication date: April 14, 2011
    Applicant: Micron Technology, Inc.
    Inventors: Robert J. Hanson, Sanh D. Tang
  • Patent number: 7923821
    Abstract: Isolation regions for semiconductor substrates include dielectric-filled trenches and field oxide regions. Protective caps of dielectric materials dissimilar from the dielectric materials in the main portions of the trenches and field oxide regions may be used to protect the structures from erosion during later process steps. The top surfaces of the isolation structures are coplanar with the surface of the substrate. Field doping regions may be formed beneath the field oxide regions. To meet the demands of different devices, the isolation structures may have varying widths and depths.
    Type: Grant
    Filed: April 30, 2008
    Date of Patent: April 12, 2011
    Assignee: Advanced Analogic Technologies, Inc.
    Inventor: Richard K. Williams
  • Patent number: 7923320
    Abstract: Silicon carbide metal-oxide semiconductor field effect transistors (MOSFETs) may include an n-type silicon carbide drift layer, a first p-type silicon carbide region adjacent the drift layer and having a first n-type silicon carbide region therein, an oxide layer on the drift layer, and an n-type silicon carbide limiting region disposed between the drift layer and a portion of the first p-type region. The limiting region may have a carrier concentration that is greater than the carrier concentration of the drift layer. Methods of fabricating silicon carbide MOSFET devices are also provided.
    Type: Grant
    Filed: February 21, 2007
    Date of Patent: April 12, 2011
    Assignee: Cree, Inc.
    Inventor: Sei-Hyung Ryu
  • Patent number: 7919376
    Abstract: A method for manufacturing a CMOS transistor includes preparing a silicon substrate provided with a first buried layer, a second buried layer and a body, vertically forming device-isolation films inside the body, forming a first-type well inside the body arranged on the first buried layer, and vertically forming a first source and drain region inside the first-type well, forming a second-type well inside the body arranged on the second buried layer, and vertically forming a second source and drain region inside the second-type well, and vertically forming a recessed gate between the first-type well and the second-type well.
    Type: Grant
    Filed: December 27, 2008
    Date of Patent: April 5, 2011
    Assignee: Dongbu HiTek Co., Ltd.
    Inventor: Min-Seok Kim
  • Patent number: 7910482
    Abstract: A method for processing a substrate comprising at least a buried oxide (BOX) layer and a semiconductor material layer is provided. The method includes etching the semiconductor material layer to form a vertical semiconductor material structure overlying the BOX layer, leaving an exposed portion of the BOX layer. The method further includes exposing a top surface of the exposed portion of the BOX layer to an oxide etch resistant species to form a thin oxide etch resistant layer overlying the exposed portion of the BOX layer.
    Type: Grant
    Filed: May 30, 2008
    Date of Patent: March 22, 2011
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Tab A. Stephens, Leo Mathew, Lakshmanna Vishnubholta, Bruce E. White
  • Patent number: 7910991
    Abstract: A disclosed power transistor, suitable for use in a switch mode converter that is operable with a switching frequency exceeding, for example, 5 MHz or more, includes a gate dielectric layer overlying an upper surface of a semiconductor substrate and first and second gate electrodes overlying the gate dielectric layer. The first gate electrode is laterally positioned overlying a first region of the substrate. The first substrate region has a first type of doping, which may be either n-type or p-type. A second gate electrode of the power transistor overlies the gate dielectric and is laterally positioned over a second region of the substrate. The second substrate region has a second doping type that is different than the first type. The transistor further includes a drift region located within the substrate in close proximity to an upper surface of the substrate and laterally positioned between the first and second substrate regions.
    Type: Grant
    Filed: March 31, 2008
    Date of Patent: March 22, 2011
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Hongning Yang, Jiang-Kai Zuo
  • Patent number: 7910413
    Abstract: A method of manufacturing a fin structure comprises forming a first structure of a first material type on a wafer and forming a buried channel of a second material adjacent sidewalls of the first structure. The second material type is different than the first material type. The structure includes a first structure and a buried channel.
    Type: Grant
    Filed: December 20, 2007
    Date of Patent: March 22, 2011
    Assignee: International Business Machines Corporation
    Inventor: Huilong Zhu
  • Patent number: 7902595
    Abstract: In one embodiment of the present invention, a power IC device is disclosed containing a power MOS transistor with a low ON resistance and a surface channel MOS transistor with a high operation speed. There is also provided a method of manufacturing such a device. A chip has a surface of which the planar direction is not less than ?8° and not more than +8° off a silicon crystal face. The p-channel trench power MOS transistor includes a trench formed vertically from the surface of the chip, a gate region in the trench, an inversion channel region on a side wall of the trench, a source region in a surface layer of the chip, and a drain region in a back surface layer of the chip. The surface channel MOS transistor has an inversion channel region fabricated so that an inversion channel current flows in a direction not less than ?8° and not more than +8° off the silicon crystal direction.
    Type: Grant
    Filed: May 31, 2007
    Date of Patent: March 8, 2011
    Assignees: Sharp Kabushiki Kaisha, National University Corporation Tohoku University, Yazaki Corporation
    Inventors: Alberto O. Adan, Mitsuhiro Kikuta, Akinobu Teramoto, Tadahiro Ohmi, Hiroo Yabe, Takanori Watanabe
  • Patent number: 7902017
    Abstract: A process of forming an electronic device can include providing a workpiece comprising a substrate, including an underlying doped region, and a semiconductor layer overlying the underlying doped region, wherein the semiconductor layer has a primary surface spaced apart from the underlying doped region. The process can also include forming a vertically-oriented conductive region extending from the primary surface to the underlying doped region, and forming a horizontally-oriented doped region adjacent to the primary surface. In a finished form of the electronic device, the horizontally-oriented doped region extends further in a lateral direction toward a region where a source region has been or will be formed, as compared to the vertically-oriented conductive region. The electronic device includes a transistor that includes the underlying doped region, the vertically-oriented conductive region, and the horizontally-oriented doped region.
    Type: Grant
    Filed: December 17, 2008
    Date of Patent: March 8, 2011
    Assignee: Semiconductor Components Industries, LLC
    Inventor: Gary H. Loechelt
  • Patent number: 7892912
    Abstract: A method for forming a vertical channel transistor of a semiconductor device includes forming a plurality of pillar patterns over a substrate, forming a gate insulation layer encapsulating the resultant pillar pattern structure, forming a surrounding gate electrode conduction layer surrounding the sidewalls of the pillar pattern including the gate insulation layer, filling a sacrificial layer to a predetermined height of a surrounding gate electrode in a gap region between neighboring pillar patterns having the surrounding gate electrode conduction layer, and forming the surrounding gate electrode by removing a portion of the surrounding gate electrode conduction layer exposed by the sacrificial layer.
    Type: Grant
    Filed: December 23, 2008
    Date of Patent: February 22, 2011
    Assignee: Hynix Semiconductor Inc.
    Inventor: Myung-Ok Kim
  • Patent number: 7884344
    Abstract: A phase change memory device resistant to stack pattern collapse is presented. The phase change memory device includes a silicon substrate, switching elements, heaters, stack patterns, bit lines and word lines. The silicon substrate has a plurality of active areas. The switching elements are connected to the active areas. The heaters are connected to the switching elements. The stack patterns are connected to the heaters. The bit lines are connected to the stack patterns. The word lines are connected to the active areas of the silicon substrate.
    Type: Grant
    Filed: July 16, 2008
    Date of Patent: February 8, 2011
    Assignee: Hynix Semiconductor Inc.
    Inventor: Heon Yong Chang
  • Patent number: 7879676
    Abstract: Trench gate MOSFET devices may be formed using a single mask to define gate trenches and body contact trenches. A hard mask is formed on a surface of a semiconductor substrate. A trench mask is applied on the hard mask to predefine a body contact trench and a gate trench. These predefined trenches are simultaneously etched into the substrate to a first predetermined depth. A gate trench mask is next applied on top of the hard mask. The gate trench mask covers the body contact trenches and has openings at the gate trenches. The gate trench, but not the body contact trench, is etched to a second predetermined depth. Conductive material of a first kind may fill the gate trench to form a gate. Conductive material of a second kind may fill the body contact trench to form a body contact.
    Type: Grant
    Filed: July 30, 2010
    Date of Patent: February 1, 2011
    Assignee: Alpha & Omega Semiconductor Incorporated
    Inventors: Yeeheng Lee, Hong Chang, Tiesheng Li, John Chen, Anup Bhalla
  • Patent number: 7879659
    Abstract: Fin-FET (fin field effect transistor) devices and methods of fabrication are disclosed. The Fin-FET devices include dual fin structures that may form a channel region between a source region and a drain region. In some embodiments, the dual fin structures are formed by forming shallow trench isolation structures, using a pair of shallow trench isolation (STI) structures as a mask to define a recess in a portion of the substrate between the pair of STI structures, and recessing the STI structures so that the resulting dual fin structure protrudes from an active surface of the substrate. The dual fin structure may be used to form single-gate, double-gate or triple-gate fin-FET devices. Electronic systems including such fin-FET devices are also disclosed.
    Type: Grant
    Filed: July 17, 2007
    Date of Patent: February 1, 2011
    Assignee: Micron Technology, Inc.
    Inventors: Aaron R. Wilson, Larson Lindholm, David Hwang
  • Patent number: 7872300
    Abstract: A power semiconductor component (1) contains a weakly doped drift zone (9), a drain zone (10) and a MOS structure (12) situated at the front side (2) of the power semiconductor component (1). An edge plate (6) of the first conductivity type is provided at its edge (8) above the drift zone (9). The edge plate (6) is doped more highly than the drift zone (9). Situated above the edge plate (6) is an insulation layer (24) with an overlying field plate (7) made of polysilicon. The field plate (7) forms together with the edge plate (6) a plate capacitor structure which increases the drain-source output capacitance of the power semiconductor component (1), so that fewer radiofrequency interference disturbances are caused by the power semiconductor component (1) during switching.
    Type: Grant
    Filed: May 11, 2006
    Date of Patent: January 18, 2011
    Assignee: Infineon Technologies AG
    Inventors: Uwe Wahl, Armin Willmeroth
  • Patent number: 7868379
    Abstract: An electronic device can include a transistor. In an embodiment, the transistor can include a semiconductor layer having a primary surface and a conductive structure. The conductive structure can include a horizontally-oriented doped region lying adjacent to the primary surface, an underlying doped region spaced apart from the primary surface and the horizontally-oriented doped region, and a vertically-oriented conductive region extending through a majority of the thickness of the semiconductor layer and electrically connecting the doped horizontal region and the underlying doped region. In another embodiment, the transistor can include a gate dielectric layer, wherein the field-effect transistor is designed to have a maximum gate voltage of approximately 20 V, a maximum drain voltage of approximately 30 V, and a figure of merit no greater than approximately 30 m?*nC.
    Type: Grant
    Filed: December 17, 2008
    Date of Patent: January 11, 2011
    Assignee: Semiconductor Components Industries, LLC
    Inventor: Gary H. Loechelt
  • Patent number: 7858478
    Abstract: A method for producing an integrated circuit including a trench transistor and an integrated circuit is disclosed.
    Type: Grant
    Filed: February 23, 2010
    Date of Patent: December 28, 2010
    Assignee: Infineon Technologies Austria AG
    Inventor: Franz Hirler
  • Patent number: 7851283
    Abstract: Therefore, disclosed above are embodiments of a multi-fin field effect transistor structure (e.g., a multi-fin dual-gate FET or tri-gate FET) that provides low resistance strapping of the source/drain regions of the fins, while also maintaining low capacitance to the gate by raising the level of the straps above the level of the gate. Embodiments of the structure of the invention incorporate either conductive vias or taller source/drain regions in order to electrically connect the source/drain straps to the source/drain regions of each fin. Also, disclosed are embodiments of associated methods of forming these structures.
    Type: Grant
    Filed: July 30, 2008
    Date of Patent: December 14, 2010
    Assignee: International Business Machines Corporation
    Inventors: Brent A. Anderson, Thomas Ludwig, Edward J. Nowak
  • Patent number: 7851309
    Abstract: Integrated circuit components are described that are formed using selective epitaxy such that the integrated circuit components, such as transistors, are vertically oriented. These structures have regions that are doped in situ during selective epitaxial growth of the component body.
    Type: Grant
    Filed: April 6, 2009
    Date of Patent: December 14, 2010
    Assignee: Micron Technology, Inc.
    Inventor: Terrence C. Leslie
  • Patent number: 7851293
    Abstract: A method for forming a vertical channel transistor in a semiconductor device includes providing a substrate, forming pillar patterns extending perpendicular from the upper surface of the substrate, forming a spin on carbon (SOC) layer in a gap region between the pillar patterns, forming photoresist patterns above a resultant structure where the SOC layer is filled to expose a region for an isolation trench, etching the SOC layer between the photoresist pattern barriers to expose the region for the isolation trench, and etching the exposed structure to a certain depth forming the isolation trench.
    Type: Grant
    Filed: December 12, 2008
    Date of Patent: December 14, 2010
    Assignee: Hynix Semiconductor Inc.
    Inventor: Yun-Seok Cho
  • Patent number: 7833856
    Abstract: According to an aspect of the invention, there is provided a semiconductor device comprising a semiconductor substrate, a first insulating layer formed on the semiconductor substrate, a first conductive layer formed as a floating gate on the first insulating layer, a second insulating layer formed as an interelectrode insulating film on the first conductive layer, and comprising three layers of a first film mainly including silicon and oxygen, a second film mainly including silicon and nitrogen, and a third film mainly including silicon and oxygen, wherein a silicon and nitrogen composition ratio of the second film is in a state in which the silicon is in excess of a stoichiometric composition, and a second conductive layer formed as a control gate on the second insulating film.
    Type: Grant
    Filed: May 21, 2007
    Date of Patent: November 16, 2010
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Masayuki Tanaka, Hirokazu Ishida
  • Patent number: 7829898
    Abstract: In a MOSFET using SiC a p-type channel is formed by epitaxial growth, so that the depletion layer produced in the p-type region right under the channel is reduced, even when the device is formed in a self-aligned manner. Thus, a high breakdown voltage is obtained. Also, since the device is formed in a self-aligned manner, the device size can be reduced so that an increased number of devices can be fabricated in a certain area and the on-state resistance can be reduced.
    Type: Grant
    Filed: February 14, 2006
    Date of Patent: November 9, 2010
    Assignee: Mitsubishi Electric Corporation
    Inventors: Kenichi Ootsuka, Tetsuya Takami, Tadaharu Minato
  • Publication number: 20100276752
    Abstract: A voltage converter can include an output circuit having a vertical high-side device and a vertical low-side device which can be formed on a single die (i.e. a “PowerDie”). The high side device can be a PMOS transistor, while the low side device can be an NMOS transistor. The source of the PMOS transistor and the source of the NMOS transistor can be formed from the same metal structure, with the source of the high side device electrically connected to VIN and the source of the low side device electrically connected to ground. A drain of the high side PMOS transistor can be electrically shorted to the drain of the low side NMOS transistor during device operation using a metal layer which is interposed between the transistors and a semiconductor substrate.
    Type: Application
    Filed: March 5, 2010
    Publication date: November 4, 2010
    Inventor: François Hébert
  • Patent number: 7820502
    Abstract: A method for forming carbon nanotube field effect transistors, arrays of carbon nanotube field effect transistors, and device structures and arrays of device structures formed by the methods. The methods include forming a stacked structure including a gate electrode layer and catalyst pads each coupled electrically with a source/drain contact. The gate electrode layer is divided into multiple gate electrodes and at least one semiconducting carbon nanotube is synthesized by a chemical vapor deposition process on each of the catalyst pads. The completed device structure includes a gate electrode with a sidewall covered by a gate dielectric and at least one semiconducting carbon nanotube adjacent to the sidewall of the gate electrode. Source/drain contacts are electrically coupled with opposite ends of the semiconducting carbon nanotube to complete the device structure. Multiple device structures may be configured either as a memory circuit or as a logic circuit.
    Type: Grant
    Filed: October 29, 2007
    Date of Patent: October 26, 2010
    Assignee: International Business Machines Corporation
    Inventors: Toshiharu Furukawa, Mark Charles Hakey, Steven John Holmes, David Vaolav Horak, Charles William Koburger, III, Peter H. Mitchell, Larry Alan Nesbit
  • Patent number: 7807526
    Abstract: The present invention provides two-transistor silicon-oxide-nitride-oxide-semiconductor (2-Tr SONOS) non-volatile memory cells with randomly accessible storage locations as well as method of fabricating the same. In one embodiment, a 2-Tr SONOS cell is provided in which the select transistor is located with a trench structure having trench depth from 1 to 2 ?m and the memory transistor is located on a surface of a semiconductor substrate adjoining the trench structure. In another embodiment, a 2-Tr SONOS memory cell is provided in which both the select transistor and the memory transistor are located within a trench structure having the depth mentioned above.
    Type: Grant
    Filed: October 30, 2007
    Date of Patent: October 5, 2010
    Assignee: International Business Machines Corporation
    Inventors: Herbert L. Ho, Jack A. Mandelman, Tak H. Ning, Yoichi Otani
  • Patent number: 7803675
    Abstract: The gate-all-around (GAA) type semiconductor device may include source/drain layers, a nanowire channel, a gate electrode and an insulation layer pattern. The source/drain layers may be disposed at a distance in a first direction on a semiconductor substrate. The nanowire channel may connect the source/drain layers. The gate electrode may extend in a second direction substantially perpendicular to the first direction. The gate electrode may have a height in a third direction substantially perpendicular to the first and second directions and may partially surround the nanowire channel. The insulation layer pattern may be formed between and around the source/drain layers on the semiconductor substrate and may cover the nanowire channel and a portion of the gate electrode. Thus, a size of the gate electrode may be reduced, and/or a gate induced drain leakage (GIDL) and/or a gate leakage current may be reduced.
    Type: Grant
    Filed: October 2, 2007
    Date of Patent: September 28, 2010
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Sung-Dae Suk, Dong-Won Kim, Kyoung-Hwan Yeo
  • Patent number: 7803677
    Abstract: A method of manufacturing a semiconductor device, particularly a vertical transistor, including forming a contact hole and forming a pillar using an epitaxial growth process.
    Type: Grant
    Filed: June 5, 2008
    Date of Patent: September 28, 2010
    Assignee: Hynix Semiconductor Inc.
    Inventor: Cheol Kyun Kim
  • Patent number: 7803683
    Abstract: A semiconductor device includes an insulating film formed above an upper surface of a semiconductor substrate and including a contact hole, the contact hole including an upper portion and a lower portion located on the upper portion via a boundary as a first lower end of the upper portion and a first upper end of the lower portion, the boundary including a second inner width same as the first inner width, the lower portion including a second lower end having a third inner width narrower than the second inner width, a first conductive plug made from polycrystalline silicon and formed in the lower portion of the contact hole so that the exposed upper surface of the substrate is in contact with the first conductive plug, and a second conductive plug formed on the first conductive plug and made from a conductive material different from the polycrystalline silicon.
    Type: Grant
    Filed: October 1, 2009
    Date of Patent: September 28, 2010
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Takaharu Nishimura
  • Publication number: 20100230762
    Abstract: An integrated circuit includes a logic circuit and a memory cell. The logic circuit includes a P-channel transistor, and the memory cell includes a P-channel transistor. The P-channel transistor of the logic circuit includes a channel region. The channel region has a portion located along a sidewall of a semiconductor structure having a surface orientation of (110). The portion of the channel region located along the sidewall has a first vertical dimension that is greater than a vertical dimension of any portion of the channel region of the P-channel transistor of the memory cell located along a sidewall of a semiconductor structure having a surface orientation of (110).
    Type: Application
    Filed: May 24, 2010
    Publication date: September 16, 2010
    Applicant: FREESCALE SEMICONDUCTOR, INC.
    Inventors: James D. Burnett, Leo Mathew, Byoung W. Min
  • Patent number: 7795675
    Abstract: A trench MIS device is formed in a P-epitaxial layer that overlies an N-epitaxial layer and an N+ substrate. In one embodiment, the device includes an N-type drain-drift region that extends from the bottom of the trench to the N-epitaxial layer. Preferably, the drain-drift region is formed at least in part by fabricating spacers on the sidewalls of the trench and implanting an N-type dopant between the sidewall spacers and through the bottom of the trench. The drain-drift region can be doped more heavily than the conventional “drift region” that is formed in an N-epitaxial layer. Thus, the device has a low on-resistance. The device can be terminated by a plurality of polysilicon-filled termination trenches located near the edge of the die, with the polysilicon in each termination trench being connected to the mesa adjacent the termination trench.
    Type: Grant
    Filed: September 21, 2005
    Date of Patent: September 14, 2010
    Assignee: Siliconix Incorporated
    Inventors: Mohamed N. Darwish, Kyle W. Terrill, Jainhai Qi, Qufei Chen