Including Texturizing Storage Node Layer Patents (Class 438/255)
-
Patent number: 11710744Abstract: A semiconductor device that is suitable for miniaturization and higher density is provided. A semiconductor device includes a first transistor over a semiconductor substrate, a second transistor including an oxide semiconductor over the first transistor, and a capacitor over the second transistor. The capacitor includes a first conductor, a second conductor, and an insulator. The second conductor covers a side surface of the first conductor with an insulator provided therebetween.Type: GrantFiled: July 1, 2021Date of Patent: July 25, 2023Inventors: Shunpei Yamazaki, Kiyoshi Kato, Masayuki Sakakura
-
Patent number: 11107881Abstract: The subject application relates to a semiconductor package device, which includes a first conductive layer; a semiconductor wall disposed on the first conductive layer; a first conductive wall disposed on the first conductive layer; and an insulation layer disposed on the first conductive layer and between the semiconductor wall and the first conductive wall.Type: GrantFiled: April 25, 2019Date of Patent: August 31, 2021Assignee: ADVANCED SEMICONDUCTOR ENGINEERING, INC.Inventors: Shao Hsuan Chuang, Huang-Hsien Chang, Min Lung Huang, Yu Cheng Chen, Syu-Tang Liu
-
Patent number: 11056510Abstract: A semiconductor device that is suitable for miniaturization and higher density is provided. A semiconductor device includes a first transistor over a semiconductor substrate, a second transistor including an oxide semiconductor over the first transistor, and a capacitor over the second transistor. The capacitor includes a first conductor, a second conductor, and an insulator. The second conductor covers a side surface of the first conductor with an insulator provided therebetween.Type: GrantFiled: July 13, 2020Date of Patent: July 6, 2021Inventors: Shunpei Yamazaki, Kiyoshi Kato, Masayuki Sakakura
-
Patent number: 10916561Abstract: A method is provided for forming a semiconductor device. The method includes forming a vertical film stack containing a sacrificial layer on a substrate and dielectric layers alternatingly and repeatedly stacked on the sacrificial layer, removing the sacrificial layer to form a horizontal channel above the substrate, depositing a conformal dielectric layer in the horizontal channel, etching trenches in the vertical film stack that connect to the horizontal channel. The method further includes removing the conformal dielectric layer from the horizontal channel, filling the horizontal channel and the trenches with a first electrically conductive material, removing the first electrically conductive material from the trenches, and filling the trenches with a second electrically conductive material.Type: GrantFiled: April 3, 2019Date of Patent: February 9, 2021Assignee: Tokyo Electron LimitedInventors: Karthik Pillai, Soo Doo Chae, Sangcheol Han
-
Patent number: 9978754Abstract: A semiconductor arrangement includes a logic region and a memory region. The memory region has an active region that includes a semiconductor device. The memory region also has a capacitor within one or more dielectric layers over the active region. The semiconductor arrangement includes a protective ring within at least one of the logic region or the memory region and that separates the logic region from the memory region. The capacitor has a first electrode, a second electrode and an insulating layer between the first electrode and the second electrode, where an electrode unit of the first electrode has a first portion and a second portion, and where the second portion is above the first portion and is wider than the first portion.Type: GrantFiled: January 23, 2017Date of Patent: May 22, 2018Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LIMITEDInventors: Chern-Yow Hsu, Chen-Jong Wang, Chia-Shiung Tsai, Shih-Chang Liu, Xiaomeng Chen
-
Patent number: 9224787Abstract: A method for fabricating a nonvolatile memory device is provided. The method includes forming a transistor including an impurity region formed in a substrate, forming a first interlayer insulation layer covering the transistor, the first interlayer insulation layer including a protrusion overlapping the impurity region, and forming an information storage unit on the protrusion, the information storage unit exposing side surfaces of the protrusion using point cusp magnetron-physical vapor deposition (PCM-PVD) and electrically connected to the impurity region.Type: GrantFiled: February 28, 2014Date of Patent: December 29, 2015Assignee: Samsung Electronics Co., Ltd.Inventors: Whan-Kyun Kim, Young-Hyun Kim, Woo-Jin Kim
-
Patent number: 9056762Abstract: A device includes a semiconductor substrate, and a capacitive sensor having a back-plate, wherein the back-plate forms a first capacitor plate of the capacitive sensor. The back-plate is a portion of the semiconductor substrate. A conductive membrane is spaced apart from the semiconductor substrate by an air-gap. A capacitance of the capacitive sensor is configured to change in response to a movement of the polysilicon membrane.Type: GrantFiled: April 3, 2014Date of Patent: June 16, 2015Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Bruce C. S. Chou, Jung-Kuo Tu, Chen-Chih Fan
-
Patent number: 9006088Abstract: A method for forming a semiconductor gate structure and a semiconductor gate structure are provided. The method includes: providing a substrate with a Ge layer as a surface thereof; forming a Sn layer on the Ge layer, in which an interface between the Ge layer and the Sn layer is a GeSn layer; removing the Sn layer to expose the GeSn layer; forming a GeSnOx passivation layer by performing an oxidation treatment for the GeSn layer, or forming a GeSnN or GeSnON passivation layer by performing a passivation treatment for the GeSn layer; and forming a gate stack on the GeSnOx , GeSnN or GeSnON passivation layer.Type: GrantFiled: June 14, 2013Date of Patent: April 14, 2015Assignee: Tsinghua UniversityInventors: Mei Zhao, Renrong Liang, Jing Wang, Jun Xu
-
Patent number: 8993397Abstract: A method of forming a memory device. The method provides a semiconductor substrate having a surface region. A first dielectric layer is formed overlying the surface region of the semiconductor substrate. A bottom wiring structure is formed overlying the first dielectric layer and a second dielectric material is formed overlying the top wiring structure. A bottom metal barrier material is formed to provide a metal-to-metal contact with the bottom wiring structure. The method forms a pillar structure by patterning and etching a material stack including the bottom metal barrier material, a contact material, a switching material, a conductive material, and a top barrier material. The pillar structure maintains a metal-to-metal contact with the bottom wiring structure regardless of the alignment of the pillar structure with the bottom wiring structure during etching. A top wiring structure is formed overlying the pillar structure at an angle to the bottom wiring structure.Type: GrantFiled: August 27, 2013Date of Patent: March 31, 2015Assignee: Crossbar, Inc.Inventor: Scott Brad Herner
-
Patent number: 8884350Abstract: This semiconductor device according to the present invention includes a plurality of cylindrical lower electrodes aligned densely in a memory array region; a plate-like support which is contacted on the side surface of the cylindrical lower electrodes, and links to support the plurality of the cylindrical lower electrodes; a pore portion provided in the plate-like support; a dielectric film covering the entire surface of the cylindrical lower electrodes and the plate-like support in which the pore portion is formed; and an upper electrode formed on the surface of the dielectric film, wherein the boundary length of the part on the side surface of the cylindrical lower electrode which is exposed on the pore portion is shorter than the boundary length of the part on the side surface of the cylindrical lower electrode which is not exposed on the pore portion.Type: GrantFiled: January 23, 2013Date of Patent: November 11, 2014Assignee: PS4 Luxco S.A.R.L.Inventor: Toshiyuki Hirota
-
Patent number: 8871588Abstract: A method of fabricating a memory cell comprises forming a plurality of doped semiconductor layers on a carrier substrate. The method further comprises forming a plurality of digit lines separated by an insulating material. The digit lines are arrayed over the doped semiconductor layers. The method further comprises etching a plurality of trenches into the doped semiconductor layers. The method further comprises depositing an insulating material into the plurality of trenches to form a plurality of electrically isolated transistor pillars. The method further comprises bonding at least a portion of the structure formed on the carrier substrate to a host substrate. The method further comprises separating the carrier substrate from the host substrate.Type: GrantFiled: May 18, 2012Date of Patent: October 28, 2014Assignee: Micron Technology, Inc.Inventors: David H. Wells, H. Montgomery Manning
-
Patent number: 8847361Abstract: A system and method for a memory cell layout is disclosed. An embodiment comprises forming dummy layers and spacers along the sidewalls of the dummy layer. Once the spacers have been formed, the dummy layers may be removed and the spacers may be used as a mask. By using the spacers instead of a standard lithographic process, the inherent limitations of the lithographic process can be avoided and further scaling of FinFET devices can be achieved.Type: GrantFiled: June 14, 2013Date of Patent: September 30, 2014Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Jhon-Jhy Liaw, Chang-Yun Chang
-
Patent number: 8835251Abstract: A semiconductor device includes a transistor, a capacitor and a resistor wherein the capacitor includes a doped polysilicon layer to function as a bottom conductive layer with a salicide block (SAB) layer as a dielectric layer covered by a Ti/TiN layer as a top conductive layer thus constituting a single polysilicon layer metal-insulator-polysilicon (MIP) structure. While the high sheet rho resistor is also formed on the same single polysilicon layer with differential doping of the polysilicon layer.Type: GrantFiled: December 20, 2010Date of Patent: September 16, 2014Assignee: Alpha and Omega Semiconductor IncorporatedInventors: YongZhong Hu, Sung-Shan Tai
-
Patent number: 8809198Abstract: A method for selectively removing nano-crystals on an insulating layer. The method includes providing an insulating layer with nano-crystals thereon; exposing the nano-crystals to a high density plasma comprising a source of free radical chlorine, ionic chlorine, or both to modify the nano-crystals; and removing the modified nano-crystals with a wet etchant.Type: GrantFiled: December 30, 2009Date of Patent: August 19, 2014Assignee: Micron Technology, Inc.Inventors: Ramakanth Alapati, Paul Morgan, Max Hineman
-
Patent number: 8779546Abstract: A semiconductor memory system and method of manufacture thereof including: a base wafer; an isolation region on the base wafer; an ion implanted region on the base wafer separated by the isolation region; a bit line contact plug over the ion implanted region; an isolation sidewall on the sides of the bit line contact plug; a resistor or capacitor on the isolation sidewall opposite the bit line contact plug between the bit line contact plug and another of the bit line contact plug; and a bit line over the resistor or capacitor and on the bit line contact plug.Type: GrantFiled: March 7, 2013Date of Patent: July 15, 2014Assignee: Sony CorporationInventors: Masanori Tsukamoto, Satoru Mayuzumi
-
Patent number: 8748282Abstract: A semiconductor device is manufactured by forming a hole as being extended through a first insulating film and an insulating interlayer stacked over a semiconductor substrate, allowing side-etching of the inner wall of the hole to proceed specifically in a portion of the insulating interlayer, to thereby form a structure having the first insulating film projected out from the edge towards the center of the hole; forming a lower electrode film as being extended over the top surface, side face and back surface of the first insulating film, and over the inner wall and bottom surface of the hole; filling a protective film in the hole; removing the lower electrode film specifically in portions fallen on the top surface and side face of the first insulating film; removing the protective film; and forming a cylindrical capacitor in the hole.Type: GrantFiled: June 27, 2011Date of Patent: June 10, 2014Assignee: Renesas Electronics CorporationInventors: Ryo Kubota, Nobutaka Nagai, Satoshi Kura
-
Patent number: 8710673Abstract: A wiring structure in a semiconductor device may include a first insulation layer formed on a substrate, a first contact plug, a capping layer pattern, a second insulation layer and a second contact plug. The first insulation layer has a first opening that exposes a contact region of the substrate. The first contact plug is formed on the contact region to partially fill up the first opening. The capping layer pattern is formed on the first contact plug to fill up the first opening. The second insulation layer is formed on the capping layer pattern and the first insulation layer. The second insulation layer has a second opening passing through the capping layer pattern to expose the first contact plug. The second contact plug is formed on the first contact plug in the second opening. Since the wiring structure includes the capping layer pattern, the wiring structure may prevent a contact failure by preventing chemicals from permeating into the first contact plug.Type: GrantFiled: December 20, 2012Date of Patent: April 29, 2014Assignee: Samsung Electronics Co., Ltd.Inventors: Ki-Soon Bae, Sei-Ryung Choi
-
Patent number: 8674371Abstract: The protective circuit is formed using a non-linear element which includes a gate insulating film covering a gate electrode; a first wiring layer and a second wiring layer which are over the gate insulating film and whose end portions overlap with the gate electrode; and an oxide semiconductor layer which is over the gate electrode and in contact with the gate insulating film and the end portions of the first wiring layer and the second wiring layer. The gate electrode of the non-linear element and a scan line or a signal line is included in a wiring, the first or second wiring layer of the non-linear element is directly connected to the wiring so as to apply the potential of the gate electrode.Type: GrantFiled: December 6, 2012Date of Patent: March 18, 2014Assignee: Semiconductor Energy Laboratory Co., Ltd.Inventors: Shunpei Yamazaki, Kengo Akimoto, Shigeki Komori, Hideki Uochi, Tomoya Futamura, Takahiro Kasahara
-
Patent number: 8610249Abstract: Disclosed herein are embodiments of non-planar capacitor. The non-planar capacitor can comprise a plurality of fins above a semiconductor substrate. Each fin can comprise at least an insulator section on the semiconductor substrate and a semiconductor section, which has essentially uniform conductivity, stacked above the insulator section. A gate structure can traverse the center portions of the fins. This gate structure can comprise a conformal dielectric layer and a conductor layer (e.g., a blanket or conformal conductor layer) on the dielectric layer. Such a non-planar capacitor can exhibit a first capacitance, which is optionally tunable, between the conductor layer and the fins and a second capacitance between the conductor layer and the semiconductor substrate. Also disclosed herein are method embodiments, which can be used to form such a non-planar capacitor and which are compatible with current state of the art multi-gate non-planar field effect transistor (MUGFET) processing.Type: GrantFiled: March 30, 2012Date of Patent: December 17, 2013Assignee: International Business Machines CorporationInventors: James P. Di Sarro, Robert J. Gauthier, Jr., Tom C. Lee, Junjun Li, Souvick Mitra, Christopher S. Putnam
-
Patent number: 8481396Abstract: Memory cells, and methods of forming such memory cells, are provided that include a steering element coupled to a carbon-based reversible resistivity switching material that has an increased resistivity, and a switching current that is less than a maximum current capability of the steering element used to control current flow through the carbon-based reversible resistivity switching material. In particular embodiments, methods and apparatus in accordance with this invention form a steering element, such as a diode, having a first cross-sectional area, coupled to a reversible resistivity switching material, such as aC, having a region that has a second cross-sectional area smaller than the first cross-sectional area.Type: GrantFiled: July 13, 2010Date of Patent: July 9, 2013Assignee: SanDisk 3D LLCInventors: Huiwen Xu, Er-Xuan Ping, Xiying Costa, Thomas J. Kwon
-
Patent number: 8426286Abstract: A method of manufacturing a semiconductor integrated circuit device having low depletion ratio capacitor comprising: forming hemispherical grains (HSG) on a poly-silicon; doping the hemispherical grained polysilicon in a phosphine gas; and rapid thermal oxidizing the doped hemispherical grained polysilicon at 850° C. for 10 seconds. The method further comprises nitridizing the rapid thermal oxidized hemispherical-grained polysilicon and depositing a alumina film on the silicon nitride layer. A semiconductor integrated circuit device having a low depletion ratio capacitor according to the disclosed manufacturing method is provided.Type: GrantFiled: April 1, 2011Date of Patent: April 23, 2013Assignee: Semiconductor Manufacturing International (Shanghai) CorporationInventors: Cheng Yang, Bo Tao, Jason Luo, Jingang Wu
-
Patent number: 8426269Abstract: A method for fabricating a semiconductor device includes forming junction area for a bit line contact (BLC) and a junction area for a storage node contact (SNC) by performing ion implantation in a substrate having a buried gate; forming a first insulation pattern having an opening to expose the junction areas; forming a buffer layer to fill the openings; forming a second insulation pattern over the first insulation pattern after filling the openings, wherein the second insulation pattern has openings to expose the buffer layer in an area of the buffer layer that lies over the junction area for the SNC; and forming an SNC to fill the opening of the second insulation patterns.Type: GrantFiled: November 4, 2011Date of Patent: April 23, 2013Assignee: Hynix Semiconductor Inc.Inventor: Baek-Mann Kim
-
Patent number: 8389375Abstract: In a first aspect, a method of forming a memory cell is provided, the method including: (1) forming a pillar above a substrate, the pillar comprising a steering element and a metal hardmask layer; (2) selectively removing the metal hardmask layer to create a void; and (3) forming a carbon-based switching material within the void. Numerous other aspects are provided.Type: GrantFiled: February 11, 2010Date of Patent: March 5, 2013Assignee: SanDisk 3D LLCInventor: Steven Maxwell
-
Patent number: 8384143Abstract: This semiconductor device according to the present invention includes a plurality of cylindrical lower electrodes aligned densely in a memory array region; a plate-like support which is contacted on the side surface of the cylindrical lower electrodes, and links to support the plurality of the cylindrical lower electrodes; a pore portion provided in the plate-like support; a dielectric film covering the entire surface of the cylindrical lower electrodes and the plate-like support in which the pore portion is formed; and an upper electrode formed on the surface of the dielectric film, wherein the boundary length of the part on the side surface of the cylindrical lower electrode which is exposed on the pore portion is shorter than the boundary length of the part on the side surface of the cylindrical lower electrode which is not exposed on the pore portion.Type: GrantFiled: March 30, 2012Date of Patent: February 26, 2013Assignee: Elpida Memory, Inc.Inventor: Toshiyuki Hirota
-
Patent number: 8361863Abstract: A method of forming an embedded DRAM cell having multiple-thickness gate dielectrics. An oxidation-enhancing dopant is selectively implanted into a well region in an area that is exposed by a first mask. A thermal oxidation step simultaneously produces the field dielectric for two distinct devices each having a different oxide thickness. The method is applicable to quad-density DRAM cells using fewer oxidation steps. The method is also applicable to planar DRAM cells, and does not require increasing the number of masks during the fabrication of planar DRAM cells.Type: GrantFiled: November 13, 2008Date of Patent: January 29, 2013Assignee: MoSys, Inc.Inventor: Jeong Y. Choi
-
Patent number: 8334540Abstract: The protective circuit is formed using a non-linear element which includes a gate insulating film covering a gate electrode; a first wiring layer and a second wiring layer which are over the gate insulating film and whose end portions overlap with the gate electrode; and an oxide semiconductor layer which is over the gate electrode and in contact with the gate insulating film and the end portions of the first wiring layer and the second wiring layer. The gate electrode of the non-linear element and a scan line or a signal line is included in a wiring, the first or second wiring layer of the non-linear element is directly connected to the wiring so as to apply the potential of the gate electrode.Type: GrantFiled: June 30, 2011Date of Patent: December 18, 2012Assignee: Semiconductor Energy Laboratory Co., Ltd.Inventors: Shunpei Yamazaki, Kengo Akimoto, Shigeki Komori, Hideki Uochi, Tomoya Futamura, Takahiro Kasahara
-
Patent number: 8318561Abstract: According to an aspect of the invention, there is provided a semiconductor device including a plurality of memory cells, comprising a plurality of floating gate electrodes which are formed on a tunnel insulating film formed on a semiconductor substrate and have an upper portion which is narrower in a channel width direction than a lower portion, an interelectrode insulating film formed on the floating gate electrodes, and a control gate electrode which is formed on the interelectrode insulating film formed on the floating gate electrodes and partially buried between the floating gate electrodes opposing each other.Type: GrantFiled: November 4, 2011Date of Patent: November 27, 2012Assignee: Kabushiki Kaisha ToshibaInventor: Yoshio Ozawa
-
Patent number: 8309415Abstract: Methods of forming memory cells are disclosed which include forming a pillar above a substrate, the pillar including a steering element and a memory element, and performing one or more etches vertically through the memory element, but not the steering element, to form multiple memory cells that share a single steering element. Memory cells formed from such methods, as well as numerous other aspects are also disclosed.Type: GrantFiled: August 13, 2009Date of Patent: November 13, 2012Assignee: SanDisk 3D LLCInventors: Huiwen Xu, Er-Xuan Ping, Roy E. Scheuerlein
-
Patent number: 8236645Abstract: Integrated circuits having place-efficient capacitors and methods for fabricating the same are provided. A dielectric layer is formed overlying a conductive feature on a semiconductor substrate. A via opening is formed into the dielectric layer to expose a portion of the conductive feature. A partial opening is etched into the dielectric layer and positioned over the conductive feature. Etch resistant particles are deposited overlying the dielectric layer and in the partial opening. The dielectric layer is further etched using the etch resistant particles as an etch mask to extend the partial opening. A first conductive layer is formed overlying the extended partial opening and electrically contacting the conductive feature. A capacitor insulating layer is formed overlying the first conductive layer. A second conductive layer is formed overlying the insulating layer.Type: GrantFiled: February 7, 2011Date of Patent: August 7, 2012Assignee: GLOBALFOUNDRIES, Inc.Inventor: Dmytro Chumakov
-
Patent number: 8232166Abstract: A semiconductor device includes a substrate with a recess pattern, a gate electrode filling the recess pattern, a threshold voltage adjusting layer formed in the substrate under the recess pattern, a source/drain region formed in the substrate on both sides of the gate electrode and a gate insulation layer, with the recess pattern being disposed between the gate electrode and the substrate, wherein the thickness of the gate insulation layer formed in a region adjacent to the source/drain region is greater than the thickness of the gate insulation layer formed in a region adjacent to the threshold voltage adjusting layer.Type: GrantFiled: November 9, 2009Date of Patent: July 31, 2012Assignee: Hynix Semiconductor Inc.Inventors: Seung-Mi Lee, Yun-Hyuck Ji, Tae-Kyun Kim, Jin-Yul Lee
-
Patent number: 8187934Abstract: A method of fabricating a memory cell comprises forming a plurality of doped semiconductor layers on a carrier substrate. The method further comprises forming a plurality of digit lines separated by an insulating material. The digit lines are arrayed over the doped semiconductor layers. The method further comprises etching a plurality of trenches into the doped semiconductor layers. The method further comprises depositing an insulating material into the plurality of trenches to form a plurality of electrically isolated transistor pillars. The method further comprises bonding at least a portion of the structure formed on the carrier substrate to a host substrate. The method further comprises separating the carrier substrate from the host substrate.Type: GrantFiled: July 27, 2010Date of Patent: May 29, 2012Assignee: Micron Technology, Inc.Inventors: David H. Wells, H. Montgomery Manning
-
Patent number: 8169015Abstract: This semiconductor device according to the present invention includes a plurality of cylindrical lower electrodes aligned densely in a memory array region; a plate-like support which is contacted on the side surface of the cylindrical lower electrodes, and links to support the plurality of the cylindrical lower electrodes; a pore portion provided in the plate-like support; a dielectric film covering the entire surface of the cylindrical lower electrodes and the plate-like support in which the pore portion is formed; and an upper electrode formed on the surface of the dielectric film, wherein the boundary length of the part on the side surface of the cylindrical lower electrode which is exposed on the pore portion is shorter than the boundary length of the part on the side surface of the cylindrical lower electrode which is not exposed on the pore portion.Type: GrantFiled: May 6, 2008Date of Patent: May 1, 2012Assignee: Elpida Memory, Inc.Inventor: Toshiyuki Hirota
-
Patent number: 8164131Abstract: A nonvolatile semiconductor memory device includes: a first semiconductor region having first conductivity; a channel formation region in which a channel inversion layer having second conductivity is formed; a second semiconductor region having the second conductivity; a third semiconductor region having the second conductivity; a laminated insulating film formed on the channel formation region; and a control electrode formed on the laminated insulating film. The laminated insulating film includes a first insulating film, a charge storage film, and a second insulating film in order from the channel formation region side. The control electrode extends to above one of the second semiconductor region and the third semiconductor region. The charge storage film present between an extended portion of the control electrode and the second semiconductor region or the third semiconductor region is removed and a portion where the charge storage film is removed is filled with a third insulating film.Type: GrantFiled: December 4, 2006Date of Patent: April 24, 2012Assignee: Sony CorporationInventors: Toshio Kobayashi, Saori Hara
-
Patent number: 8148214Abstract: A stressed field effect transistor and methods for its fabrication are provided. The field effect transistor comprises a silicon substrate with a gate insulator overlying the silicon substrate. A gate electrode overlies the gate insulator and defines a channel region in the silicon substrate underlying the gate electrode. A first silicon germanium region having a first thickness is embedded in the silicon substrate and contacts the channel region. A second silicon germanium region having a second thickness greater than the first thickness and spaced apart from the channel region is also embedded in the silicon substrate.Type: GrantFiled: January 28, 2009Date of Patent: April 3, 2012Assignee: GlobalFoundries Inc.Inventors: Andrew M. Waite, Scott Luning
-
Patent number: 8129251Abstract: A METAL-INSULATOR-METAL structured capacitor is formed with polysilicon instead of an oxide film as a sacrificial layer material that defines a storage electrode region. A MPS (Meta-stable Poly Silicon) process is performed to increase the surface area of the sacrificial layer that defines the storage electrode region and also increase the area of the storage electrode formed over sacrificial layer. This process results in increasing the capacity of the capacitor in a stable manner.Type: GrantFiled: November 13, 2006Date of Patent: March 6, 2012Assignee: Hynix Semiconductor Inc.Inventor: Won Sun Seo
-
Patent number: 8129244Abstract: A method for fabricating a semiconductor device includes forming a plurality of first trenches by etching a substrate, forming a plurality of buried bit lines in the first trenches, forming a plurality of second trenches to expose at least one sidewall of the buried bit lines by etching the substrate, and forming a plurality of one-sidewall contact plugs which fill the second trenches.Type: GrantFiled: July 2, 2010Date of Patent: March 6, 2012Assignee: Hynix Semiconductor Inc.Inventors: Yong-Seok Eun, Eun-Shil Park, Tae-Yoon Kim, Min-Soo Kim
-
Patent number: 8093123Abstract: Methods of forming memory cells are disclosed which include forming a pillar above a substrate, the pillar including a steering element and a memory element, and performing one or more etches vertically through the pillar to form multiple memory cells. Memory cells formed from such methods, as well as numerous other aspects are also disclosed.Type: GrantFiled: August 13, 2009Date of Patent: January 10, 2012Assignee: SanDisk 3D LLCInventors: Huiwen Xu, Er-Xuan Ping
-
Patent number: 8080474Abstract: The present invention provides a method for making an electrode. Firstly, a conducting substrate is provided. Secondly, a plurality of nano-sized structures is formed on the conducting substrate by a nano-imprinting method. Thirdly, a coating is formed on the nano-sized structures. The nano-sized structures are configured for increasing specific surface area of the electrode.Type: GrantFiled: June 1, 2009Date of Patent: December 20, 2011Assignee: Hon Hai Precision Industry Co., Ltd.Inventor: Ga-Lane Chen
-
Patent number: 8076711Abstract: According to an aspect of the invention, there is provided a semiconductor device including a plurality of memory cells, comprising a plurality of floating gate electrodes which are formed on a tunnel insulating film formed on a semiconductor substrate and have an upper portion which is narrower in a channel width direction than a lower portion, an interelectrode insulating film formed on the floating gate electrodes, and a control gate electrode which is formed on the interelectrode insulating film formed on the floating gate electrodes and partially buried between the floating gate electrodes opposing each other.Type: GrantFiled: May 24, 2011Date of Patent: December 13, 2011Assignee: Kabushiki Kaisha ToshibaInventor: Yoshio Ozawa
-
Patent number: 8039344Abstract: In a method of forming a capacitor, a seed stopper and a sacrificial layer is formed on an insulating interlayer having a plug therethrough. An opening is formed through the sacrificial layer and the seed stopper to expose the plug. A seed is formed on an innerwall of the opening. A lower electrode is formed covering the seed on the innerwall of the opening. The sacrificial layer and the seed are removed. A dielectric layer and an upper electrode are sequentially formed on the lower electrode.Type: GrantFiled: November 24, 2010Date of Patent: October 18, 2011Assignee: Samsung Electronics Co., Ltd.Inventors: Han-Jin Lim, Jae-Hong Seo, Seok-Woo Nam, Bong-Hyun Kim, Taek-Soo Jeon
-
Patent number: 8021970Abstract: A method includes forming a first dielectric layer over a substrate; forming nanoclusters over the first dielectric layer; forming a second dielectric layer over the nanoclusters; annealing the second dielectric layer using nitrous oxide; and after the annealing the second dielectric layer, forming a gate electrode over the second dielectric layer.Type: GrantFiled: March 20, 2009Date of Patent: September 20, 2011Assignee: Freescale Semiconductor, Inc.Inventors: Jinmiao J. Shen, Cheong M. Hong, Sung-Taeg Kang, Marc A Rossow
-
Patent number: 8003481Abstract: A method for forming an HSG (hemispherical grain) layer on a storage electrode of a capacitor formed on a substrate is provided. The method includes a step of introducing a source gas into a reacting chamber to deposit a small amount of HSG nuclei on a conductive layer pattern of a capacitor electrode during a step of stabilizing the substrate temperature. After the substrate temperature is stabilized, a larger amount of source gas is introduced into the chamber to form additional HSG nuclei. Thereafter, a step of annealing is performed to form the HSG layer.Type: GrantFiled: March 25, 1999Date of Patent: August 23, 2011Assignee: Samsung Electronics Co., Ltd.Inventors: Seung-Dong Kang, Chang-seog Ko, Seung-jin Lee, Kyoung-Bok Lee
-
Patent number: 7989815Abstract: The protective circuit is formed using a non-linear element which includes a gate insulating film covering a gate electrode; a first wiring layer and a second wiring layer which are over the gate insulating film and whose end portions overlap with the gate electrode; and an oxide semiconductor layer which is over the gate electrode and in contact with the gate insulating film and the end portions of the first wiring layer and the second wiring layer. The gate electrode of the non-linear element and a scan line or a signal line is included in a wiring, the first or second wiring layer of the non-linear element is directly connected to the wiring so as to apply the potential of the gate electrode.Type: GrantFiled: October 1, 2009Date of Patent: August 2, 2011Assignee: Semiconductor Energy Laboratory Co., Ltd.Inventors: Shunpei Yamazaki, Kengo Akimoto, Shigeki Komori, Hideki Uochi, Tomoya Futamura, Takahiro Kasahara
-
Patent number: 7964471Abstract: A method of forming a capacitor includes providing material having an opening therein over a node location on a substrate. A shield is provided within and across the opening, with a void being received within the opening above the shield and a void being received within the opening below the shield. The shield is etched through within the opening. After the etching, a first capacitor electrode is formed within the opening in electrical connection with the node location. A capacitor dielectric and a second capacitor electrode are formed operatively adjacent the first capacitor electrode.Type: GrantFiled: March 3, 2010Date of Patent: June 21, 2011Assignee: Micron Technology, Inc.Inventors: Mark Kiehlbauch, Kevin R. Shea
-
Patent number: 7960230Abstract: According to an aspect of the invention, there is provided a semiconductor device including a plurality of memory cells, comprising a plurality of floating gate electrodes which are formed on a tunnel insulating film formed on a semiconductor substrate and have an upper portion which is narrower in a channel width direction than a lower portion, an interelectrode insulating film formed on the floating gate electrodes, and a control gate electrode which is formed on the interelectrode insulating film formed on the floating gate electrodes and partially buried between the floating gate electrodes opposing each other.Type: GrantFiled: March 4, 2010Date of Patent: June 14, 2011Assignee: Kabushiki Kaisha ToshibaInventor: Yoshio Ozawa
-
Patent number: 7906393Abstract: The present disclosure provides small scale capacitors (e.g., DRAM capacitors) and methods of forming such capacitors. One exemplary implementation provides a method of fabricating a capacitor that includes sequentially forming a first electrode, a dielectric layer, and a second electrode. At least one of the electrodes may be formed by a) reacting two precursors to deposit a first conductive layer at a first deposition rate, and b) depositing a second conductive layer at a second, lower deposition rate by depositing a precursor layer of one precursor at least one monolayer thick and exposing that precursor layer to another precursor to form a nanolayer reaction product. The second conductive layer may be in contact with the dielectric layer and have a thickness of no greater than about 50 ?.Type: GrantFiled: January 28, 2004Date of Patent: March 15, 2011Assignee: Micron Technology, Inc.Inventors: Lingyi A. Zheng, Trung T. Doan, Lyle D. Breiner, Er-Xuan Ping, Kevin L. Beaman, Ronald A. Weimer, Cem Basceri, David J. Kubista
-
Patent number: 7868338Abstract: A liquid crystal display array board includes a plurality of gate wiring lines formed on a substrate and a plurality of data wiring lines crossing the plurality of gate wiring lines, a plurality of thin film transistors formed in areas defined by crossings of the gate wiring lines and the data wiring lines, a plurality of storage capacitor first electrodes that run parallel to the gate wiring lines and patterned to have concavo-convex patterns, a plurality of storage capacitor second electrodes integrated with the drain electrodes of the thin film transistors and formed on the storage capacitor first electrodes, and a plurality of pixel electrodes electrically connected to the drain electrodes.Type: GrantFiled: September 12, 2006Date of Patent: January 11, 2011Assignee: Samsung Mobile Display Co., Ltd.Inventors: Do Young Kim, Hae Jin Heo
-
Patent number: 7863149Abstract: In a method for fabricating a capacitor that includes an electrode structure (80), an auxiliary layer (40) is formed over a substrate (10). A recess (60), which determines the shape of the electrode structure (80), is etched into the auxiliary layer (40), and the electrode structure of the capacitor is formed in the recess. As an example, the auxiliary layer can be a semiconductor layer (40).Type: GrantFiled: September 9, 2005Date of Patent: January 4, 2011Assignee: Qimonda AGInventors: Srivatsa Kundalgurki, Peter Moll, Dirk Manger, Kristin Schupke, Till Schloesser
-
Patent number: 7858483Abstract: A method for forming a capacitor of a semiconductor device includes forming a first insulation layer having a storage node plug on a semiconductor substrate; forming an etch stop layer and a second insulation layer sequentially on the substrate having the first insulation layer; forming a hole exposing a portion of the storage node plug by selectively etching the second insulation layer by using the etch stop layer; recessing a portion of the storage node plug exposed by the hole; forming a barrier metal layer on a surface of the recessed storage node plug; forming a storage node electrode connected to the storage node plug through the barrier metal layer in the hole; and forming a dielectric layer and a metal layer for a plate electrode sequentially on the storage node electrode.Type: GrantFiled: June 15, 2005Date of Patent: December 28, 2010Assignee: Hynix Semiconductor Inc.Inventors: Hyung Bok Choi, Jong Bum Park, Kee Jeung Lee, Jong Min Lee
-
Patent number: 7846809Abstract: A method for forming a capacitor of a semiconductor device includes the steps of forming first and second sacrificial insulation layers over a semiconductor substrate divided into first and second regions. The second and first sacrificial insulation layers in the first region are etched to define in the first region of the semiconductor substrate. Storage nodes on surfaces of the holes are formed. A partial thickness of the second sacrificial insulation layer is etched to partially expose upper portions of the storage nodes. A mask pattern is formed to cover the first region while exposing the second sacrificial insulation layer remaining in the second region. The exposed second sacrificial insulation layer in the second region is removed to expose the first sacrificial insulation layer in the second region. The exposed first sacrificial insulation layer in the second region and the first sacrificial insulation layer in the first region is removed. The mask pattern is removed.Type: GrantFiled: December 28, 2007Date of Patent: December 7, 2010Assignee: Hynix Semiconductor Inc.Inventor: Gyu Hyun Kim